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Medidas analíticas modernas são comumente apresentadas na forma de vetores (e.g., espectros) 
ou estruturas de dados de ordem maior como matrizes, que são normalmente sujeitas a estratégias 
de análise multivariada de dados para a extração de informações. Um aspecto dessas medidas 
que normalmente é pouco compreendida é a natureza subentendida dos erros, e como eles afetam 
a obtenção da informação química. Este Account descreve alguns dos métodos que podem ser 
utilizados para caracterizar erros de medidas multivariadas e como esta informação pode ser 
usada para melhorar os resultados das análises de dados. A caracterização inclui classificações 
gerais de erros, representações de domínios Fourier e matriz da covariância dos erros. O cálculo 
e a interpretação da covariância dos erros e matrizes de correlação são ilustrados usando medidas 
experimentais e os métodos de análise de dados que fazem uso dessa informação do erro são 
brevemente resumidos. Um exemplo simples é apresentado para mostrar como a informação sobre 
medidas de erros permite uma extração bem-sucedida da variância química significativa dos dados.

Modern analytical measurements are commonly presented in the form of vectors (e.g., spectra) 
or higher order data structures such as matrices, and these are often subjected to multivariate data 
analysis strategies to extract information. One aspect of these measurements that is often poorly 
understood is the underlying nature of the measurement errors and how these affect the ability 
to obtain chemical information. This Account outlines some of the methods that can be used to 
characterize multivariate measurement errors and how this information can be used to improve 
the results of data analysis. Characterization includes general classifications of error, Fourier 
domain representations, and the error covariance matrix. The calculation and interpretation of error 
covariance and correlation matrices are illustrated using experimental measurements, and data 
analysis methods that make use of this error information are briefly reviewed. A simple example is 
presented to show how information about measurement errors allows for more effective extraction 
of meaningful chemical variance in the data.

Keywords: measurement errors, error covariance, Fourier transforms, multivariate data 
analysis, measurement noise

1. Introduction

Analytical chemistry is the science of chemical 
measurements, and inherent in any chemical measurement 
is the principle of measurement error. Since chemistry is, at 
its core, an experimental science, the idea of measurement 
error becomes almost intuitive to most students of 
chemistry at an early stage and they recognize that all 
measurements inevitably contain some error, whether this is 
expressed explicitly through the use of statistical confidence 
intervals or implied through the use of the proper number of 
significant digits. Despite this imbedded knowledge, which 
is enhanced in most cases by some rudimentary training in 

statistics, many of us are guilty at times of neglecting this 
component of the measurements by omitting error bars 
in graphs, choosing to exclude replicate measurements, 
or reporting too many significant figures, among other 
transgressions. It is important to remember, however, that 
distinguishing meaningful changes in measurements from 
random variations (noise) is essential to the extraction of 
chemical information.

Historically, early chemists were able to conduct 
experiments in which variables for model systems could 
be closely controlled, allowing precise measurements to 
be made and obviating the need for extensive statistical 
analysis. In recent decades, however, more challenging 
problems, such as those involving biological, clinical and 
environmental systems, have demanded greater attention 
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to experimental design and statistical treatment by methods 
such as analysis of variance (ANOVA). Coupled with 
this has been the evolution of analytical instrumentation, 
which made accessible multivariate measurements in the 
form of vectors, matrices and higher order structures, 
and necessitated the need for multivariate statistical 
approaches. These two factors precipitated the development 
of chemometrics as a sub-discipline of analytical chemistry 
in the late 1970s. Many definitions of chemometrics 
have been proposed,1-4 but here it will be defined simply 
as the field of study that seeks to maximize the amount 
of information extracted from chemical measurements, 
whether that is through prescribing optimal measurement 
conditions or data analysis strategies. The emergence of 
chemometrics occurred later than parallel disciplines in 
other fields (e.g., psychometrics, econometrics) where 
the challenges in data interpretation arose earlier. While 
chemometrics has borrowed some approaches from those 
disciplines, it has also developed methods that reflect the 
unique characteristics of chemical data sets.

While many chemometric tools have been devised 
to extract information from multivariate chemical 
measurements, one area that has been somewhat neglected 
is the role of multivariate measurement errors in this 
process. Often techniques that are developed to analyze 
multivariate data make simplistic assumptions about the 
measurement errors that are carried over from practices 
or assumptions made about univariate data, but in reality 
the structure of multivariate measurement errors can be 
much more complex. In many cases, especially when 
measurement errors are small or the assumptions are 
approximately valid, traditional chemometric tools can 
be applied with excellent results, but in other cases, 
consideration of the measurement error structure can mean 
the difference between the success and failure of the data 
analysis. Studying the nature of multivariate measurement 
errors has several important benefits. First, it can lead to a 
better understanding of the origins of errors for a particular 
instrument or measurement system, knowledge which 
can then be used to improve the quality of measurements 
by addressing the limiting sources of error. Second, by 
knowing the characteristics of the errors, data analysis tools 
can be designed to treat the errors in an optimal way, leading 
to more efficient extraction of chemical information. 
Finally, the error structure inherent in multivariate data can 
be propagated through different pre-processing and data 
analysis steps to determine its impact on the final result.

The goals of this article are: (a) to describe some 
of the terminology associated with the description of 
errors in general and multivariate errors in particular, (b) 
to introduce some of the methods used to characterize 

multivariate measurement errors, and (c) to present some 
of the approaches that make use of measurement error 
information to enhance data analysis. Much of the material 
presented here is derived from a short course offered by 
the author at the First Chemometric Winter School held at 
the Universidade Federal de São Carlos (São Carlos, São 
Paulo State, Brazil) in August of 2013.

2. Terminology

The concept of measurement error is at the same time 
both simple and complex. We can define the error, e, as 
simply the difference between a measured value, x, and 
its true value, xo.

e = x – xo (1)

Although this definition appears simple, the first 
complication arises from the definition of the “true” value. 
Setting aside the fact that we don’t generally know the true 
value (except in simulations), it can be defined in a variety 
of ways, as illustrated in Figure 1. If the true value sought 
is the height of an analyte peak, errors can be introduced 
by chemical interferences, baseline variations, and random 
errors in the detector response. However, in another context, 
such as multivariate calibration where interferences are 
accommodated in the model, the true value could be defined 
as the sum of the analyte and the chemical interference, or 
could also include the baseline, in which case errors only 
arise from the detector noise.

In practice, errors are typically defined by using the 
mean of several measurements as a surrogate for the “true” 
value. In this case, the definition of the replicate becomes 
critical and there are many such definitions possible. As an 

Figure 1. Illustration of different sources of errors in a chemical 
measurement: (a) pure analytical signal; (b) analytical signal and 
measured signal (solid lines) in the presence of a chemical interference 
(dashed line); (c) analytical and measured signals in the presence of a 
chemical interference and baseline drift (dotted line); and (d) analytical 
and measured signals in the presence of chemical interference, baseline 
drift, and measurement noise.



Wentzell 185Vol. 25, No. 2, 2014

example, consider the case in which the measurement is a 
peak in the nuclear magnetic resonance (NMR) spectrum of 
a sample of blood plasma in a clinical trial or metabolomics 
study. The lowest level of replication, the instrumental 
replicate, would be obtained by simply scanning the 
spectrum of the same sample several times without 
replacement. Assuming no degradation of the sample, this 
would reflect the variability of the instrument, including 
baseline variations and detector noise. A replacement 
replicate is similar, except that it involves replacement 
of the sample between scans and therefore would include 
variations associated, for example, with changes in 
the position of the sample within the field. Technical 
replication, which can be performed at several levels, 
involves replication of the steps required for preparation of 
the sub-sample prior to obtaining the spectrum. In this case 
these could include, for example, separation of the plasma 
from the blood cells and dilution, thereby introducing 
any sources of variation associated with those steps. 
Preparatory or sub-sampling replicates involve replication 
of all of the steps required for the preparation of different 
sub-samples, which in this case could be considered to be 
repeated draws of blood from the same subject at the same 
time. Sampling replicates refer to replication of analysis for 
samples of the same origin (e.g., same batch, organism, or 
culture) and in the present example may refer to samples 
extracted from the same subject at different times, thereby 
incorporating diurnal variations in analyte concentration. 
Sub-population replicates, generally the highest level of 
replication, would involve replicate scans from different 
samples in the same class, for example healthy adult 
males, and incorporates the variations among individuals 
in addition to variations at all lower levels of replication.

It should be noted that not all of these levels apply to 
all analytical methods and additional levels of replication 
may be defined. Moreover, other sources of variability, such 
as different labs and operators, may be included, and this 
has given rise to the terms repeatability (same lab/analyst/
day) and reproducibility (different labs/analysts/days) to 
describe the precision of analytical methods.5 Generally the 
variability in a measurement is expected to increase at each 
level of replication as factors that were fixed at lower levels 
begin to introduce a random contribution. This means that 
the definition of the “true” value, and therefore the errors 
observed, change depending on the level of replication, so 
it is important to consider how replicates are to be defined 
when attempting to characterize measurement errors.

A term that is sometimes used as a synonym for 
measurement errors is “noise”. While this can have the 
same meaning, it generally implies a random error source 
and may also be used to imply a random series of error 

contributions in time, space, or some other ordinal variable 
such as wavelength. Because of this latter usage, the term 
“measurement noise” is often used to refer to the vector 
of measurement errors associated with a spectrum or other 
measurement vector.

An important distinction that is often overlooked 
in the literature is the difference between “error” and 
“uncertainty”. The term “error” refers to a specific value 
associated with one measurement of a particular quantity, 
and may be positive or negative (or even zero), while 
“uncertainty” refers to a statistical characterization of the 
errors in replicated measurements, such as a variance, 
confidence interval, or standard deviation. The population 
variance of the measurement error is defined as the 
expectation value, designated as E(), of the squared error, 
as given in equation 2, where N represents the number of 
samples.

 (2)

In practice, the sample variance is based on a finite 
number of measurements and is calculated using the sample 
mean as an estimate of the true value, xo.

 (3)

While these definitions are well-known to most readers 
and can be applied equally well to individual variables for 
multivariate data, extension to multivariate systems also 
requires another consideration, and that is the relationship 
between errors in two or more variables. If we consider two 
uniquely defined variables, x and y, for a single replicate, 
for example intensity measurements at two wavelength 
channels for a single sample, then we can give the following 
definitions.

 (4)

Here, sxy represents the error covariance between 
variables x and y and describes the statistical relationship 
between errors in the two variables. When sxy = 0, the 
errors in the two variables are said to be uncorrelated or 
independent. Alternatively, the errors may be related by a 
correlation coefficient, ρ, such that sxy = ρsxsy, where ρ = 1 
means that the errors are perfectly correlated and ρ = –1 
means they are perfectly anti-correlated. Analogous to 
the sample error variance, the sample error covariance is 
defined as given in equation 5.

 (5)



Measurement Errors in Multivariate Chemical Data J. Braz. Chem. Soc.186

Note that the error covariance can be either positive or 
negative so there is no analog to the standard deviation, 
which is the square root of the variance.

In a measurement vector consisting of n measured 
variables, both the error variance and covariance are 
important in characterizing the errors. When the error 
variance is the same among a group of variables, the errors 
are said to be homoscedastic, while a non-uniform variance 
means that the errors are heteroscedastic. Independent 
errors are observed when the error covariances within a 
group of variables are all zero, while non-zero values means 
that errors are correlated. When heteroscedastic and/or 
correlated errors are observed for a series of variables in a 
measurement vector, they are often characterized according 
to their pattern of behaviour. Table 1 lists a variety of ways 
that measurement errors, or noise, can be characterized. 
This list includes classifications based on heteroscedasticity 

(e.g., shot noise), correlations (e.g., 1/f noise) or both (e.g., 
multiplicative noise), as well as classifications based on 
other factors, such as the origin (e.g., Johnson noise). Note 
that the classifications listed are not mutually exclusive and 
that multiple types of noise are generally observed in any 
system, although one may dominate.

In the analysis of multivariate analytical data, a 
condition that is often assumed for the methods employed 
is that the measurement errors are independent and 
identically distributed with a normal distribution, or 
iid normal. In other words, measurement errors are 
assumed to be homoscedastic, uncorrelated and normally 
distributed. For most experimental data, these assumptions 
are not valid and some degree of heteroscedasticity 
and/or correlation is present in most error structures 
encountered in the author’s experience. While this does 
not necessarily negate the validity or effectiveness of 

Table 1. Some classifications of experimental measurement errors

Type of noise Description

Independent errors/ uncorrelated errors Errors for which the error covariance is zero.

Correlated errors Errors for which the error covariance is not zero.

Homoscedastic errors Errors that have the same (uniform) variance.

Heteroscedastic errors Errors that have a non-uniform variance.

White noise A vector of uncorrelated measurement errors. May also imply homoscedastic errors and/or errors which 
follow a normal distribution.

Pink noise or 1/f noise A type of “low frequency” noise in which the measurement errors in adjacent measurements are more 
correlated than for measurements that are farther apart. Characterized by random variation that occurs slowly. 
Variations include “brown noise” (1/f2 noise).

Drift noise Another term for low frequency or correlated noise which implies a slow change in measurement conditions 
such as temperature.

Source flicker noise Yet another term for low frequency noise (usually 1/f) that is specifically associated with variations in source 
signal intensity (e.g., a lamp in spectroscopy or an ion source in mass spectrometry).

Proportional noise Heteroscedastic noise in which the standard deviation of the error is proportional to the magnitude of the 
signal. Often associated with source flicker noise.

Additive noise or offset noise Correlated noise (ρ = 1) that randomly shifts the entire signal up or down by a fixed amount (e.g., shifts in 
baseline position).

Multiplicative noise Correlated noise (ρ = 1) that randomly shifts the entire signal up or down by an amount proportional to the 
magnitude of the signal (e.g., variations in path length in absorption spectroscopy). A type of proportional noise.

Interference noise Can refer to periodic (correlated) noise that occurs at a particular frequency or set of frequencies (e.g., pump 
noise in chromatography). Can also refer to variable signal interference by other chemical or physical factors.

Baseline noise Can refer either to the variance introduced by a variable baseline (offset noise, drift noise, interference noise, 
etc.) or the variance of the noise in the baseline regions where no signal is present.

Shot noise Heteroscedastic noise where the noise standard deviation is proportional to the square root of the signal. 
Arises from the Poisson distribution associated with counting statistics (e.g., photomultipliers).

Johnson noise or thermal noise Variation in a signal arising from the random thermal motion of charge carriers across resistance in an electrical 
circuit. Often has white noise characteristics.

Detector noise General term for noise arising at the detector.

Digitization noise or quantization noise Arises from finite precision of analog-to-digital converters (rarely a concern in modern instruments) or 
discrete category variables.

Stationary noise Not a type of noise, but a condition where the joint probability distribution of the errors does not change 
from one set of measurements to the next.
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the methods employed, it may make them sub-optimal 
for achieving the desired goals. Indeed, many of the 
pre-processing techniques employed for multivariate 
data (e.g., scaling, derivative filtering) have the implicit 
objective of making the errors closer to iid normal. 
The goal of many multivariate analysis techniques is 
to separate meaningful chemical variance from noise 
variance, so the assumptions about the latter can be 
important. For optimal data analysis, it is necessary to 
quantitatively describe the nature of the measurement 
error structure. Two common ways to do this are through 
the use of Fourier analysis and through error covariance 
matrices, which are described in the sections that follow.

3. Fourier Transforms

Several of the terms in Table 1 refer to the “frequency” 
of the noise, terminology which is a carry-over from the 
Fourier analysis of time series signals in engineering 
disciplines. This terminology may be less familiar to 
chemists, however, so it warrants some discussion as a 
means to describe multivariate measurement errors. Most 
chemists are already somewhat familiar with the Fourier 
transform from its various applications in the field, such as 
in Fourier-transform infrared spectroscopy (FTIR). Because 
signals obtained by modern instruments involve discretely 
sampled digital values, the discussion here is limited to 
the discrete Fourier transform (DFT). A comprehensive 
discussion of the DFT is beyond the scope of this article 
and has been presented elsewhere,6-8 so only a brief review 
will be included here.

A time series consisting of N measurements sampled 
at discrete intervals of Dt can be represented as the 
measurement vector y, where the corresponding times are 
ti = (i − 1) Dt. Fourier theory states that the measurements 
in y can be reproduced using a sum of (N / 2 + 1) sinusoidal 
signals of predefined frequencies as given by equation 6 
(note: N is assumed to be even here).

 (6)

In this equation, Cn and fn are the amplitude and phase 
angle of sinusoid at frequency fn, where fn is given by,

 (7)

and fs is the sampling frequency, defined as 1/Dt. The Fourier 
transform can be represented in several ways, but one 
common approach is to plot the amplitude and phase angle 
as a function of frequency, referred to as the amplitude and 
phase spectra. This is illustrated in Figure 2 where the DFT of 

a ten point square wave has been generated. Figure 2a shows 
the original square wave along with the discretely sampled 
points and the signal reconstructed by the Fourier transform 
(two cycles of the square wave are shown for clarity). Note 
that while the DFT exactly reconstructs the sampled points 
as required, it does not exactly reproduce the underlying 
signal, which is impossible due to a finite sampling rate. 
Figure 2b shows the six sinusoids used to reconstruct the 
signal, including the DC signal and two frequencies with 
zero amplitude. The amplitude and phase spectra are shown 
in Figures 2c and d, respectively.

Amplitude spectra from the DFT are useful in studying 
the characteristics of noise from ordered chemical 
measurement vectors. The term “ordered” is used here to 
refer to data sets in which the measurements are associated 
with some ordinal variable such as time or wavelength 
that describes a natural sequence in the measurements. 
This is in contrast to data sets where the order of the 
measured variables has no particular relevance, such as 
elemental concentrations in an environmental study. The 
reason for this distinction is that the DFT is particularly 
effective in detecting patterns of correlation in measurement 
errors over a short range in a series of measurements. 
While conventional descriptions of the Fourier transform 
use time as the ordinal variable, with frequency as the 
complementary domain, there is no mathematical reason 
why this should be the case and any ordinal variable (e.g., 
wavelength, chemical shift) can be employed. In such 
cases, it is more appropriate to refer to the complementary 
domain as the Fourier domain, but the frequency domain 
terminology persists even when the ordinal variable is 
not time. Hence the term “low frequency noise” does not 
necessarily refer to the frequency domain.

Figure 2. Discrete Fourier transform of a ten point square wave (two 
cycles shown for clarity). (a) Original signal (solid black line), sampled 
points (black circles), and Fourier reconstructed signal (dashed red line); 
(b) sinusoidal components of Fourier transform; (c) amplitude spectrum 
of Fourier transform; (d) phase spectrum of Fourier transform.
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The widely used term “white noise” is derived from 
Fourier analysis of signals where the amplitude spectrum 
in the Fourier domain is ideally flat, reflecting equal 
contributions at all frequencies (analogous to white light). 
In practice, noise is by definition stochastic, so the DFT 
of a single sample of white noise does not appear flat, 
as illustrated in Figure 3a where a 100-point sample 
of white noise and its Fourier transform (amplitude 
spectrum) are shown. To remove the “noise from 
the noise”, the amplitude spectra for multiple white 
noise sequences need to be averaged. This is shown 
in Figure 3b, where the DFT represents the average of 
amplitude spectra from 100 white noise sequences. Other 
methods to improve the appearance of noise spectra 
are boxcar averaging of amplitude spectra from longer 
noise sequences and calculating the DFT of the noise 
autocorrelation function. The autocorrelation function for 
white nose is a delta function, which has a flat Fourier  
transform.

Also shown in Figure 3 are some other examples 
of noise sequences in the time and frequency domains. 
Figure 3c shows a typical sequence of pink noise, or 1/f 
noise and its amplitude spectrum (averaged over 100 noise 
sequences). In the time domain, this type of noise appears 
to be more slowly varying than white noise and is often 
associated with drift noise or source flicker noise. The DFT 
is characterized by a large amplitude at low frequencies 
that falls off as 1/f. Figure 3d contains a mixture of noise 
contributions (white noise, pink noise and interference 
noise) that might be more typical of a real signal. While the 
various noise components are not readily apparent in the 
time domain, the DFT shows them more clearly. The white 

noise contribution is represented by the offset from zero in 
the amplitude spectrum and the pink noise is indicated by 
the higher contributions at low frequencies. Interference 
noise appears as a spike at a particular frequency and, as 
indicated here, can typically exhibit higher order harmonics 
at fixed intervals.

The frequency domain characteristics of noise can 
be an important consideration in signal processing 
of measurement vectors, especially in the context of 
pre-processing analytical signals. For example, smoothing 
using polynomial least squares (Savitzky-Golay) filters is 
widely used in analytical chemistry to reduce noise. These 
filters act to remove the high frequency content of the 
signal vector, which is dominated by white noise, while 
retaining the low frequency components which typically 
contain the important information. However, this type 
of signal processing is ineffective when the dominant 
source of noise is 1/f noise, which is mainly present at low 
frequencies. Likewise, derivative filters are often used to 
suppress low frequency offset and drift noise that dominate 
at low frequencies, but can have the effect of amplifying 
high frequency noise.

While Fourier analysis of noise in analytical signals 
is useful, it is severely limited in the information it can 
provide. Since these methods were originally designed 
for time series analysis of stationary signals that follow 
a well-defined correlation structure, the more complex 
correlation patterns that can be present in measurement noise 
from chemical measurements may not be easily revealed 
by such techniques. Moreover, noise heteroscedasticity 
(non-uniform variance) among measured channels is not 
readily apparent in the Fourier transform. Therefore, a 
more comprehensive description of the measurement error 
characteristics is required.

4. The Error Covariance Matrix

If we consider an n × 1 vector of measurements x, we 
can define the vector of measurement errors, e (n × 1), in 
a manner analogous to equation 1,

 (8)

where the vector xo represents the true measurement 
vector. In the same way that the variance is used to 
characterize the statistical behaviour of univariate 
measurement errors, we can use the error covariance 
matrix, Σ (n × n), to describe the statistical characteristics 
of the measurement error vector. Σ is defined as the 
expectation of the outer product of the measurement error  
vector:

Figure 3. Some examples of noise sequences (left) and their FT 
amplitude spectra: (a) white noise; (b) white noise with the amplitude 
spectrum averaged over 100 samples; (c) pink noise (1/f noise); and (d) 
a combination of white noise, pink noise and interference noise. The 
amplitude spectra in (c) and (d) are also averaged over 100 samples.
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 (9)

The error covariance matrix (more precisely called the 
error variance-covariance matrix) describes the statistical 
relationship among all of the errors in the measurement 
vector. The diagonal elements of this matrix give the error 
variances associated with each measurement channel and 
will therefore indicate any heteroscedasticity that is present. 
The off-diagonal elements, sjk, give the covariance of the 
measurement errors at channels j and k, as previously 
defined in equation 4. Note that Σ is a symmetric matrix 
such that sjk = skj. In the case of independent (uncorrelated) 
errors, Σ is a diagonal matrix, and when the measurement 
errors are iid, the values along the diagonal of this matrix 
will all be the same.

When two measurement errors are correlated, the error 
covariance can also be represented as sjk = ρjk sj sk, where 
ρjk is the correlation coefficient for measurement errors at 
channels j and k, and varies between –1 and +1. This leads 
to an alternative way of representing the error structure in 
terms of the error correlation matrix, which contains the 
correlation coefficients of the elements of Σ, given by:

 (10)

Note that the diagonal elements of the error correlation 
matrix are always unity. The error covariance and error 
correlation matrices provide complementary information, 
where the former gives the magnitude of the relationships 
among the errors and the latter indicates the underlying 
structure of this relationship. Knowing the statistical 
properties of the errors in measurement vectors allows 
the application of data analysis tools that can exploit 
this knowledge to more effectively separate meaningful 
chemical variance from noise variance, as discussed in 
Section 5. First, however, estimates of the error covariance 
matrix must be obtained. In general, three approaches 
can be used for this purpose: experimental replication, 
theoretical prediction, and empirical modeling. Each of 
these approaches is described briefly below.

4.1 Experimental replication

In the same way that replicate univariate measurements 
can be used to estimate measurement error variance, 
replicate measurement vectors (e.g., spectra) can be used 
to estimate the measurement error covariance, using the 

mean vector to represent the “true” value. If N replicate 
measurement vectors, xi (n × 1), are obtained, the sample 
error covariance matrix, S (n × n), is defined by equation 11.

 (11)

The definition of a replicate (e.g., replicate scans, 
replicate subsamples) is very important in the application of 
this equation as it defines what is considered noise variance 
and what is considered relevant chemical variance and can 
alter the structure of the error covariance matrix. Another 
important consideration is the number of replicates used. 
Estimates of variance (and covariance) for both univariate 
and multivariate measurements are characterized by a very 
high uncertainty, so it is important that a sufficient number 
of replicates be used to minimize the “noise in the noise”. 
Otherwise, any potential benefits of including measurement 
error information in the data analysis may be offset by its 
poor reliability. Assuming that the measurement errors 
follow a normal distribution, the relative standard deviation 
in the variance estimates can be approximated from the c2 
distribution as 71% for 5 replicates and only drops to 14% 
with 100 replicates. Given that a typical number of replicates 
is fewer than ten, this can present a problem in the reliable 
estimation of Σ for a measurement vector. One solution 
is pooling of error covariance estimates by averaging the 
calculated S from different subsets of samples, each of 
which has a relatively small number of replicates. This is 
generally viable as long as the measurement vectors do 
not change substantially between samples as is typically 
the case for many analytical measurements, such as near-
infrared (NIR) spectra measured for samples of similar 
origin. In these cases, the improved covariance estimation 
generally outweighs the small differences due to changes 
in signal magnitude.

An example of an experimentally calculated error 
covariance and correlation matrices using pooled data is 
presented is Figure 4. Figure 4a shows 27 NIR reflectance 
spectra from samples of a polyester resin (9 samples, 
3 replicates each), while Figure 4b shows the error covariance 
matrix and Figure 4c shows the error correlation matrix. 
The three-dimensional representations of these matrices 
give a clearer picture of the error structure, but can often 
be difficult to interpret when there are multiple complex 
error sources. Note in Figure 4b that the magnitudes of the 
variance and covariance are largest where the signal is the 
largest, suggesting a proportional type of error. There are also 
larger variance/covariance contributions when there are sharp 
transitions in the signal, which is indicative of sensitivity to 
variations in the wavelength channel where the transition 
occurs. The error correlation matrix in Figure 4c shows that 
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the measurement errors are highly correlated, with ρ close 
to unity over most of the spectrum, although there is a break 
in the correlations in the spectral measurements above and 
below 6000 cm-1. In contrast to the error covariance matrix, 
there is (generally) a decrease in correlation at points 
where there is a sharp spectral transition. This is likely 
due to the fact that variations arising from small shifts in 
wavelength are more random and less correlated. These 
observations are consistent with most NIR spectra which 
tend to be dominated by multiplicative measurement errors 
that are proportional and highly correlated. It is clear that 
such representations can offer insights into error structures 
present in analytical measurements and can potentially 
provide a wealth of information about the measurement 
system itself.

4.2 Theoretical prediction

In principle, if sufficient prior knowledge of the error 
sources for an experimental system is available, the error 
covariance matrix can be predicted on that basis alone. 
For example, measurement errors may be dominated 
by Poisson statistics or proportional contributions. 
In practice, however, most measurements involve a 
complex mixture of error sources that are difficult to 
predict a priori, so accurate theoretical prediction of 
error covariance is difficult to achieve. Nevertheless, the 
concept of error propagation can be effectively used to 
assess the effects of various mathematical operations on 
the errors in analytical measurements, and this deserves 
some attention.

If we consider some derived quantity, y, which is a 
function of several variables such that y = f (x1, x2, …), then 
the general formula for propagation of error9 is represented 
by equation (12).

 (12)

Here, si represents the standard deviation of the errors 
in xi and sij represents the covariance of the errors in xi and 
xj. Many representations of this equation do not include 
the covariance terms, but these are necessary when the 
errors are not independent. The inclusion of such terms 
becomes cumbersome as more variables are included, since 
every pair of variables needs to be included, and a matrix 
formulation is more convenient. If we define a Jacobian 
row vector, j (1 × n), to contain the partial derivatives of y 
with respect to each x,

 (13)

then the variance in y is given by:

 (14)

where Σx (n × n) is the error covariance matrix for vector x. 
This generalization can be extended further. If there is a 
series of values yi (i = 1 to m), all of which are functions 
of the measurement vector x, and define a Jacobian matrix, 
J (m × n), such that Jik = ∂yi / ∂xk, then the error covariance 
matrix for the vector y (m × 1), is given by:

 (15)

where Σy is m × m. This equation describes the changes 
in the error covariance matrix that take place when a 
transformation applied to the measurement vector x 
produces a new measurement vector, y. It is particularly 
useful when the transformation is represented as a linear 
operation that involves the multiplication of the original 
measurement vector by some m × n transformation matrix, 
T, such that y = Tx. In this case, the new error covariance 
matrix is,

 (16)

This equation is particularly useful because it can 
be applied a wide variety of situations that include 
smoothing,10 differentiation,11 subspace projection12 and 
wavelet transforms,13 and can be used to track how the 
errors in the original measurements are carried through 
different data analysis steps. For example, equation 16 
can be used to determine how uncertainties in the original 
measurements are transformed into PCA scores space.

Figure 4. Near-infrared reflectance spectra of polymer resin samples (a) 
and the resulting pooled error covariance matrix (b) and error correlation 
matrix (c).
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To illustrate these ideas, Figure 5 shows the effect of row 
scaling on the error correlation matrix of a hypothetical data 
set. The simulated data set consists of ten variables with 
values given in Figure 5a. This may represent, for example, 
a fatty acid profile in a classification analysis or elemental 
concentrations in an environmental study. In such cases, 
where the relative magnitudes are typically more relevant 
than the absolute values, row scaling (normalization of 
the measurement vector to a constant sum) is often used. 
In this case, it was assumed that each measurement was 
characterized by independent proportional errors of 
10%. Prior to scaling, it can be seen in Figure 5b that the 
measurements are uncorrelated. In contrast, propagation 
of error shows that, after row scaling, the measurement 
errors have become correlated as shown in Figure 5c. 
In particular, there is a strong negative correlation of the 
errors for most variables with the error in the first variable. 
This is anticipated, since the first variable has the largest 
errors, and a positive error will tend to make the sum high, 
increasing the probability that the contributions of the other 
variables will be low. The opposite is true for negative errors 
in the first variable. This example shows that even simple 
operations like row scaling can have significant effects on 
the error structure of the measurements which will have 
implications for subsequent data analysis.

4.3 Empirical modeling

Empirical modeling of error covariance matrices 
represents a middle ground between the direct use of 
replicate measurements, which is tedious and prone to 
noisy estimates, and theoretical prediction, which is 
difficult or impossible. In this approach, a limited number 
of replicates are used to develop an empirical model capable 
of providing a reliable estimate of the error covariance. 

There are several advantages to this approach. First, the 
model can lead to a better fundamental understanding of 
the limiting measurement errors in the system under study, 
potentially revealing improved methods for managing the 
errors at the data acquisition or analysis stages. Second, 
a general model reduces the need for replication since 
the model parameters can be estimated from a smaller 
number of replicates and extended to new signals measured 
on the same experimental system. Finally, the use of a 
parsimonious model will smooth the stochastic variations 
inherent in the estimation of experimental error covariance 
matrices that arise from a limited number of replicates, 
leading to more reliable results.

At first glance, modeling the complexities of error 
covariance might appear to be a daunting task, but in fact the 
errors are often dominated by a bilinear structure that can be 
deduced by principal components analysis (PCA) and target 
testing. Residual independent error components can then be 
modeled as a separate term. This approach has been used to 
develop error covariance models for a number of different 
experimental systems ranging from NIR reflectance to 
NMR.14,15 While this strategy can undoubtedly be improved 
upon, the models generated in this manner serve as good 
approximations to the experimentally derived results.

This approach to modeling error covariance matrices is 
illustrated in Figures 6 and 7. Figure 6a shows fluorescence 
emission spectra for mixtures of polycyclic aromatic 
hydrocarbons (27 mixtures with five replicates each).16 
The corresponding error covariance and error correlation 
matrices are shown in Figures 6b and 6c, respectively. The 
error covariance matrix indicates that the error variance 
and covariance increase with the magnitude of the signal, 
while the error correlation matrix suggests the presence of 
both independent and strongly correlated components in the 
errors due to the presence of a flat but non-zero contribution 
in the off-diagonal elements. The error covariance matrix is 
reproduced in Figure 7a for comparison with the modeled 
error covariance matrix shown in Figure 7b. In this case, the 
modeled matrix was generated with good reliability with 
contributions from only three sources. The contribution 
of each of these sources to the standard deviation of the 
signal (square root of the diagonal of the error covariance 
matrix) is shown in Figure 7c, along with the reconstructed 
and observed standard deviations. The first contribution is 
variance in the offset of the spectrum (additive noise), which 
leads to correlated errors and is anticipated due to variations 
in blank signal during the course of the experiment. The 
second contribution, which also leads to correlated noise, is 
a multiplicative effect that is proportional to the square root 
of the spectrum. This is likely due to variations in the source 
intensity over the course of the experiment which will lead 

Figure 5. Hypothetical example illustrating the effect of row normalization 
on error covariance: (a) hypothetical data showing error-free profile of ten 
variables; (b) error correlation matrix before row normalization assuming 
independent proportional errors; and (c) error correlation matrix after 
row normalization.
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to offset errors that depend on the magnitude of the signal. 
The final contribution is from independent errors, which are 
also proportional to the square root of the mean spectrum 
but do not affect the off-diagonal elements of the error 
covariance matrix. This contribution arises from the shot 
noise typically associated with fluorescence measurements 
and characterized by a square root dependence on the 
intensity. The final model is represented by equation 17, 
which shows bilinear offset and multiplicative effects and 
the independent noise contributions.

 (17)

The quantities sa, sb and sc are parameters estimated by 
the model for each of these contributions. Even a relatively 
simple model such as this can model error covariance 
surprisingly well and offers insights into the source of 
errors in the measurement system.

5. Data Analysis

The characterization of measurement errors for 
multivariate data sets is of limited utility unless methods 
are available to exploit such information. The lack of 
such methods has been one factor that has contributed to 
practices that do not encourage the acquisition of replicated 
data and error analysis for multivariate measurements. At 
the same time, the development of new methods has been 
impeded by a scarcity of data sets for which measurement 
error information is available. As the role of measurement 
errors becomes more widely recognized, however, the 
situation is changing and more tools and data are becoming 
available.

A variety of data analysis techniques have been 
developed in recent years that make use of measurement 
error information to improve results. Because the 
problems described here are not unique to chemical 
measurements, these methods span a variety of disciplines 
and a comprehensive treatment is beyond the scope of 
this article, but a few methods will be mentioned briefly, 
with an emphasis on those most relevant to chemistry. 
One of the most widely used techniques is called total 
least squares (TLS), which uses measurement error 
information in developing optimal solutions for regression 
problems that follow a classical least squares (CLS) 
model.17,18 Although not widely used in chemistry, TLS 
provides a general framework for solving regression 
problems according to a maximum likelihood criterion 
given measurement error information in the form of 
error variance-covariance structures. A more specialized 
technique, also developed with a maximum likelihood 
formulation, is positive matrix factorization (PMF).19 
PMF was originally created to address the problem of 
heteroscedastic measurement errors in multivariate curve 
resolution (MCR) of environmental source-receptor data, 
and this has been its principal area of application. MCR 
is an example of subspace modeling in chemistry, where 
a low dimensional subspace (line, plane, hyperplane) 
is used to model higher dimensional data. One of the 
most widely used tools for this type of application is 
principal components analysis (PCA), which is at the 
root of many chemometric approaches. This motivated 
the development of maximum likelihood principal 
components analysis (MLPCA), which incorporates 
measurement error information into the subspace 
modeling procedure to develop more optimal solutions. 
Although a comprehensive treatment of this method is not 
possible here and the reader is referred to the literature,20-22 
it deserves some additional attention because of its 
relevance to chemical applications.

Figure 6. Fluorescence emission spectra (a) for 27 mixtures of three 
polycyclic aromatic hydrocarbons, each measured in triplicate (see ref. 16 
for details) with the corresponding pooled measurement error covariance 
matrix (b) and error correlation matrix (c). Adapted from reference 14.

Figure 7. (a) Measured and (b) modeled error covariance matrix for the 
fluorescence spectra in Figure 6; (c) measured and modeled standard 
deviation of measurements showing the contributions of from mean and 
offset terms of covariance along with the independent errors. Adapted 
from reference 14.
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5.1 Maximum likelihood principal components analysis

At its core, MLPCA is a subspace modeling method 
that uses principles of maximum likelihood estimation to 
obtain the optimal estimate of a low-rank model for data 
in a high dimensional space, using measurement error 
information to define the optimal solution. It is closely 
related to TLS in terms of its fundamental assumptions 
about the problem and its solution,23 but differs in the 
formulation of the problem and (typically) in the algorithms 
employed. Practically, MLPCA can be viewed as a kind of 
weighted PCA that de-emphasizes noisy measurements, but 
this perspective is overly simplistic, since the complexity 
of the error structures accommodated by the method goes 
beyond simple weighting functions. The basic philosophy 
of MLPCA is to efficiently extricate the variance/
covariance structure of the underlying variables from the 
noise by using knowledge about the error structure in an 
optimal way. In other words, the more that is known about 
the noise, the more effectively it can be excised from the 
meaningful information.

It is important to recognize that, in spite of its name, 
MLPCA is neither a true maximum likelihood method nor 
PCA (except in ideal circumstances), although it aspires 
to be both. As a statistician would point out, it cannot be a 
maximum likelihood method unless the measurement error 
structure is exactly known. This is rarely (if ever) the case, 
and instead MLPCA relies on estimates of the measurement 
errors obtained from experimental measurements. It is also 
not PCA, which by definition is a method that models the 
total variance (information plus noise). In contrast, MLPCA 
is a subspace modeling technique that endeavors to separate 
the two sources of variance. Although PCA is often used 
in chemometrics as a subspace modeling technique, its use 
in this regard will only be optimal under iid measurement 
error conditions. MLPCA can be regarded as a superset of 
subspace modeling techniques of which PCA is a subset. 
The use of MLPCA for subspace modeling also implies that 
the linear form of the model is valid and the dimensionality 
of the subspace is correct. If these conditions are not met, 
then the dimensionality reduction achieved by MLPCA is as 
arbitrary as any other projection method that might be used.

A significant advantage of MLPCA over other methods 
that make use of measurement error information is that 
it casts the results in a PCA framework, which is the 
starting point for many chemometric methods. This has 
allowed it to be adapted to a variety of applications that 
include multivariate calibration,16,24 curve resolution,25-30 
exploratory data analysis,31 calibration transfer,32 and multi-
way analysis.33-36 The application of MLPCA has also led 
to the elimination of complex and often poorly understood 

data preprocessing methods in many cases by providing a 
more rational approach to treating measurement errors.10,11 
In this regard, it is important to recognize that, historically, 
one of the underlying motivations for preprocessing 
multivariate data has been to render the measurement 
errors to be more uniform and uncorrelated so that the 
assumption of iid errors made for the optimal application 
of PCA is more valid. For example, this is the purpose 
of scaling, which is intended to make measurement error 
variances more uniform, and derivative filtering, which is 
intended to remove correlations in the noise. With MLPCA, 
the measurement errors are treated in an optimal manner 
regardless of their form, so such transformations do not 
generally affect the results.

One of the fundamental differences between PCA and 
MLPCA is the objective function to be minimized. If X 
(m × n) is a matrix of data where the rows represent samples 
and the columns represent the measured variables, and   
is the data estimated by a p-dimensional model, then PCA 
minimizes the following objective function.

 (18)

In contrast, the objective function for MLPCA uses the 
measurement error information to weight the residuals. The 
actual form of this function depends on the structure of the 
error, but one common form is given in equation 19, where 
xi represents a row vector of X and Σi is its corresponding 
error covariance matrix.

 (19)

It should also be noted that the projected data in 
MLPCA are different from those in PCA. While the latter 
uses an orthogonal projection, the former uses a maximum 
likelihood projection, exploiting the measurement 
error information to obtain the best estimate of the true 
measurement.

Although MLPCA is cast in a PCA framework, there 
are other important differences between the methods as 
well. One of these is that MLPCA actually consists of six 
different algorithmic implementations (including PCA) 
that depend on the error structure of the data matrix. These 
structures are shown in Figure 8 and range from the simplest 
case of iid errors (where PCA is applicable) to the most 
complex case where the measurement errors are correlated 
across all of the rows and columns of the data matrix. Cases 
A, B and D can be solved in a straightforward manner, 
while cases C, E, and F involve an optimization that is 
normally implemented through a more computationally 
intensive alternating least squares (ALS) algorithm. For 
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most first-order (vectorial) measurements, such as first-
order calibration, where each sample can be considered as 
a row in Figure 8, the measurement errors between samples 
can be considered to be independent of one another and 
cases A-E apply. It should also be noted that these cases 
also cover those instances where the error correlation exists 
only within the columns (but not the rows), since the matrix 
is easily transposed. Case F, where the errors are correlated 
among both the rows and columns, is most commonly 
observed for second-order measurements (e.g., fluorescence 
emission-excitation matrices, liquid-chromatography with 
diode array detection). In such cases, the error covariance 
matrix must be estimated on the basis of the unfolded 
(vectorized) data matrix and consequently tends to be 
very large (mn × mn). In practice, case F is usually too 
computationally demanding to carry out without some form 
of data compression. More details on these different error 
structures and the algorithms employed to treat them are 
given in the literature.20-22,33-36

5.2 A simple example

To illustrate some of the ideas presented here, a 
simple example involving experimental data will be 
used. The original data set was obtained by Silva et al.37 
as part of a study related to forensic document analysis 
in collaboration with the Brazilian Federal Police and 
consisted of attenuated total reflectance (ATR) FTIR spectra 
from 1000 ink samples. The original design included scan, 
spot and batch replicates from ten different pens, but for 
simplicity of illustration, only data from one type of pen is 
included here. The 100 spectra employed for this pen type 

consisted of 50 replicates from one batch, and 10 replicates 
from each of 5 additional batches. In the results presented 
here, the first 40 replicates from the first batch were used 
to estimate the measurement error covariance matrix, 
which was then used in the data analysis of the remaining 
60 samples (six batches with ten samples each). In the 
original paper, the spectra were also preprocessed using the 
standard normal variate and first-derivative filtering (see the 
original work for additional details). In the current example, 
both raw and preprocessed spectra were employed.

Figures 9a and b show the raw and derivative spectra, 
respectively, of the 100 ink samples, with the first 40 
replicates offset from the other samples for clarity. 
Figures 9c and e show the error covariance and correlation 
matrices calculated for the replicates of the raw spectra. 
Figure 9c clearly indicates that the measurement errors are 
heteroscedastic, while Figure 9e shows a high degree of 
correlation in the measurement errors. This combination 
is indicative of multiplicative noise that is commonly 
observed in IR reflectance spectra. However, there is a 
dramatic change in the error structure for the preprocessed 
data. The error covariance matrix of the derivative spectra 
shown in Figure 9d indicates that heteroscedasticity is still 
an issue, and in fact the large flat region suggests that the 
error variance covers a wider range than for the original 
data. This is not surprising, since derivative filtering will 
tend to amplify high frequency noise. Negative error 
correlations are also present at a magnitude similar to the 
positive ones, although this is difficult to see from the 

Figure 8. Pictorial representation of different error structures treated by 
MLPCA algorithms for two-way data. Connectivity of blocks indicates 
independence or correlation of errors. Colors and shading indicates 
equality of variances in the measurements.

Figure 9. IR reflectance spectra (a) and derivative IR spectra (b) of 60 ink 
samples (6 batches × 10 replicates) and 40 replicate ink samples of batch 1 
(offset). The error covariance matrices for the 40 batch 1 replicate spectra 
are shown in (c) and (d) for the raw and derivative spectra, respectively. 
The error correlation matrices are shown in (e) and (f) for the raw and 
derivative spectra, respectively.
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angle of the figure. This is also a consequence of derivative 
filtering. Figure 9f shows the error correlation matrix for 
the derivative spectra and indicates that correlations are still 
present, although they have a much more complex structure. 
One of the aims of derivative filtering is remove the 
correlations in the noise and make it closer to independent 
(as assumed by PCA and other data analysis methods). 
While the errors here are not uncorrelated, the correlation 
structure is certainly more random than that observed for 
the raw data.

The sixty raw test spectra were analyzed by both PCA 
and MLPCA, with the estimated error covariance matrix 
being used in the latter case, and the results are shown as 
scores plots in Figures 10a and b, respectively. The different 
symbols and colors in the plot show the projections of ink 
samples from different batches for this type of pen. While 
PCA shows some similarities for samples within the same 
batch, the separation of the batches is not very good. In 
contrast, MLPCA is able to separate the six batches from 
one another quite cleanly. This suggests that, by using 
the measurement error information, MLPCA is better 
able to distinguish the batch-to-batch variations from 
the spot-to-spot and scan-to-scan variations, which are 
considered as measurement noise. Similar conclusions can 
be drawn for the results of the derivative spectra, shown 
in Figures 10c and d. Note that PCA on the derivative 
spectra produces results in Figure 10c that are somewhat 
better than for the raw spectra in Figure 10a in terms of 
the batch groupings, but there is still considerable mixing 
of the batches. These improvements are likely due to 
changes in the error structure that make PCA more useful. 
Figure 10d shows the MLPCA results on the derivative 

spectra using the corresponding error covariance matrix 
in Figure 9d. While not quite as good as MLPCA with the 
raw data, these results retain most of the same clusters as 
in that case and are clearly superior to the PCA results. 
The similarity between the MLPCA results in Figures 10b 
and 10d can be realized by reflecting the points across the 
diagonal of the latter. The spatial similarity is then apparent 
in spite of the complex changes that have been introduced 
in the data. This is not surprising, however, since MLPCA 
inherently adapts to the changes introduced through 
preprocessing by incorporating the resulting changes in 
the error covariance matrix. In this way, it will tend to be 
more robust to changes introduced by simple preprocessing 
steps, and preprocessing for the purpose of changing the 
error structure is rendered somewhat superfluous.

6. Conclusions

One of the main goals of chemometrics is to reveal 
relevant information hidden within seemingly complex data 
structures. Many tools have been developed to achieve this 
end, each with its own implicit or explicit assumptions about 
the characteristics of the data that allow it to effectively 
extract the latent information. When such methods fail, it 
may be because the information sought is not present in 
the data, or it may be that the assumptions made are not 
valid. A principal difference between a chemometrician 
and a statistician is that the former is able to use chemical 
knowledge to guide the design of experiments and the 
analysis of data to improve outcomes. Analytical chemists 
have the ability to assess and interpret the measurement 
error characteristics of the instruments that they employ, 
and this knowledge can be a valuable asset in the analysis 
of multivariate data.

The purpose of this article has been to shed some 
light on the often neglected role of measurement errors 
in multivariate measurements, and to describe how 
measurement errors can be characterized and exploited 
in data analysis. In most cases, when measurement errors 
are small or follow an assumed structure, traditional 
methods of data analysis are likely to yield useful results. 
However, since many methods are based on modeling the 
total variance, it is intuitive that knowledge about the error 
variance should be able to improve the effectiveness of these 
tools. Moreover, methods that use the error structure are 
likely to become more important as measurement systems 
become more complex, expanding beyond traditional 
spectroscopic and chromatographic applications and into 
less familiar domains such as high-throughput biological 
methods. Although some tools have been introduced here, 
the area of multivariate measurement errors is ripe for 

Figure 10. Scores plots (principal component 2 vs. principal component 
1) following PCA and MLPCA on the raw and derivative spectra of the 60 
samples in Figure 9. (a) PCA applied to raw spectra; (b) MLPCA applied 
to raw spectra; (c) PCA applied to derivative spectra; and (d) MLPCA 
applied to derivative spectra.
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more research to expand the understanding of measurement 
errors and their value in multivariate data analysis.
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