Acessibilidade / Reportar erro

Determination of Enantioselectivities by Means of Chiral Stationary Phase HPLC in Order to Identify Effective Proline-Derived Organocatalysts

Abstract

The pyrrolidine fragment is a privileged scaffold within chiral ligands employed in coordination complexes exhibiting catalytic activity in asymmetric reactions and, more recently, as enantioselective organocatalysts per se. Likewise, the employment of (S)-proline as starting material constitutes the most direct form to synthesize those chiral derivatives. Afterwards, a preliminary evaluation of the catalytic performance of proline-derived compounds consists of screening many prochiral substrates in well standardized model reactions such as Michael additions and Mannich reactions, with the aim of identifying “broad spectrum” catalysts for more complex synthetic applications. Therefore, a central part of this process involves the fast and direct measurement of enantioselectivities of optically active adducts. The growing development of chiral stationary phases and thus, the wide commercial availability of chiral columns have consolidated high performance liquid chromatography (HPLC) as the preferred technique to identify the most effective catalysts.

Keywords:
proline derivatives; asymmetric organocatalysis; chiral stationary phases; chiral HPLC


1. Introduction

In recent times, a growing demand for enantiopure, value-added chiral compounds such as pharmaceuticals, food additives and agrochemicals has been registered.11 Rouf, A.; Taneja, S. C.; Chirality 2014, 26, 63; Maltsev, O. V.; Beletskaya, I. P.; Zlotin, S. G.; Russ. Chem. Rev. 2011, 80, 1067; Hong, B.-C.; Raja, A.; Sheth, V. M.; Synthesis 2015, 47, 3257; Juaristi, E.; An. Quim. Int. Ed. 1997, 93, 135. Likewise, one of the major aims of organic synthesis is the creation of molecular diversity and complexity from simple and readily available substrates.22 de Graaf, C.; Ruijter, E.; Orru, R. V. A.; Chem. Soc. Rev. 2012, 41, 3969; Nájera, C.; Sansano, J. M.; Yus, M.; J. Braz. Chem. Soc. 2010, 21, 377. Therefore, the development of stereoselective synthetic strategies focused on those classes of organic molecules has increased in an extraordinary way.

Asymmetric synthesis makes use of different analytical techniques such as X-ray diffraction,33 Flack, H. D.; Chimia 2014, 68, 26; Thompson, A. L.; Watkin, D. J.; Tetrahedron: Asymmetry 2009, 20, 712; Thompson, A. L.; Watkin, D. J.; J. Appl. Crystallogr. 2011, 44, 1017; Escudero-Adán, E. C.; Benet-Buchholz, J.; Ballester, P.; Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2014, B70, 660; Albright, A. L.; White, J. M. In Metabolomics Tools for Natural Product Discovery: Methods and Protocols, Methods in Molecular Biology, vol. 1055; Roessner, U.; Dias, D. A., eds.; Springer Science+Business Media: Heidelberg, Germany, 2013, p. 149. chiral nuclear magnetic resonance (NMR) shift reagents,44 Pirkle, W. H.; Hoover, D. J. In Topics in Stereochemistry, vol. 13; Wilen, S.; Eliel, E., eds.; Wiley: New York, United States, 1982, p. 263; Parker, D.; Chem. Rev. 1991, 91, 1441; Wenzel, T. J.; Chisholm, C. D.; Chirality 2011, 23, 190; Wenzel, T. J.; Chisholm, C. D.; Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 1; Uccello-Barretta, G.; Balzano, F. In Topics in Current Chemistry, vol. 341; Schurig, V., ed.; Springer-Verlag: Heidelberg, Germany, 2013, p. 69. chiral chromatography,55 Allenmark, S.; Schurig, V.; J. Mater. Chem. 1997, 7, 1955; Okamoto, Y.; Ikai, T.; Chem. Soc. Rev. 2008, 37, 2593; Ward, T. J.; Ward, K. D.; Anal. Chem. 2010, 82, 4712; Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F.; Anal. Chim. Acta 2011, 706, 205. among others,66 He, Y.; Wang, B.; Dukor, R. K.; Nafie, L. A.; Appl. Spectrosc. 2011, 65, 699. with the aim of evaluating the efficiency of a given strategy, either via chiral auxiliaries,77 Heravi, M. M.; Zadsirjan, V.; Tetrahedron: Asymmetry 2013, 24, 1149; Davies, S. G.; Fletcher, A. M.; Thomson, J. E.; Chem. Commun. 2013, 49, 8586. asymmetric catalysis mediated by metal complexes,88 Bauer, E. B.; Chem. Soc. Rev. 2012, 41, 3153; Majumdar, K. C.; Sinha, B.; RSC Adv. 2014, 4, 8085; Li, Y.-Y.; Yu, S.-L.; Shen, W.-Y.; Gao, J.-X.; Acc. Chem. Res. 2015, 48, 2587; Bigler, R.; Huber, R.; Mezzetti, A.; Synlett 2016, 27, 831; Pellissier, H.; Chem. Rev. 2016, 116, 14868; Oloo, W. N.; Que Jr., L.; Acc. Chem. Res. 2015, 48, 2612. enzymatic catalysis99 Reetz, M. T.; Angew. Chem., Int. Ed. 2011, 50, 138; Reetz, M. T.; J. Org. Chem. 2009, 74, 5767; Hall, M.; Bommarius, A. S.; Chem. Rev. 2011, 111, 4088; Denard, C. A.; Hartwig, J. F.; Zhao, H.; ACS Catal. 2013, 3, 2856. and, a more recently developed methodology, organocatalysis.1010 Kaur, J.; Chauhan, P.; Singh, S.; Chimni, S. S.; Chem. Rec. 2017, 17, 1; Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.; Chem. Rev. 2007, 107, 5471; Pihko, P. M.; Majander, I.; Erkkilä, A. In Topics in Current Chemistry, vol. 291; List, B., ed.; Springer: Heidelberg, Germany, 2009, p. 145;Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G.; Angew. Chem., Int. Ed. 2008, 47, 6138; Bertelsen, S.; Jørgensen, K. A.; Chem. Soc. Rev. 2009, 38, 2178; Lu, L.-Q.; An, X.-L.; Chen, J.-R.; Xiao, W.-J.; Synlett 2012, 23, 490; Scheffler, U.; Mahrwald, R.; Chem. Eur. J. 2013, 19, 14346.

2. Brief Overview of Chiral Stationary Phases

In the beginnings of asymmetric synthesis, enantiomeric purities of chiral compounds were usually determined by comparison of experimental optical rotations or via the preparation of diastereomeric derivatives followed by analysis of their 1H NMR spectra. This situation gradually changed since Gil-Av et al. (1966)1111 Gil-Av, E.; Feibush, B.; Charles-Sigler, R.; Tetrahedron Lett. 1966, 1009; Feibush, B.; Balan, A.; Altman, B.; Gil-Av, E.; J. Chem. Soc., Perkin Trans. 2 1979, 1230; Gil-Av, E.; J. Mol. Evol. 1975, 6, 131; Hare, P. E.; Gil-Av, E.; Science 1979, 204, 1226; Schurig, V.; Isr. J. Chem. 2016, 56, 890. achieved the analytical separation of single enantiomers from racemic α-amino acids by means of a chiral stationary phase for gas chromatography (GC). Thus, chiral chromatography currently allows a direct comparison of chromatograms obtained from enantioenriched samples with those recorded from the corresponding racemates. High performance liquid chromatography (HPLC) is the preferred technique over GC for most of the chiral analytes since it not only allows the analysis of enantiopurity, but also the easy recovery of the sample or even the enantio-enrichment of optically active compounds at the semipreparative or preparative scale.1212 Francotte, E. R.; J. Chromatogr. A 2001, 906, 379. GC is ideal for the analytical resolution of volatile substances, especially chiral hydrocarbons, which pose a special challenge due to the lack of functional groups that could reversibly interact with a chiral selector and thus lead to usual chiral recognition strategies.1313 Cagliero, C.; Sgorbini, B.; Cordero, C.; Liberto, E.; Rubiolo, P.; Bicchi, C.; Isr. J. Chem. 2016, 56, 925; Sicoli, G.; Kreidler, D.; Czesla, H.; Hopf, H.; Schurig, V.; Chirality 2009, 21, 183.

In general, the separation of enantiomeric compounds via chiral stationary phases is based on the formation of transient diastereomeric complexes (of different bonding energies) in a thermodynamic equilibrium, which in turn results from the different fitting onto the structures of chiral selectors, depending on the configurational complementarity with the functional groups belonging to the analyte.1414 Ali, I.; Kumerer, K.; Aboul-Enein, Y.; Chromatographia 2006, 63, 295. Therefore, one of the two transient diastereomeric complexes formed by each of the enantiomers comprising a racemate will be more stabilized by means of potential intermolecular interactions such as hydrogen bonding, π-π complexation, dipole stacking, ionic and/or steric interactions, and others.1414 Ali, I.; Kumerer, K.; Aboul-Enein, Y.; Chromatographia 2006, 63, 295. In this regard, in-depth studies have allowed a sophisticated understanding of the chiral recognition mechanisms performed by enantioselective stationary phases, though forefront research continues emerging.1515 Scriba, G. K. E.; Chromatographia 2012, 75, 815; Scriba, G. K. E.; J. Chromatogr. A 2016, 1467, 56; Lämmerhofer, M.; J. Chromatogr. A 2010, 1217, 814; Pirkle, W. H.; Pochapsky, T. C.; Chem. Rev. 1989, 89, 347. Hence, it is plausible to achieve the analytical resolution of almost any existent chiral compound given the presently available chiral stationary phases.

Two main groups of chiral stationary phases (CSPs) for HPLC can be recognized:55 Allenmark, S.; Schurig, V.; J. Mater. Chem. 1997, 7, 1955; Okamoto, Y.; Ikai, T.; Chem. Soc. Rev. 2008, 37, 2593; Ward, T. J.; Ward, K. D.; Anal. Chem. 2010, 82, 4712; Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F.; Anal. Chim. Acta 2011, 706, 205.

(i) Brush-type chiral stationary phases (or selector-based chiral sorbents) that usually consist of relatively small chiral molecules immobilized onto an achiral support (e.g., organic polymers or silica gel particles). Chiral metal complexes,1616 Davankov, V. A.; J. Chromatogr. A 1994, 666, 55. crown ethers,1717 Hyun, M. H.; J. Chromatogr. A 2016, 1467, 19; Hyun, M. H.; Bull. Korean Chem. Soc. 2005, 26, 1153. cyclodextrins,1818 Crini, G.; Morcellet, M.; J. Sep. Sci. 2002, 25, 789; Zhang, W.; Tang, Y.; Xu, J.; Sun, J.; Lang, W.; Bull. Korean Chem. Soc. 2016, 37, 877; Ilisz, I.; Berkecz, R.; Forró, E.; Fülöp, F.; Armstrong, D. W.; Péter, A.; Chirality 2009, 21, 339. cyclofructans,1919 Breitbach, A. S.; Lim, Y.; Xu, Q.-L.; Kürti, L.; Armstrong, D. W.; Breitbach, Z. S.; J. Chromatogr. A 2016, 1427, 45. antibiotics,2020 Ilisz, I.; Pataj, Z.; Aranyi, A.; Péter, A.; Sep. Purif. Rev. 2012, 41, 207; Ilisz, I.; Berkecz, R.; Péter, A.; J. Chromatogr. A 2009, 1216, 1845; Ilisz, I.; Berkecz, R.; Péter, A.; J. Sep. Sci. 2006, 29, 1305. Pirkle-type receptors,2121 Fernandes, C.; Phyo, Y. Z.; Silva, A. S.; Tiritan, M. E.; Kijjoa, A.; Pinto, M. M. M.; Sep. Purif. Rev. 2017, DOI 10.1080/15422119.2017.1326939; Fernandes, C.; Tiritan, M. E.; Pinto, M.; Chromatographia 2013, 76, 871; Ismail, O. H.; Pasti, L.; Ciogli, A.; Villani, C.; Kocergin, J.; Anderson, S.; Gasparrini, F.; Cavazzini, A.; Catani, M.; J. Chromatogr. A 2016, 1466, 96; Gasparrini, F.; Misiti, D.; Villani, C.; J. Chromatogr. A 2001, 906, 35; Welch, C. J.; J. Chromatogr. A 1994, 666, 3.
https://doi.org/10.1080/15422119.2017.13...
zwitterionic quinine-based selectors,2222 Ilisz, I.; Grecsó, N.; Misicka, A.; Tymecka, D.; Lázár, L.; Lindner, W.; Péter, A.; Molecules 2015, 20, 70; Ilisz, I.; Grecsó, N.; Palkó, M.; Fülöp, F.; Lindner, W.; Péter, A.; J. Pharm. Biomed. Anal. 2014, 98, 130; Ilisz, I.; Pataj, Z.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A.; Chirality 2014, 26, 385; Péter, A.; Grecsó, N.; Tóth, G.; Fülöp, F.; Lindner, W.; Ilisz, I.; Isr. J. Chem. 2016, 56, 1042; Lämmerhofer, M.; Anal. BioAnal. Chem. 2014, 406, 6095. among others enter in this category.2323 Ilisz, I.; Aranyi, A.; Pataj, Z.; Péter, A.; J. Chromatogr. A 2012, 1269, 94.

(ii) Sorbents based on optically active polymers, which can be synthetic such as the molecularly imprinted polymers2424 Sellergren, B.; J. Chromatogr. A 2001, 906, 227; Yamamoto, C.; Okamoto, Y.; Bull. Chem. Soc. Jpn. 2004, 77, 227; Marty, J. D.; Mauzac, M.; Adv. Polym. Sci. 2005, 172, 1; Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O’Mahony, J.; Whitcombe, M. J.; J. Mol. Recognit. 2006, 19, 106; Shen, J.; Okamoto, Y.; Chem. Rev. 2016, 116, 1094; Morioka, K.; Suito, Y.; Isobe, Y.; Habaue, S.; Okamoto, Y.; J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3354. or obtained from natural sources, e.g. polysaccharides derivatives2525 Chankvetadze, B.; J. Chromatogr. A 2012, 1269, 26; Ikai, T.; Okamoto, Y.; Chem. Rev. 2009, 109, 6077. or protein based CSP.2626 Bi, C.; Zheng, X.; Azaria, S.; Beeram, S.; Li, Z.; Hage, D. S.; Separations 2016, 3, 27, DOI 10.3390/separations3030027; Sanghvi, M.; Moaddel, R.; Wainer, I. W.; J. Chromatogr. A 2011, 1218, 8791; Haginaka, J.; J. Chromatogr. B 2008, 875, 12; Millot, M. C.; J. Chromatogr. B 2003, 797, 131; Haginaka, J.; J. Chromatogr. A 2001, 906, 253.
https://doi.org/10.3390/separations30300...

Figure 1 depicts some salient examples of the abovementioned chiral stationary phases.2727 Hyun, M. H.; Ryoo, J.-J.; J. Liq. Chromatogr. Relat. Technol. 1996, 19, 2635.

28 Hyun, M. H.; Chirality 2015, 27, 576.

29 Berthod, A.; Chen, X.; Kullman, J. P.; Armstrong, D. W.; Gasparrini, F.; D’Acquarica, I.; Villani, C.; Carotti, A.; Anal. Chem. 2000, 72, 1767; Péter, A.; Árki, A.; Tourwé, D.; Forró, E.; Fülöp, F.; Armstrong, D. W.; J. Chromatogr. A 2004, 1031, 159; Pataj, Z.; Berkecz, R.; Ilisz, I.; Misicka, A.; Tymecka, D.; Fülöp, F.; Armstrong, D. W.; Péter, A.; Chirality 2009, 21, 787.

30 Pirkle, W. H.; Welch, C. J.; Burke, J. A.; Lamm, B.; Anal. Proc. 1992, 29, 225; Pirkle, W. H.; Welch, C. J.; Lamm, B.; J. Org. Chem. 1992, 57, 3854; Pirkle, W. H.; Liu, Y.; J. Chromatogr. A 1996, 736, 31; ibid. 749, 19; Pirkle, W. H.; Welch, C. J.; J. Chromatogr. A 1994, 683, 347.

31 Pirkle, W. H.; Welch, C. J.; Hyun, M. H.; J. Org. Chem. 1983, 48, 5022; Pirkle, W. H.; Welch, C. J.; J. Org. Chem. 1984, 49, 138; Pirkle, W. H.; Welch, C. J.; Mahler, G. S.; J. Org. Chem. 1984, 49, 2504.

32 Ilisz, I.; Grecsó, N.; Aranyi, A.; Suchotin, P.; Tymecka, D.; Wilenska, B.; Misicka, A.; Fülöp, F.; Lindner, W.; Péter, A.; J. Chromatogr. A 2014, 1334, 44.
-3333 Chen, X.; Yamamoto, C.; Okamoto, Y.; Pure Appl. Chem. 2007, 79, 1561; Chankvetadze, B. In Chiral Separations: Methods and Protocols, Methods in Molecular Biology, vol. 970; Scriba, G. K. E., ed.; Springer Science+Business Media: Heidelberg, Germany, 2013, p. 81. Table 1 summarizes progress on the development of chiral liquid chromatography.2222 Ilisz, I.; Grecsó, N.; Misicka, A.; Tymecka, D.; Lázár, L.; Lindner, W.; Péter, A.; Molecules 2015, 20, 70; Ilisz, I.; Grecsó, N.; Palkó, M.; Fülöp, F.; Lindner, W.; Péter, A.; J. Pharm. Biomed. Anal. 2014, 98, 130; Ilisz, I.; Pataj, Z.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A.; Chirality 2014, 26, 385; Péter, A.; Grecsó, N.; Tóth, G.; Fülöp, F.; Lindner, W.; Ilisz, I.; Isr. J. Chem. 2016, 56, 1042; Lämmerhofer, M.; Anal. BioAnal. Chem. 2014, 406, 6095.,3434 Rogozhin, S. V.; Davankov, V. A.; Chem. Commun. 1971, 490; Davankov, V. A.; Bochkov, A. S.; Kurganov, A. A.; Roumeliotis, P.; Unger, K. K.; Chromatographia 1980, 13, 677; Yamskov, I. A.; Berezin, B. B.; Davankov, V. A.; Zolotarev, Y. A.; Dostavalov, I. N.; Myasoedov, N. F.; J. Chromatogr. 1981, 217, 539; Gübitz, G.; Juffmann, F.; Jellenz, W.; Chromatographia 1982, 16, 103; Brückner, H.; Chromatographia 1987, 24, 725; Veigl, E.; Lindner, W.; J. Chromatogr. A 1994, 660, 255; Grobuschek, N.; Schmid, M. G.; Tuscher, C.; Ivanova, M.; Gübitz, G.; J. Pharm. Biomed. Anal. 2002, 27, 599.

35 Hesse, G.; Hagel, R.; Chromatographia 1973, 6, 277.

36 Stewart, K. K.; Doherty, R. F.; Proc. Natl. Acad. Sci. U. S. A. 1973, 70, 2850.

37 Blaschke, G.; Chem. Ber. 1974, 107, 237.

38 Dotsevi, G.; Sogah, Y.; Cram, D. J.; J. Am. Chem. Soc. 1975, 97, 1259; Sousa, L. R.; Sogah, G. D. Y.; Hoffman, D. H.; Cram, D. J.; J. Am. Chem. Soc. 1978, 100, 4569; Sogah, G. D. Y.; Cram, D. J.; J. Am. Chem. Soc. 1979, 101, 3035; Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J.; J. Chromatogr. A 2001, 910, 359; Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J.; J. Chromatogr. A 2002, 959, 75; Hyun, M. H.; Tan, G.; Cho, Y. J.; Biomed. Chromatogr. 2005, 19, 208.

39 Mikeš, F.; Boshart, G.; Gil-Av, E.; J. Chromatogr. 1976, 122, 205.

40 Pirkle, W. H.; House, D. W.; J. Org. Chem. 1979, 44, 1957; Pirkle, W. H.; House, D. W.; Finn, J. M.; J. Chromatogr. 1980, 192, 143.

41 Pirkle, W. H.; Finn, J. M.; J. Org. Chem. 1981, 46, 2935; Pirkle, W. H.; Schreiner, J. L.; J. Org. Chem. 1981, 46, 4988; Pirkle, W. H.; Finn, J. M.; Schreiner, J. L.; Hamper, B. C.; J. Am. Chem. Soc. 1981, 103, 3964.

42 Hermansson, J.; J. Chromatogr. 1984, 298, 67.

43 Okamoto, Y.; Kawashima, M.; Hatada, K.; J. Am. Chem. Soc. 1984, 106, 5357; Okamoto, Y.; Kawashima, M.; Yamamoto, K.; Hatada, K.; Chem. Lett. 1984, 739; Okamoto, Y.; Kawashima, M.; Hatada, K.; J. Chromatogr. 1986, 363, 173; Ichida, A.; Shibata, T.; Okamoto, Y.; Yuki, Y.; Namikoshi, H.; Toga, Y.; Chromatographia 1984, 19, 280; Shibata, T.; Okamoto, Y.; Ishii, K.; J. Liq. Chromatogr. 1986, 9, 313; Okamoto, Y.; Yashima, E.; Angew. Chem., Int. Ed. 1998, 37, 1020; Kubota, T.; Yamamoto, C.; Okamoto, Y.; J. Am. Chem. Soc. 2000, 122, 4056.

44 Allenmark, S.; Bomgren, B.; Borén, H.; J. Chromatogr. 1984, 617.

45 Armstrong, D. W.; Ward, T. J.; Armstrong, R. D.; Beesly, T. E.; Science 1986, 232, 1132.

46 Pirkle, W. H.; Lee, W.; Bull. Korean Chem. Soc. 1998, 19, 1277; Pirkle, W. H.; Welch, C. J.; Tetrahedron: Asymmetry 1994, 5, 777; Pirkle, W. H.; Spence, P. L.; Chirality 1998, 10, 430; Pirkle, W. H.; Spence, P. L.; J. Chromatogr. A 1997, 775, 81; Yu, J. J.; Hyun, M. H.; Armstrong, D. W.; Breitbach, Z. S.; Ryoo, J. J.; Bull. Korean Chem. Soc. 2015, 36, 723.

47 Armstrong, D. W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J.-R.; Anal. Chem. 1994, 66, 1473; Berthod, A.; Chirality 2009, 21, 167; Péter, A.; Árki, A.;Vékes, E.; Tourwé, D.; Lázár, L.; Fülöp, F.; Armstrong, D. W.; J. Chromatogr. A 2004, 1031, 171; Pataj, Z.; Ilisz, I.; Berkecz, R.; Misicka, A.; Tymecka, D.; Fülöp, F.; Armstrong, D. W.; Péter, A.; J. Sep. Sci. 2008, 31, 3688; D’Acquarica, I.; Gasparrini, F.; Misiti, D.; Zappia, G.; Cimarelli, C.; Palmieri, G.; Carotti, A.; Cellamare, S.; Villani, C.; Tetrahedron: Asymmetry 2000, 11, 2375; Ilisz, I.; Grecsó, N.; Forró, E.; Fülöp, F.; Armstrong, D. W.; Péter, A.; J. Pharm. Biomed. Anal. 2015, 114, 312.

48 Lämmerhofer, M.; Lindner, W.; J. Chromatogr. A 1996, 741, 33.

49 Francotte, E.; WO1996027615 A1 1996.

50 Machida, Y.; Nishi, H.; Nakamura, K.; Nakai, H.; Sato, T.; J. Chromatogr. A 1998, 805, 85; Hyun, M. H.; Jin, J. S.; Lee, W.; J. Chromatogr. A 1998, 822, 155; Park, J. Y.; Jin, K. B.; Hyun, M. H.; Chirality 2012, 24, 427; Jin, K. B.; Kim, H. E.; Hyun, M. H.; Chirality 2014, 26, 272; Ahn, S. A.; Hyun, M. H.; Chirality 2015, 27, 268; Hyun, M. H.; Kim, D. H.; Chirality 2004, 16, 294; Hyun, M. H.; Cho, Y. J.; Kim, J. A.; Jin, J. S.; J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1083; Hyun, M. H.; Song, Y.; Choo, Y. J.; Choi, H. J.; Chirality 2008, 20, 325; Hyun, M. H.; Song, Y.; Choo, Y. J.; Choi, H. J.; J. Sep. Sci. 2007, 30, 2539; Berkecz, R.; Ilisz, I.; Misicka, A.; Tymecka, D.; Fülöp, F.; Choi, H. J.; Hyun, M. H.; Péter, A.; J. Sep. Sci. 2009, 32, 981; Ilisz, I.; Pataj, Z.; Berkecz, R.; Misicka, A.; Tymecka, D.; Fülöp, F.; Choi, H. J.; Hyun, M. H.; Péter, A.; J. Chromatogr. A 2010, 1217, 1075.

51 Hoffmann, C. V.; Pell, R.; Lämmerhofer, M.; Lindner, W.; Anal. Chem. 2008, 80, 8780; Keunchkarian, S.; Osorio Grisales, J.; Padró, J. M.; Boeris, S.; Castells, C. B.; Chirality 2012, 24, 512; Sardella, R.; Lämmerhofer, M.; Natalini, B.; Lindner, W.; Chirality 2008, 20, 571.
-5252 Sun, P.; Wang, C.; Breitbach, Z. S.; Zhang, Y.; Armstrong, D. W.; Anal. Chem. 2009, 81, 10215.

Figure 1
Some relevant examples of chiral selectors developed for their use in liquid chromatography (all structures are adapted from the corresponding references).

Table 1
Salient developments regarding chiral selectors for HPLC (based on the summary table compiled by Lämmerhofer)2222 Ilisz, I.; Grecsó, N.; Misicka, A.; Tymecka, D.; Lázár, L.; Lindner, W.; Péter, A.; Molecules 2015, 20, 70; Ilisz, I.; Grecsó, N.; Palkó, M.; Fülöp, F.; Lindner, W.; Péter, A.; J. Pharm. Biomed. Anal. 2014, 98, 130; Ilisz, I.; Pataj, Z.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A.; Chirality 2014, 26, 385; Péter, A.; Grecsó, N.; Tóth, G.; Fülöp, F.; Lindner, W.; Ilisz, I.; Isr. J. Chem. 2016, 56, 1042; Lämmerhofer, M.; Anal. BioAnal. Chem. 2014, 406, 6095.

From stationary phases based on naturally occurring chiral compounds such as α-amino acid derivatives to the design of synthetic chiral receptors, chiral chromatography constitutes a medullar part in the assessment of new asymmetric synthetic strategies through the fast determination of enantiomeric excesses (ee) in routine reaction tests encompassing multiple samples. Currently, the most widely employed chiral columns are those presenting polysaccharide-derived stationary phases due to their broad-spectrum applicability for optically active analytes of almost any nature.

3. Synopsis of the Development of Organocatalysts and their Applications

Organocatalysis, conventionally defined as the use of small organic molecules as catalysts to promote asymmetric organic transformations, is now considered a stablished strategy for asymmetric synthesis.5353 Cf. Vogel, P.; Lam, Y.-H.; Simon, A.; Houk, K. N.; Catalysis 2016, 6, 128, doi:10.3390/catal6090128. Though the term organocatalysis was introduced by Ostwald in 1900,5454 Cf. de Figuereido, R. M.; Christmann, M.; Eur. J. Org. Chem. 2007, 2575; Ostwald, W.; Z. Phys. Chem. 1900, 32, 509. it remained relatively forgotten until the 1970's when Hajos and Parrish (Hoffmann-La Roche),5555 Hajos, Z. G.; Parrish, D. R.; J. Org. Chem. 1974, 39, 1615; Eder, U.; Sauer, G.; Wiechert, R.; Angew. Chem., Int. Ed. Engl. 1971, 10, 496. and Ederet al. (Schering)5555 Hajos, Z. G.; Parrish, D. R.; J. Org. Chem. 1974, 39, 1615; Eder, U.; Sauer, G.; Wiechert, R.; Angew. Chem., Int. Ed. Engl. 1971, 10, 496. independently reported the intramolecular aldol reaction catalyzed by (S)-proline, whose product was obtained in 99% yield and 93% enantiomeric excess. This asymmetric approach experienced a rebirth since 2000, when List et al.5656 List, B.; Lerner, R. A.; Barbas III, C. F.; J. Am. Chem. Soc. 2000, 122, 2395. published their seminal work describing the employment of proline as organocatalyst in the enantioselective intermolecular aldol reaction between acetone and different aldehydes.

Proline is an abundant α-amino acid available in both enantiomeric forms. Its functional amino and carboxylic groups situated at a convenient distance confer the proline a great versatility as organocatalyst since on one side of the molecular structure, the carboxylic acid fragment allows the formation of hydrogen bonds with one heteroatom from a non-enolizable electrophile and on the other side, the secondary amine functionality participates in the formation of a nucleophilic enamine with an enolizable aldehyde or ketone.5757 List, B.; Tetrahedron 2002, 58, 5573. The modification of the carboxylic acid functionality can modulate the capability of forming hydrogen bonds, in turn improving the solubility of resulting proline-derived catalysts. With respect to the second point, bifunctional pyrrolidine catalysts have been also obtained from trans-hydroxyproline, whose hydroxy group enables the support of the organocatalyst onto silica gel (heterogeneous catalysis) or ionic tags (ionic liquid catalytic systems), thus facilitating their recovery. Figure 2 depicts grosso modo the development of ligands with an efficient organocatalytic activity, from simple and affordable chiral compounds such as amino acids, up to molecules with greater complexity and versatility.5858 Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E.; J. Am. Chem. Soc. 2005, 127, 11256; Ting, A.; Lou, S.; Schaus, S. E.; Org. Lett. 2006, 8, 2003; Saaby, S.; Bella, M.; Jørgensen, K. A.; J. Am. Chem. Soc. 2004, 126, 8120.

59 Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y.; Córdova, A.; Chem. Eur. J. 2005, 11, 7024; List, B.; Synlett 2001, 1675; Notz, W.; Tanaka, F.; Watanabe, S.-I.; Chowdari, N. S.; Turner, J. M.; Thayumanavan, R.; Barbas III, C. F.; J. Org. Chem. 2003, 68, 9624; Dziedzic, P.; Córdova, A.; Tetrahedron: Asymmetry 2007, 18, 1033.

60 Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C.; Angew. Chem., Int. Ed. 2004, 43, 6722.

61 Lei, M.; Shi, L.; Li, G.; Chen, S.; Fang, W.; Ge, Z.; Cheng, T.; Li, R.; Tetrahedron 2007, 63, 7892; Shi, L.-X.; Sun, Q.; Ge, Z.-M.; Zhu, Y.-Q.; Cheng, T.-M.; Li, R.-T.; Synlett 2004, 2215; Chen, F.; Huang, S.; Zhang, H.; Liu, F.; Peng, Y.; Tetrahedron 2008, 64, 9585; Chandrasekhar, S.; Johny, K.; Reddy, C. R.; Tetrahedron: Asymmetry 2009, 20, 1742.

62 Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C. F.; J. Am. Chem. Soc. 2006, 128, 4966; Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C. F.; J. Am. Chem. Soc. 2006, 128, 734; Wang, W.; Li, H.; Wang, J.; Tetrahedron Lett. 2005, 46, 5077; Wang, W.; Wang, J.; Li, H.; Angew. Chem., Int. Ed. 2005, 44, 1369; Wang, J.; Li, H.; Zu, L.; Wang, W.; Adv. Synth. Catal. 2006, 348, 425; Zhuang, W.; Saaby, S.; Jørgensen, K. A.; Angew. Chem., Int. Ed. 2004, 43, 4476.

63 Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A.; J. Am. Chem. Soc. 2005, 127, 18296.

64 Alza, E.; Sayalero, S.; Kasaplar, P.; Almaşi, D.; Pericàs, M. A.; Chem. Eur. J. 2011, 17, 11585.

65 Maltsev, O. V.; Kucherenko, A. S.; Beletskaya, I. P.; Tartakovsky, V. A.; Zlotin, S. G.; Eur. J. Org. Chem. 2010, 2927.

66 Ni, B.; Zhang, Q.; Dhungana, K.; Headley, A. D.; Org. Lett. 2009, 11, 1037.

67 Xu, D.; Luo, S.; Yue, H.; Wang, L.; Liu, Y.; Xu, Z.; Synlett 2006, 2569.

68 Luo, S.; Li, J.; Zhang, L.; Xu, H.; Cheng, J.-P.; Chem. Eur. J. 2008, 14, 1273.

69 Yan, J.; Wang, L.; Synthesis 2008, 2065.

70 Gruttadauria, M.; Salvo, A. M. P.; Giacalone, F.; Agrigento, P.; Noto, R.; Eur. J. Org. Chem. 2009, 5437.
-7171 See, for instance: Holland, M. C.; Gilmour, R.; Angew. Chem., Int. Ed. 2015, 54, 3862; Vilaivan, T.; Bhanthumnavin, W.; Molecules 2010, 15, 917; Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L.; Rutjes, F. P. J.; Chem. Soc. Rev. 2008, 37, 29; Takemoto, Y.; Stadler, M. In Comprehensive Chirality, vol. 6; Maruoka, K., ed.; Elsevier: Oxford, United Kingdom, 2012, p. 37; Raj, M.; Singh, V. K.; Chem. Commun. 2009, 6687.

Figure 2
Early development of organocatalysts.

Given the great diversity of reactions in which it is possible to employ (R)- or (S)-proline and its derivatives as organocatalysts, it is worthy to mention that relatively few methods of activation were initially identified.1010 Kaur, J.; Chauhan, P.; Singh, S.; Chimni, S. S.; Chem. Rec. 2017, 17, 1; Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.; Chem. Rev. 2007, 107, 5471; Pihko, P. M.; Majander, I.; Erkkilä, A. In Topics in Current Chemistry, vol. 291; List, B., ed.; Springer: Heidelberg, Germany, 2009, p. 145;Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G.; Angew. Chem., Int. Ed. 2008, 47, 6138; Bertelsen, S.; Jørgensen, K. A.; Chem. Soc. Rev. 2009, 38, 2178; Lu, L.-Q.; An, X.-L.; Chen, J.-R.; Xiao, W.-J.; Synlett 2012, 23, 490; Scheffler, U.; Mahrwald, R.; Chem. Eur. J. 2013, 19, 14346.,7171 See, for instance: Holland, M. C.; Gilmour, R.; Angew. Chem., Int. Ed. 2015, 54, 3862; Vilaivan, T.; Bhanthumnavin, W.; Molecules 2010, 15, 917; Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L.; Rutjes, F. P. J.; Chem. Soc. Rev. 2008, 37, 29; Takemoto, Y.; Stadler, M. In Comprehensive Chirality, vol. 6; Maruoka, K., ed.; Elsevier: Oxford, United Kingdom, 2012, p. 37; Raj, M.; Singh, V. K.; Chem. Commun. 2009, 6687.,7272 For example, various studies on the catalytic mechanism displayed by the Jørgensen-Hayashi organocatalyst in asymmetric Michael additions have been compiled: Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y.; Helv. Chim. Acta 2011, 94, 719; Burés, J.; Armstrong, A.; Blackmond, D. G.; J. Am. Chem. Soc. 2011, 133, 8822; Burés, J.; Armstrong, A.; Blackmond, D. G.; J. Am. Chem. Soc. 2012, 134, 6741; Burés, J.; Armstrong, A.; Blackmond, D. G.; Acc. Chem. Res. 2016, 49, 214; Sahoo, G.; Rahaman, H.; Madarász, Á.; Pápai, I.; Melarto, M.; Valkonen, A.; Pihko, P. M.; Angew. Chem., Int. Ed. 2012, 51, 13144; Seebach, D.; Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K.; Helv. Chim. Acta 2012, 95, 1064; Seebach, D.; Sun, X.; Ebert, M.-O.; Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M.; Helv. Chim. Acta 2013, 96, 799; Haindl, M. H.; Schmid, M. B.; Zeitler, K.; Gschwind, R. M.; RSC Adv. 2012, 2, 5941. For example, the stereoinduction observed in reactions listed in Figure 3 is ruled by a simplified rationalization of the mechanistic principle of catalysis via enamine.

Figure 3
General asymmetric α-functionalizations of aldehydes by means of enamine addition to electrophilic double bonds.

On the other hand, the applications of chiral organocatalysts have not been limited to the development of asymmetric methodologies, but have also fruitfully extended to the asymmetric synthesis of various chiral natural and synthetic bioactive compounds.7373 Alemán, J.; Cabrera, S.; Chem. Soc. Rev. 2013, 42, 774; Sun, B. F.; Tetrahedron Lett. 2015, 56, 2133; Ishikawa, H.; Shiomi, S.; Org. Biomol. Chem. 2016, 14, 409; dos Santos, D. A.; Deobald, A. M.; Cornelio, V. E.; Ávila, R. M. D.;Cornea, R. C.; Bernasconi, G. C. R.; Paixão, M. W.; Vieira, P. C.; Corrêa, A. G.; Bioorg. Med. Chem. 2017, 25, 4620; Deobald, A. M.; Corrêa, A. G.; Rivera, D. G.; Paixão, M. W.; Org. Biomol. Chem. 2012, 10, 7681.

For instance, Hong et al.7474 Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H.; Org. Lett. 2010, 12, 776. developed the enantioselective total synthesis via cascade three-component organocatalysis of (+)-conicol [(+)-26, Scheme 1], an interesting chiral compound isolated from the ascidian Aplidium conicum, that has exhibited antiproliferative activity against human acute lymphoblastic leukemia CEM-WT cells as well as antibacterial activity against the Gram-positive bacteria Micrococcus luteus. Hong et al.7474 Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H.; Org. Lett. 2010, 12, 776. envisioned that precursor γ-nitro aldehyde (23) could be asymmetrically assembled by means of the tandem oxa-Michael-Michael reaction between (E)-2-(2-nitrovinyl)-benzene-1,4-diol (20), 3-methylbut-2-enal (21) employing the Jørgensen-Hayashi catalyst (S)-16a. The subsequent reaction to obtain 24 from precursor 23 could be achieved in one-pot in 66% overall yield. An alternative sequence involving diverse reduction and oxidation reactions allowed the preparation of the final product (+)-conicol, (+)-26. The development of this synthetic route also permitted the unambiguous assignment of its absolute configuration by means of X-ray diffraction.

Scheme 1
Synthetic route for (+)-conicol developed by Hong et al.7474 Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H.; Org. Lett. 2010, 12, 776. (adapted).

Thus, one of the main aims in our research group is the development of new ligands with potential organocatalytic activity, in which the evaluation of enantioselectivities via chiral HPLC plays a central role.

4. Diazabicycloheptanes as Organocatalysts

(1S,4S)-2,5-Diazabicyclo[2.2.1]heptane, (1S,4S)-29, was deemed a promising chiral scaffold for diverse applications in asymmetric catalysis. This compound can be easily prepared from trans-4-(S)-hydroxyproline (Scheme 2), and several derivatives were tested as chiral ligands coordinating metal reagents or as organocatalysts themselves in different asymmetric reactions, inducing enantioselectivities with varying levels of success. In particular, diethylzinc addition to carbonyls of aldehydes was the most successful.7575 Melgar-Fernández, R.; González-Olvera, R.; Olivares-Romero, J. L.; González-López, V.; Romero-Ponce, L.; Ramírez-Zárate, M.; Demare, P.; Regla, I.; Juaristi, E.; Eur. J. Org. Chem. 2008, 655.

Scheme 2
Synthesis of chiral diazabicycloheptanes ligands.

Furthermore, in one of the first examples of organocatalyzed asymmetric Biginelli reaction, the hydrobromide of diazabicycloheptane (1S,4S)-(R)-30 afforded moderate results (Scheme 3).7676 González-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E.; Arkivoc 2008, VI, 61. Outstandingly good resolutions were achieved for the series of chiral cyclic ureas (35) by means of using Chirobiotic™ T column. Figure 4 shows a typical example of chromatograms for a product of the tested Biginelli reaction.

Scheme 3
Asymmetric Biginelli reaction catalyzed by diazabicycloheptane (1S,4S)-(R)-30.

Figure 4
Comparison of chromatograms (racemic vs. enantioenriched sample) corresponding to 3,4-dihydro-pyrimidin-2(1H)-one, 35a. Chromatographic conditions: Chirobiotic T (0.46 × 25 cm, 10 μm), mobile phase acetonitrile:water (70:30 v/v), λ = 230 nm and U = 1 mL min-1; retention time (tR) = 3.30 min (enantiomer R, minor); tR = 4.78 min (enantiomer S, major).

More recently, it was found that diastereomeric salts of diazabicycloheptane (1S,4S)-31 combined with (R)-mandelic acid [(R)-38] successfully organocatalyzed the Michael addition reaction under solvent-free conditions.7777 Ávila-Ortiz, C. G.; López-Ortiz, M.; Vega-Peñaloza, A.; Regla, I.; Juaristi, E.; Asymmetric Catal. 2015, 2, 37. A general overview of performance of (1S,4S)-31 in the aforementioned reaction is depicted in Scheme 4. These results were interesting since it has been known that the structural nature of an acidic proton source had no influence on stereoselectivity given that acid additives tend to carry out general acid catalysis type.7272 For example, various studies on the catalytic mechanism displayed by the Jørgensen-Hayashi organocatalyst in asymmetric Michael additions have been compiled: Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y.; Helv. Chim. Acta 2011, 94, 719; Burés, J.; Armstrong, A.; Blackmond, D. G.; J. Am. Chem. Soc. 2011, 133, 8822; Burés, J.; Armstrong, A.; Blackmond, D. G.; J. Am. Chem. Soc. 2012, 134, 6741; Burés, J.; Armstrong, A.; Blackmond, D. G.; Acc. Chem. Res. 2016, 49, 214; Sahoo, G.; Rahaman, H.; Madarász, Á.; Pápai, I.; Melarto, M.; Valkonen, A.; Pihko, P. M.; Angew. Chem., Int. Ed. 2012, 51, 13144; Seebach, D.; Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K.; Helv. Chim. Acta 2012, 95, 1064; Seebach, D.; Sun, X.; Ebert, M.-O.; Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M.; Helv. Chim. Acta 2013, 96, 799; Haindl, M. H.; Schmid, M. B.; Zeitler, K.; Gschwind, R. M.; RSC Adv. 2012, 2, 5941.

Scheme 4
Solvent-free Michael addition reaction of cyclic ketones to different nitroolefins catalyzed by (1S,4S)-31.

5. Organocatalysis via Proline Dipeptide Derivatives Assisted by Mechanochemistry

Mechanochemical synthesis involves mechanical grinding of the corresponding reagents under solvent free conditions or in the presence of molar equivalents of a suitable solvent (e.g. water), either generated during the reaction or added (minimal solvent). The reaction usually proceeds with no heating other than that produced from the conversion of the mechanical energy of milling into heat, being the dispersion and an incremented surface area the determining factors in reactions subjected to the mechanical action.7878 Bowmaker, G. A.; Chem. Commun. 2013, 49, 334; James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.;Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C.; Chem. Soc. Rev. 2012, 41, 413; Takacs, L.; Chem. Soc. Rev. 2013, 42, 7649. A wide range of applications of mechanochemistry have been found, not only in areas typically related to mechanical grinding such as in the preparation of oxides,7979 Šepelák, V.; Düvel, A.; Wilkening, M.; Becker, K.-D.; Heitjans, P.; Chem. Soc. Rev. 2013, 42, 7507; Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.; Streletskii, A.; Wieczorek-Ciurowa, K.; Chem. Soc. Rev. 2013, 42, 7571. metal complexes,8080 Lazuen Garay, A.; Pichon, A.; James, S. L.; Chem. Soc. Rev. 2007, 36, 846. energy-related or environmental heterogeneous catalysts8181 Ralphs, K.; Hardacre, C.; James, S. L.; Chem. Soc. Rev. 2013, 42, 7701. and metal-organic frameworks or hosts for molecular inclusions,8282 Friščić, T.; J. Mater. Chem. 2010, 20, 7599. but also in non-traditional fields such as molecular co-crystal formation8383 Braga, D.; Maini, L.; Grepioni, F.; Chem. Soc. Rev. 2013, 42, 7638; Friščić, T.; Jones, W.; Cryst. Growth Des. 2009, 9, 1621. and production of pharmaceutical materials.8484 Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J.; Chem. Commun. 2016, 52, 640; Jones, W.; Eddlestone, M. D.; Faraday Discuss. 2014, 170, 9. In recent years, mechanochemistry has also constituted a developing field of interest in organic synthesis,8585 Wang, G.-W.; Chem. Soc. Rev. 2013, 42, 7668; Sarkar, A.; Santra, S.; Kundu, S. K.; Hajra, A.; Zyryanov, G. V.; Chupakhin, O. N.; Charushin, V. N.; Majee, A.; Green Chem. 2016, 18, 4475; Brahmachari, G.; RSC Adv. 2016, 6, 64676.,8686 For a complete monograph about Mechanochemistry in organic synthesis, see: Margetic, D.; Štrukil, V.; Mechanochemical Organic Synthesis; Elsevier: Amsterdam, Netherlands, 2016. thus ball-milling has been successfully employed in the synthesis of peptides and aromatic amides,8787 Hernández, J. G.; Juaristi, E.; J. Org. Chem. 2010, 75, 7107; Štrukil, V.; Bartolec, B.; Portada, T.; Ðilović, I.; Halasz, I.; Margetić, D.; Chem. Commun. 2012, 48, 12100; Landeros, J. M.; Juaristi, E.; Eur. J. Org. Chem. 2017, 687. in the preparation of substituted hydantoins from dipeptides8888 Konnert, L.; Gonnet, L.; Halasz, I.; Suppo, J.-S.; de Figueiredo, R. M.; Campagne, J.-M.; Lamaty, F.; Martinez, J.; Colacino, E.; J. Org. Chem. 2016, 81, 9802. in carbon-heteroatom bond forming reactions, in the synthesis of heterocycles,8989 Ranu, B. C.; Chatterjee, T.; Mukherjee, N. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, RSC Green Chemistry, No. 31; Ranu, B.; Stolle, A., eds.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2015, ch. 1, p. 1. in the synthesis of Ugi 4-CR and Passerini 3-CR adducts,9090 Polindara-García, L. A.; Juaristi, E.; Eur. J. Org. Chem. 2016, 1095. in cross-coupling reactions as well as in other metal-catalyzed organic processes.9191 Hernández, J. G.; Friščić, T.; Tetrahedron Lett. 2015, 56, 4253.

Likewise, asymmetric organocatalysis can also take advantage of mechanochemical tools to carry out solvent free (or minimal solvent versions) of existing reactions which proceed via enamine formation among other activation mechanisms.9292 Machuca, E.; Juaristi, E. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, RSC Green Chemistry, No. 31; Ranu, B.; Stolle, A., eds.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2015, ch. 4, p. 81. In this regard, it should be noted the pioneering work implemented by Bolm and co-workers,9393 Rodríguez, B.; Rantanen, T.; Bolm, C.; Angew. Chem., Int. Ed. 2006, 45, 6924; Rodríguez, B.; Bruckmann, A.; Bolm, C.; Chem. Eur. J. 2007, 13, 4710; Jörres, M.; Mersmann, S.; Raabe, G.; Bolm, C.; Green Chem. 2013, 15, 612. and Nájera and co-workers9494 Guillena, G.; Hita, M. C.; Nájera, C.; Viózquez, S. F.; Tetrahedron: Asymmetry 2007, 18, 2300; Guillena, G.; Hita, M. C.; Nájera, C.; Viózquez, S. F.; J. Org. Chem. 2008, 73, 5933. in aldol and Michael reactions under ball-milling activation.

Our research group evaluated the organocatalytic activity of the methyl ester of (S)-proline-(S)-phenylalanine dipeptide (S,S)-39 in the asymmetric aldol reactions between cyclohexanone or acetone together with various aromatic aldehydes under ball-milling, solvent-free conditions.9595 Hernández, J. G.; Juaristi, E.; J. Org. Chem. 2011, 76, 1464. Using a milling frequency of 2760 rpm (46 Hz) at –20 ºC, dipeptide (S)-39 stereoselectively catalyzed the formation of aldol products in yields as high as 94%, with up to 91:9 anti:syn d.r. (diastereomeric ratio) and up to 95% ee.

Furthermore, (S)-proline-containing thiodipeptides could also be employed for the mechanochemical asymmetric aldol reaction, which in some cases proved to be better organocatalysts relative to their amide analogues [(S,S)-39 vs. (S,S)-43].9696 Hernández, J. G.; García-López, V.; Juaristi, E.; Tetrahedron 2012, 68, 92. Equally, the methyl ester of (S)-proline-(S)-tryptophan (S,S)-44 combined with benzoic acid as additive and a small amount of water, afforded higher diastereo- and enantioselectivities (up to 98:2 anti:synd.r. and up to 98% ee).9797 Hernández, J. G.; Juaristi, E.; Tetrahedron 2011, 67, 6953. More recently, O-methyl esters of proline-derived α,β-dipeptides, e.g. (S)-45, have been evaluated,9898 Machuca, E.; Rojas, Y.; Juaristi, E.; Asian J. Org. Chem. 2015, 4, 46. as well as amides supported on MBHA (4-methylbenzhydrylamine) resin, (S)-46.9999 Machuca, E.; Granados, G.; Hinojosa, B.; Juaristi, E.; Tetrahedron Lett. 2015, 56, 6047. Table 2 summarizes the selected results regarding the obtained enantioselectivities induced by diverse organocatalysts in aldol reactions. Table 2 also includes the available details of the chromatographic separations of the resulting stereoisomeric products.

Table 2
Organocatalyzed direct aldol reaction between cyclohexanone and aryl-aldehydes aryl-substituted with electron-withdrawing groups (respecting to carbonyl electrophilicity)

Figure 5 collects representative chromatograms of enantioenriched diastereomeric mixtures generated with chiral dipeptides as organocatalysts. It is worthy to note that a slight difference in the substitution pattern may affect the elution order of the aldol products. For example, p-nitro substituted (2S,1'R)-42a (Table 2, entries 1-5) is last eluted under the chromatographic conditions employed with a Chiralpak AD-H chiral column while on the contrary, ortho- and meta-nitro substituted [(2S,1'R)-42b and (2S,1'R)-42c, respectively] elute first.

Figure 5
Comparison of chromatograms (racemic vs. enantioenriched samples) corresponding to aldol products (2S,1'R)-42a,c,d (left to right).

Taking u-42c as example of analyte, Table 3 collects diverse chromatographic conditions employed for analysis of aldol reactions catalyzed by selected organocatalysts as recently described in the literature. Best chromatographic conditions for the analytical resolution of (±)-42c were reported by Pedotti and Patti,105105 Pedotti, S.; Patti, A.; J. Sep. Sci. 2014, 37, 3451. who employed a Lux Cellulose-2 column (chiral selector: cellulose tris-3-chloro-4-methylphenylcarbamate, 250 × 4.6 mm, 5 μm particle size), achieving resolution factors as high as 4.53 with hexane/i-propanol (9:1) as eluent.

Table 3
Direct aldol reaction between cyclohexanone 40 and o-nitro benzaldehyde 41c promoted by small (S)-proline-derived organocatalysts (selected examples from literature published during 2014-2016)

When evaluating new ligands as organocatalysts, unambiguous assignment of the absolute configuration of products obtained from organocatalytic reactions is crucial to make an appropriate analysis of chromatograms corresponding to racemic and enantioenriched samples. For example, Gandhi and Singh106106 Gandhi, S.; Singh, V. K.; J. Org. Chem. 2008, 73, 9411. developed an enantioselective synthetic route to prepare the bicyclic azetidine (R,S,S)-55e from aldol product (S,R)-42e, that had been obtained in a reaction catalyzed by diamino-sulfonamide (S,R,R)-52 (Scheme 5). Gandhi and Singh106106 Gandhi, S.; Singh, V. K.; J. Org. Chem. 2008, 73, 9411. assigned the configuration of the new chiral centers by means of nuclear Overhauser effect (nOe) experiments; in particular, they observed an enhancement in the peak intensity of H2 by irradiating H1, and vice versa.

Scheme 5
Assignment of absolute configuration by NMR nOe experiment from a derivative of original aldol product.

In the case of organocatalyst (S,S)-44, chromatographic examination of the experimental stereochemical results (see Table 2, conditions described in entry 12) led to propose a reasonable transition state to explain the observed stereocontrol (Figure 6). Thus, the creation of a hydrophobic pocket enhances non-covalent π-π interactions between aromatic rings present both in the catalyst and in the aldehyde, so that the interaction between these fragments leads to a more rigid transition state, which is translated into a higher stereoselectivity.9797 Hernández, J. G.; Juaristi, E.; Tetrahedron 2011, 67, 6953.

Figure 6
Proposed transition state model of the aldol reaction catalyzed by (S,S)-44.

It is worth mentioning that high-speed ball milling has been recognized as an environment-friendly mechanochemical technique given that it enhances atom economy by diminishing or eliminating solvent usage when carrying out organocatalytic reactions.107107 Hernández, J. G.; Juaristi, E.; Chem. Commun. 2012, 48, 5396; Hernández, J. G.; Juaristi, E.; Educ. Chim. 2013, 24, 96; Hernández, J. G.; Ávila-Ortiz, C. G.; Juaristi, E. In Comprehensive Organic Synthesis II, vol. 9, 2nd ed.; Knochel, P.; Molander, G. A., eds.; Elsevier: Amsterdam, Netherlands, 2014, p. 287. At this point, it is appropriate to mention that recent advances on separation techniques such as supercritical fluid extraction,108108 Wells, M. J. M. In Chemical Analysis: Sample Preparation Techniques in Analytical Chemistry, vol. 162; Winefordner, J. D.; Mitra, S., eds.; John Wiley & Sons, Inc.: Hoboken United States, 2003, ch. 2, p. 37. solid phase extraction,109109 Żwir-Ferenc, A.; Biziuk, M.; Pol. J. Environ. Stud. 2006, 15, 677. among other practices110110 Taygerly, J. P.; Miller, L. M.; Yee, A.; Peterson, E. A.; Green Chem. 2012, 14, 3020; Mack, J. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, RSC Green Chemistry, No. 31; Ranu, B.; Stolle, A., eds.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2015, ch. 8, p. 190. might permit a greater level of sustainability in chemical reactions in general.

6. Thiohydantoin (S)-Proline Derivatives as Organocatalyst

Kokotos et al.111111 Kokotos, C. G.; Limnios, D.; Triggidou, D.; Trifonidou, M.; Kokotos, G.; Org. Biomol. Chem. 2011, 9, 3386; Kaplaneris, N.; Koutoulogenis, G.; Raftopoulou, M.; Kokotos, C. G.; J. Org. Chem. 2015, 80, 5464. have synthesized diverse (S)-proline derivatives containing a thiohydantoin fragment and tested them as organocatalyst in the asymmetric Michael addition reaction. Similarly, in our research group, a different series of thiohydantoins derived from proline was prepared by means of the synthetic route presented in Scheme 6.112112 Vega-Peñaloza, A.; Sánchez-Antonio, O.; Ávila-Ortiz, C. G.; Escudero-Casao, M.; Juaristi, E.; Asian J. Org. Chem. 2014, 3, 487. Various techniques including X-ray diffraction structural analysis, 13C NMR and MS-TOF (time-of-flight mass spectrometry) helped confirm the formation of the thiohydantoin scaffold rather than isothioureas, a result that was explained in terms of the hard and soft acid and base theory (HSAB theory) proposed by Pearson,113113 Pearson, R. G.; J. Am. Chem. Soc. 1963, 85, 3533. considering that nitrogen (a hard nucleophile) preferably attacks the carbonyl group (a hard electrophile).114114 Attanasi, O. A.; Bartoccini, S.; Favi, G.; Giorgi, G.; Perrulli, F. R.; Santeusanio, S.; J. Org. Chem. 2012, 77, 1161. These thiohydantoin derivatives were tested as organocatalysts in the asymmetric Michael reaction, and variables such as solvents, acidic additives and temperature were modified in order to find the most optimal conditions. The importance of solvent-free reaction conditions to maximize the suitable intermolecular interactions affording the desired stereocontrol constitute salient features of these catalytic systems (Scheme 7).

Scheme 6
General synthetic route to obtain the (S)-proline-derived amino thiohydantoins 61a-e.

Scheme 7
Michael addition reaction catalyzed by thiohydantoin (S,S)-61d under solvent-free conditions.

7. Diaza-Analogues of gem-Diphenyl Prolinols and their Application as Organocatalysts

α,α-Diarylprolinol derivatives are well-established families of catalysts, which are widely used to promote diverse asymmetric reactions.6363 Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A.; J. Am. Chem. Soc. 2005, 127, 18296. The enantioinduction generated from these catalysts is mainly due to the gem-diphenyl carbinol fragment, that may be considered as a chiral amplifier.115115 Braun, M.; Angew. Chem., Int. Ed. 2012, 51, 2550. Hence, the synthesis of chiral diaza analogues of the classical and privileged amino alcohols seemed an evident goal to address in the development of alternative chiral ligands. In this regard, in our group there has been a continuous interest in the synthesis of α-phenyl and α,α-diphenyl prolinamines and its derivatives.116116 Vargas-Caporali, J.; Juaristi, E.; Synthesis 2016, 48, 3890; Vargas-Caporali, J.; Cruz-Hernández, C.; Juaristi, E.; Heterocycles 2012, 86, 1275.

In particular, in 2008 we accomplished the substitution of the tertiary hydroxyl group within N-benzyl α,α-diphenylprolinol (S)-64-I by an azide ion [(S)-65-I] in the presence of high concentrations of sulfuric acid (to provoke SN1 type reaction, see Scheme 8). The resulting aminoazide was reduced and deprotected to obtain diamine (S)-68a, that was used as precursor of a diazaborolidine, in turn tested as catalyst in the asymmetric reduction of prochiral ketones.117117 Olivares-Romero, J.; Juaristi, E.; Tetrahedron 2008, 64, 9992. An alternative route was developed to carry out the OH→N3 substitution directly from (S)-diphenyl(pyrrolidin-2-yl)methanol (S)-64-II by using trifluoroacetic acid, this in order to afford the pyrrolidine-derived azide (S)-65-II, which could be N-Boc protected and then reduced to the diamine derivative (S)-66. The N-Boc protecting group on the pyrrolidine nitrogen allowed the functionalization of the primary amino group into various amide, alkylated amine, sulfonamide and triazole derivatives [(S)-68a-f] (Scheme 8). In each case, carefully controlled conditions were required to generate the desired derivatives from the sterically hindered benzhydrylamine moiety.118118 Reyes-Rangel, G.; Vargas-Caporali, J.; Juaristi, E.; Tetrahedron 2016, 72, 379.

Scheme 8
Synthesis and derivatization of amino azides (S)-65-I and (S)-65-II.

It is worth mentioning that by-product (S)-68d' formed as a consequence of the Thorpe-Ingold effect.119119 Jung, M. E.; Piizzi, G.; Chem. Rev. 2005, 105, 1735. The enantiomeric purity of amidine (S)-68d' was evaluated by HPLC (Figure 7) in order to correlate the ee with the enantiopurity of amino azide (S)-65-II and its derivatives.

Figure 7
Confirmation of enantiopurity of a derivative obtained from azide (S)-65-II. The absolute configuration of (S)-68d' was also corroborated by X-ray diffraction analysis.

Chiral diamines (S)-65-II and (S)-68a,b,e,f were evaluated as bifunctional organocatalysts in the asymmetric Michael addition (Table 4). (S)-2-(Azidodiphenylmethyl) pyrrolidine (S)-65-II was identified as the most efficient organocatalyst. As it could be anticipated, stereocontrol is mainly directed by steric hindrance. Diamine (S)-68a was the only derivative where hydrogen bonds apparently play a significant role according to the stereoselectivity observed (Figure 8).

Table 4
Asymmetric Michael reaction catalyzed by pyrrolidine derivatives

Figure 8
Chromatograms corresponding to Michael adduct (R)-71a generated from the reaction promoted by azide (S)-65-II, (S)-71a obtained with moderate ee from catalysis with diamine (S)-68a, and comparison with the racemic mixture. Chiralcel OD-H, Hex:IPA (95:5), U = 0.8 mL min-1, λ = 210 nm, tR(R) = 13.4 min, tR(S) = 19.2 min.

Table 5 presents selected results regarding the enantioselectivities observed with diverse substrates by employing organocatalyst (S)-65-II. In addition, Figure 9 includes chromatograms pertinent to Table 5.

Table 5
Salient examples of Michael adducts generated by azide (S)-65-II

Figure 9
Chromatograms corresponding to Michael adduct (R)-71a-c (bottom, left to right) generated from the reaction promoted by azide (S)-65-II, these are compared with their corresponding racemic mixture (±)-71a-c (top).

8. Conclusions

The development of chiral stationary phases since the second half of the twentieth century constitutes an indispensable tool that is frequently taken by granted. Nevertheless, without chiral chromatography, the enormous advance registered in several areas of asymmetric synthesis such as organocatalysis would not have been possible.

Diverse standard compounds such as α-amino acids, Tröger's base, benzoin, Pirkle's alcohol, among others, have been conventionally employed to evaluate newly designed chiral selectors. Continuing studies with available techniques have also allowed a better understanding of specific mechanisms of chiral recognition.

Organocatalysis has been a buoyant area in asymmetric synthesis during the last 15 years. An immense quantity of data used to evaluate new ligands and reactions is available thanks to the employment of chiral chromatography. It would be interesting to develop “tailor-made” chiral selectors for e.g. chiral Michael adducts, which should be feasible considering the principle of reciprocity (Pirkle concept) employed in the design of selectors. Combined techniques such as HPLC-circular dichroism (CD) together with quantum chemical CD calculations123123 Bringmann, G.; Gulder, T. A. M.; Reichert, M.; Gulder, T.; Chirality 2008, 20, 628. will help evaluate stereoinduction from a newly developed ligand as potential organocatalyst.

Acknowledgments

The authors acknowledge financial support via grant CB-2013/220945 from the National Council of Science and Technology (CONACYT, Mexico). The authors also thank Dr Carmen Giovana Granados Ramirez for helpful technical assistance about HPLC.

References

  • 1
    Rouf, A.; Taneja, S. C.; Chirality 2014, 26, 63; Maltsev, O. V.; Beletskaya, I. P.; Zlotin, S. G.; Russ. Chem. Rev. 2011, 80, 1067; Hong, B.-C.; Raja, A.; Sheth, V. M.; Synthesis 2015, 47, 3257; Juaristi, E.; An. Quim. Int. Ed. 1997, 93, 135.
  • 2
    de Graaf, C.; Ruijter, E.; Orru, R. V. A.; Chem. Soc. Rev. 2012, 41, 3969; Nájera, C.; Sansano, J. M.; Yus, M.; J. Braz. Chem. Soc. 2010, 21, 377.
  • 3
    Flack, H. D.; Chimia 2014, 68, 26; Thompson, A. L.; Watkin, D. J.; Tetrahedron: Asymmetry 2009, 20, 712; Thompson, A. L.; Watkin, D. J.; J. Appl. Crystallogr. 2011, 44, 1017; Escudero-Adán, E. C.; Benet-Buchholz, J.; Ballester, P.; Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2014, B70, 660; Albright, A. L.; White, J. M. In Metabolomics Tools for Natural Product Discovery: Methods and Protocols, Methods in Molecular Biology, vol. 1055; Roessner, U.; Dias, D. A., eds.; Springer Science+Business Media: Heidelberg, Germany, 2013, p. 149.
  • 4
    Pirkle, W. H.; Hoover, D. J. In Topics in Stereochemistry, vol. 13; Wilen, S.; Eliel, E., eds.; Wiley: New York, United States, 1982, p. 263; Parker, D.; Chem. Rev. 1991, 91, 1441; Wenzel, T. J.; Chisholm, C. D.; Chirality 2011, 23, 190; Wenzel, T. J.; Chisholm, C. D.; Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 1; Uccello-Barretta, G.; Balzano, F. In Topics in Current Chemistry, vol. 341; Schurig, V., ed.; Springer-Verlag: Heidelberg, Germany, 2013, p. 69.
  • 5
    Allenmark, S.; Schurig, V.; J. Mater. Chem. 1997, 7, 1955; Okamoto, Y.; Ikai, T.; Chem. Soc. Rev. 2008, 37, 2593; Ward, T. J.; Ward, K. D.; Anal. Chem. 2010, 82, 4712; Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F.; Anal. Chim. Acta 2011, 706, 205.
  • 6
    He, Y.; Wang, B.; Dukor, R. K.; Nafie, L. A.; Appl. Spectrosc. 2011, 65, 699.
  • 7
    Heravi, M. M.; Zadsirjan, V.; Tetrahedron: Asymmetry 2013, 24, 1149; Davies, S. G.; Fletcher, A. M.; Thomson, J. E.; Chem. Commun. 2013, 49, 8586.
  • 8
    Bauer, E. B.; Chem. Soc. Rev. 2012, 41, 3153; Majumdar, K. C.; Sinha, B.; RSC Adv. 2014, 4, 8085; Li, Y.-Y.; Yu, S.-L.; Shen, W.-Y.; Gao, J.-X.; Acc. Chem. Res. 2015, 48, 2587; Bigler, R.; Huber, R.; Mezzetti, A.; Synlett 2016, 27, 831; Pellissier, H.; Chem. Rev. 2016, 116, 14868; Oloo, W. N.; Que Jr., L.; Acc. Chem. Res. 2015, 48, 2612.
  • 9
    Reetz, M. T.; Angew. Chem., Int. Ed. 2011, 50, 138; Reetz, M. T.; J. Org. Chem. 2009, 74, 5767; Hall, M.; Bommarius, A. S.; Chem. Rev. 2011, 111, 4088; Denard, C. A.; Hartwig, J. F.; Zhao, H.; ACS Catal. 2013, 3, 2856.
  • 10
    Kaur, J.; Chauhan, P.; Singh, S.; Chimni, S. S.; Chem. Rec. 2017, 17, 1; Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.; Chem. Rev. 2007, 107, 5471; Pihko, P. M.; Majander, I.; Erkkilä, A. In Topics in Current Chemistry, vol. 291; List, B., ed.; Springer: Heidelberg, Germany, 2009, p. 145;Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G.; Angew. Chem., Int. Ed. 2008, 47, 6138; Bertelsen, S.; Jørgensen, K. A.; Chem. Soc. Rev. 2009, 38, 2178; Lu, L.-Q.; An, X.-L.; Chen, J.-R.; Xiao, W.-J.; Synlett 2012, 23, 490; Scheffler, U.; Mahrwald, R.; Chem. Eur. J. 2013, 19, 14346.
  • 11
    Gil-Av, E.; Feibush, B.; Charles-Sigler, R.; Tetrahedron Lett. 1966, 1009; Feibush, B.; Balan, A.; Altman, B.; Gil-Av, E.; J. Chem. Soc., Perkin Trans. 2 1979, 1230; Gil-Av, E.; J. Mol. Evol. 1975, 6, 131; Hare, P. E.; Gil-Av, E.; Science 1979, 204, 1226; Schurig, V.; Isr. J. Chem. 2016, 56, 890.
  • 12
    Francotte, E. R.; J. Chromatogr. A 2001, 906, 379.
  • 13
    Cagliero, C.; Sgorbini, B.; Cordero, C.; Liberto, E.; Rubiolo, P.; Bicchi, C.; Isr. J. Chem. 2016, 56, 925; Sicoli, G.; Kreidler, D.; Czesla, H.; Hopf, H.; Schurig, V.; Chirality 2009, 21, 183.
  • 14
    Ali, I.; Kumerer, K.; Aboul-Enein, Y.; Chromatographia 2006, 63, 295.
  • 15
    Scriba, G. K. E.; Chromatographia 2012, 75, 815; Scriba, G. K. E.; J. Chromatogr. A 2016, 1467, 56; Lämmerhofer, M.; J. Chromatogr. A 2010, 1217, 814; Pirkle, W. H.; Pochapsky, T. C.; Chem. Rev. 1989, 89, 347.
  • 16
    Davankov, V. A.; J. Chromatogr. A 1994, 666, 55.
  • 17
    Hyun, M. H.; J. Chromatogr. A 2016, 1467, 19; Hyun, M. H.; Bull. Korean Chem. Soc. 2005, 26, 1153.
  • 18
    Crini, G.; Morcellet, M.; J. Sep. Sci. 2002, 25, 789; Zhang, W.; Tang, Y.; Xu, J.; Sun, J.; Lang, W.; Bull. Korean Chem. Soc. 2016, 37, 877; Ilisz, I.; Berkecz, R.; Forró, E.; Fülöp, F.; Armstrong, D. W.; Péter, A.; Chirality 2009, 21, 339.
  • 19
    Breitbach, A. S.; Lim, Y.; Xu, Q.-L.; Kürti, L.; Armstrong, D. W.; Breitbach, Z. S.; J. Chromatogr. A 2016, 1427, 45.
  • 20
    Ilisz, I.; Pataj, Z.; Aranyi, A.; Péter, A.; Sep. Purif. Rev. 2012, 41, 207; Ilisz, I.; Berkecz, R.; Péter, A.; J. Chromatogr. A 2009, 1216, 1845; Ilisz, I.; Berkecz, R.; Péter, A.; J. Sep. Sci. 2006, 29, 1305.
  • 21
    Fernandes, C.; Phyo, Y. Z.; Silva, A. S.; Tiritan, M. E.; Kijjoa, A.; Pinto, M. M. M.; Sep. Purif. Rev. 2017, DOI 10.1080/15422119.2017.1326939; Fernandes, C.; Tiritan, M. E.; Pinto, M.; Chromatographia 2013, 76, 871; Ismail, O. H.; Pasti, L.; Ciogli, A.; Villani, C.; Kocergin, J.; Anderson, S.; Gasparrini, F.; Cavazzini, A.; Catani, M.; J. Chromatogr. A 2016, 1466, 96; Gasparrini, F.; Misiti, D.; Villani, C.; J. Chromatogr. A 2001, 906, 35; Welch, C. J.; J. Chromatogr. A 1994, 666, 3.
    » https://doi.org/10.1080/15422119.2017.1326939
  • 22
    Ilisz, I.; Grecsó, N.; Misicka, A.; Tymecka, D.; Lázár, L.; Lindner, W.; Péter, A.; Molecules 2015, 20, 70; Ilisz, I.; Grecsó, N.; Palkó, M.; Fülöp, F.; Lindner, W.; Péter, A.; J. Pharm. Biomed. Anal. 2014, 98, 130; Ilisz, I.; Pataj, Z.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A.; Chirality 2014, 26, 385; Péter, A.; Grecsó, N.; Tóth, G.; Fülöp, F.; Lindner, W.; Ilisz, I.; Isr. J. Chem. 2016, 56, 1042; Lämmerhofer, M.; Anal. BioAnal. Chem. 2014, 406, 6095.
  • 23
    Ilisz, I.; Aranyi, A.; Pataj, Z.; Péter, A.; J. Chromatogr. A 2012, 1269, 94.
  • 24
    Sellergren, B.; J. Chromatogr. A 2001, 906, 227; Yamamoto, C.; Okamoto, Y.; Bull. Chem. Soc. Jpn. 2004, 77, 227; Marty, J. D.; Mauzac, M.; Adv. Polym. Sci. 2005, 172, 1; Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O’Mahony, J.; Whitcombe, M. J.; J. Mol. Recognit. 2006, 19, 106; Shen, J.; Okamoto, Y.; Chem. Rev. 2016, 116, 1094; Morioka, K.; Suito, Y.; Isobe, Y.; Habaue, S.; Okamoto, Y.; J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3354.
  • 25
    Chankvetadze, B.; J. Chromatogr. A 2012, 1269, 26; Ikai, T.; Okamoto, Y.; Chem. Rev. 2009, 109, 6077.
  • 26
    Bi, C.; Zheng, X.; Azaria, S.; Beeram, S.; Li, Z.; Hage, D. S.; Separations 2016, 3, 27, DOI 10.3390/separations3030027; Sanghvi, M.; Moaddel, R.; Wainer, I. W.; J. Chromatogr. A 2011, 1218, 8791; Haginaka, J.; J. Chromatogr. B 2008, 875, 12; Millot, M. C.; J. Chromatogr. B 2003, 797, 131; Haginaka, J.; J. Chromatogr. A 2001, 906, 253.
    » https://doi.org/10.3390/separations3030027
  • 27
    Hyun, M. H.; Ryoo, J.-J.; J. Liq. Chromatogr. Relat. Technol. 1996, 19, 2635.
  • 28
    Hyun, M. H.; Chirality 2015, 27, 576.
  • 29
    Berthod, A.; Chen, X.; Kullman, J. P.; Armstrong, D. W.; Gasparrini, F.; D’Acquarica, I.; Villani, C.; Carotti, A.; Anal. Chem. 2000, 72, 1767; Péter, A.; Árki, A.; Tourwé, D.; Forró, E.; Fülöp, F.; Armstrong, D. W.; J. Chromatogr. A 2004, 1031, 159; Pataj, Z.; Berkecz, R.; Ilisz, I.; Misicka, A.; Tymecka, D.; Fülöp, F.; Armstrong, D. W.; Péter, A.; Chirality 2009, 21, 787.
  • 30
    Pirkle, W. H.; Welch, C. J.; Burke, J. A.; Lamm, B.; Anal. Proc. 1992, 29, 225; Pirkle, W. H.; Welch, C. J.; Lamm, B.; J. Org. Chem. 1992, 57, 3854; Pirkle, W. H.; Liu, Y.; J. Chromatogr. A 1996, 736, 31; ibid. 749, 19; Pirkle, W. H.; Welch, C. J.; J. Chromatogr. A 1994, 683, 347.
  • 31
    Pirkle, W. H.; Welch, C. J.; Hyun, M. H.; J. Org. Chem. 1983, 48, 5022; Pirkle, W. H.; Welch, C. J.; J. Org. Chem. 1984, 49, 138; Pirkle, W. H.; Welch, C. J.; Mahler, G. S.; J. Org. Chem. 1984, 49, 2504.
  • 32
    Ilisz, I.; Grecsó, N.; Aranyi, A.; Suchotin, P.; Tymecka, D.; Wilenska, B.; Misicka, A.; Fülöp, F.; Lindner, W.; Péter, A.; J. Chromatogr. A 2014, 1334, 44.
  • 33
    Chen, X.; Yamamoto, C.; Okamoto, Y.; Pure Appl. Chem. 2007, 79, 1561; Chankvetadze, B. In Chiral Separations: Methods and Protocols, Methods in Molecular Biology, vol. 970; Scriba, G. K. E., ed.; Springer Science+Business Media: Heidelberg, Germany, 2013, p. 81.
  • 34
    Rogozhin, S. V.; Davankov, V. A.; Chem. Commun. 1971, 490; Davankov, V. A.; Bochkov, A. S.; Kurganov, A. A.; Roumeliotis, P.; Unger, K. K.; Chromatographia 1980, 13, 677; Yamskov, I. A.; Berezin, B. B.; Davankov, V. A.; Zolotarev, Y. A.; Dostavalov, I. N.; Myasoedov, N. F.; J. Chromatogr. 1981, 217, 539; Gübitz, G.; Juffmann, F.; Jellenz, W.; Chromatographia 1982, 16, 103; Brückner, H.; Chromatographia 1987, 24, 725; Veigl, E.; Lindner, W.; J. Chromatogr. A 1994, 660, 255; Grobuschek, N.; Schmid, M. G.; Tuscher, C.; Ivanova, M.; Gübitz, G.; J. Pharm. Biomed. Anal. 2002, 27, 599.
  • 35
    Hesse, G.; Hagel, R.; Chromatographia 1973, 6, 277.
  • 36
    Stewart, K. K.; Doherty, R. F.; Proc. Natl. Acad. Sci. U. S. A. 1973, 70, 2850.
  • 37
    Blaschke, G.; Chem. Ber. 1974, 107, 237.
  • 38
    Dotsevi, G.; Sogah, Y.; Cram, D. J.; J. Am. Chem. Soc. 1975, 97, 1259; Sousa, L. R.; Sogah, G. D. Y.; Hoffman, D. H.; Cram, D. J.; J. Am. Chem. Soc. 1978, 100, 4569; Sogah, G. D. Y.; Cram, D. J.; J. Am. Chem. Soc. 1979, 101, 3035; Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J.; J. Chromatogr. A 2001, 910, 359; Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J.; J. Chromatogr. A 2002, 959, 75; Hyun, M. H.; Tan, G.; Cho, Y. J.; Biomed. Chromatogr. 2005, 19, 208.
  • 39
    Mikeš, F.; Boshart, G.; Gil-Av, E.; J. Chromatogr. 1976, 122, 205.
  • 40
    Pirkle, W. H.; House, D. W.; J. Org. Chem. 1979, 44, 1957; Pirkle, W. H.; House, D. W.; Finn, J. M.; J. Chromatogr. 1980, 192, 143.
  • 41
    Pirkle, W. H.; Finn, J. M.; J. Org. Chem. 1981, 46, 2935; Pirkle, W. H.; Schreiner, J. L.; J. Org. Chem. 1981, 46, 4988; Pirkle, W. H.; Finn, J. M.; Schreiner, J. L.; Hamper, B. C.; J. Am. Chem. Soc. 1981, 103, 3964.
  • 42
    Hermansson, J.; J. Chromatogr. 1984, 298, 67.
  • 43
    Okamoto, Y.; Kawashima, M.; Hatada, K.; J. Am. Chem. Soc. 1984, 106, 5357; Okamoto, Y.; Kawashima, M.; Yamamoto, K.; Hatada, K.; Chem. Lett. 1984, 739; Okamoto, Y.; Kawashima, M.; Hatada, K.; J. Chromatogr. 1986, 363, 173; Ichida, A.; Shibata, T.; Okamoto, Y.; Yuki, Y.; Namikoshi, H.; Toga, Y.; Chromatographia 1984, 19, 280; Shibata, T.; Okamoto, Y.; Ishii, K.; J. Liq. Chromatogr. 1986, 9, 313; Okamoto, Y.; Yashima, E.; Angew. Chem., Int. Ed. 1998, 37, 1020; Kubota, T.; Yamamoto, C.; Okamoto, Y.; J. Am. Chem. Soc. 2000, 122, 4056.
  • 44
    Allenmark, S.; Bomgren, B.; Borén, H.; J. Chromatogr. 1984, 617.
  • 45
    Armstrong, D. W.; Ward, T. J.; Armstrong, R. D.; Beesly, T. E.; Science 1986, 232, 1132.
  • 46
    Pirkle, W. H.; Lee, W.; Bull. Korean Chem. Soc. 1998, 19, 1277; Pirkle, W. H.; Welch, C. J.; Tetrahedron: Asymmetry 1994, 5, 777; Pirkle, W. H.; Spence, P. L.; Chirality 1998, 10, 430; Pirkle, W. H.; Spence, P. L.; J. Chromatogr. A 1997, 775, 81; Yu, J. J.; Hyun, M. H.; Armstrong, D. W.; Breitbach, Z. S.; Ryoo, J. J.; Bull. Korean Chem. Soc. 2015, 36, 723.
  • 47
    Armstrong, D. W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J.-R.; Anal. Chem. 1994, 66, 1473; Berthod, A.; Chirality 2009, 21, 167; Péter, A.; Árki, A.;Vékes, E.; Tourwé, D.; Lázár, L.; Fülöp, F.; Armstrong, D. W.; J. Chromatogr. A 2004, 1031, 171; Pataj, Z.; Ilisz, I.; Berkecz, R.; Misicka, A.; Tymecka, D.; Fülöp, F.; Armstrong, D. W.; Péter, A.; J. Sep. Sci. 2008, 31, 3688; D’Acquarica, I.; Gasparrini, F.; Misiti, D.; Zappia, G.; Cimarelli, C.; Palmieri, G.; Carotti, A.; Cellamare, S.; Villani, C.; Tetrahedron: Asymmetry 2000, 11, 2375; Ilisz, I.; Grecsó, N.; Forró, E.; Fülöp, F.; Armstrong, D. W.; Péter, A.; J. Pharm. Biomed. Anal. 2015, 114, 312.
  • 48
    Lämmerhofer, M.; Lindner, W.; J. Chromatogr. A 1996, 741, 33.
  • 49
    Francotte, E.; WO1996027615 A1 1996
  • 50
    Machida, Y.; Nishi, H.; Nakamura, K.; Nakai, H.; Sato, T.; J. Chromatogr. A 1998, 805, 85; Hyun, M. H.; Jin, J. S.; Lee, W.; J. Chromatogr. A 1998, 822, 155; Park, J. Y.; Jin, K. B.; Hyun, M. H.; Chirality 2012, 24, 427; Jin, K. B.; Kim, H. E.; Hyun, M. H.; Chirality 2014, 26, 272; Ahn, S. A.; Hyun, M. H.; Chirality 2015, 27, 268; Hyun, M. H.; Kim, D. H.; Chirality 2004, 16, 294; Hyun, M. H.; Cho, Y. J.; Kim, J. A.; Jin, J. S.; J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1083; Hyun, M. H.; Song, Y.; Choo, Y. J.; Choi, H. J.; Chirality 2008, 20, 325; Hyun, M. H.; Song, Y.; Choo, Y. J.; Choi, H. J.; J. Sep. Sci. 2007, 30, 2539; Berkecz, R.; Ilisz, I.; Misicka, A.; Tymecka, D.; Fülöp, F.; Choi, H. J.; Hyun, M. H.; Péter, A.; J. Sep. Sci. 2009, 32, 981; Ilisz, I.; Pataj, Z.; Berkecz, R.; Misicka, A.; Tymecka, D.; Fülöp, F.; Choi, H. J.; Hyun, M. H.; Péter, A.; J. Chromatogr. A 2010, 1217, 1075.
  • 51
    Hoffmann, C. V.; Pell, R.; Lämmerhofer, M.; Lindner, W.; Anal. Chem. 2008, 80, 8780; Keunchkarian, S.; Osorio Grisales, J.; Padró, J. M.; Boeris, S.; Castells, C. B.; Chirality 2012, 24, 512; Sardella, R.; Lämmerhofer, M.; Natalini, B.; Lindner, W.; Chirality 2008, 20, 571.
  • 52
    Sun, P.; Wang, C.; Breitbach, Z. S.; Zhang, Y.; Armstrong, D. W.; Anal. Chem. 2009, 81, 10215.
  • 53
    Cf. Vogel, P.; Lam, Y.-H.; Simon, A.; Houk, K. N.; Catalysis 2016, 6, 128, doi:10.3390/catal6090128.
  • 54
    Cf. de Figuereido, R. M.; Christmann, M.; Eur. J. Org. Chem. 2007, 2575; Ostwald, W.; Z. Phys. Chem. 1900, 32, 509.
  • 55
    Hajos, Z. G.; Parrish, D. R.; J. Org. Chem. 1974, 39, 1615; Eder, U.; Sauer, G.; Wiechert, R.; Angew. Chem., Int. Ed. Engl. 1971, 10, 496.
  • 56
    List, B.; Lerner, R. A.; Barbas III, C. F.; J. Am. Chem. Soc. 2000, 122, 2395.
  • 57
    List, B.; Tetrahedron 2002, 58, 5573.
  • 58
    Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E.; J. Am. Chem. Soc. 2005, 127, 11256; Ting, A.; Lou, S.; Schaus, S. E.; Org. Lett. 2006, 8, 2003; Saaby, S.; Bella, M.; Jørgensen, K. A.; J. Am. Chem. Soc. 2004, 126, 8120.
  • 59
    Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y.; Córdova, A.; Chem. Eur. J. 2005, 11, 7024; List, B.; Synlett 2001, 1675; Notz, W.; Tanaka, F.; Watanabe, S.-I.; Chowdari, N. S.; Turner, J. M.; Thayumanavan, R.; Barbas III, C. F.; J. Org. Chem. 2003, 68, 9624; Dziedzic, P.; Córdova, A.; Tetrahedron: Asymmetry 2007, 18, 1033.
  • 60
    Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C.; Angew. Chem., Int. Ed. 2004, 43, 6722.
  • 61
    Lei, M.; Shi, L.; Li, G.; Chen, S.; Fang, W.; Ge, Z.; Cheng, T.; Li, R.; Tetrahedron 2007, 63, 7892; Shi, L.-X.; Sun, Q.; Ge, Z.-M.; Zhu, Y.-Q.; Cheng, T.-M.; Li, R.-T.; Synlett 2004, 2215; Chen, F.; Huang, S.; Zhang, H.; Liu, F.; Peng, Y.; Tetrahedron 2008, 64, 9585; Chandrasekhar, S.; Johny, K.; Reddy, C. R.; Tetrahedron: Asymmetry 2009, 20, 1742.
  • 62
    Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C. F.; J. Am. Chem. Soc. 2006, 128, 4966; Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C. F.; J. Am. Chem. Soc. 2006, 128, 734; Wang, W.; Li, H.; Wang, J.; Tetrahedron Lett. 2005, 46, 5077; Wang, W.; Wang, J.; Li, H.; Angew. Chem., Int. Ed. 2005, 44, 1369; Wang, J.; Li, H.; Zu, L.; Wang, W.; Adv. Synth. Catal. 2006, 348, 425; Zhuang, W.; Saaby, S.; Jørgensen, K. A.; Angew. Chem., Int. Ed. 2004, 43, 4476.
  • 63
    Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A.; J. Am. Chem. Soc. 2005, 127, 18296.
  • 64
    Alza, E.; Sayalero, S.; Kasaplar, P.; Almaşi, D.; Pericàs, M. A.; Chem. Eur. J. 2011, 17, 11585.
  • 65
    Maltsev, O. V.; Kucherenko, A. S.; Beletskaya, I. P.; Tartakovsky, V. A.; Zlotin, S. G.; Eur. J. Org. Chem. 2010, 2927.
  • 66
    Ni, B.; Zhang, Q.; Dhungana, K.; Headley, A. D.; Org. Lett. 2009, 11, 1037.
  • 67
    Xu, D.; Luo, S.; Yue, H.; Wang, L.; Liu, Y.; Xu, Z.; Synlett 2006, 2569.
  • 68
    Luo, S.; Li, J.; Zhang, L.; Xu, H.; Cheng, J.-P.; Chem. Eur. J. 2008, 14, 1273.
  • 69
    Yan, J.; Wang, L.; Synthesis 2008, 2065.
  • 70
    Gruttadauria, M.; Salvo, A. M. P.; Giacalone, F.; Agrigento, P.; Noto, R.; Eur. J. Org. Chem. 2009, 5437.
  • 71
    See, for instance: Holland, M. C.; Gilmour, R.; Angew. Chem., Int. Ed. 2015, 54, 3862; Vilaivan, T.; Bhanthumnavin, W.; Molecules 2010, 15, 917; Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L.; Rutjes, F. P. J.; Chem. Soc. Rev. 2008, 37, 29; Takemoto, Y.; Stadler, M. In Comprehensive Chirality, vol. 6; Maruoka, K., ed.; Elsevier: Oxford, United Kingdom, 2012, p. 37; Raj, M.; Singh, V. K.; Chem. Commun. 2009, 6687.
  • 72
    For example, various studies on the catalytic mechanism displayed by the Jørgensen-Hayashi organocatalyst in asymmetric Michael additions have been compiled: Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y.; Helv. Chim. Acta 2011, 94, 719; Burés, J.; Armstrong, A.; Blackmond, D. G.; J. Am. Chem. Soc. 2011, 133, 8822; Burés, J.; Armstrong, A.; Blackmond, D. G.; J. Am. Chem. Soc. 2012, 134, 6741; Burés, J.; Armstrong, A.; Blackmond, D. G.; Acc. Chem. Res. 2016, 49, 214; Sahoo, G.; Rahaman, H.; Madarász, Á.; Pápai, I.; Melarto, M.; Valkonen, A.; Pihko, P. M.; Angew. Chem., Int. Ed. 2012, 51, 13144; Seebach, D.; Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K.; Helv. Chim. Acta 2012, 95, 1064; Seebach, D.; Sun, X.; Ebert, M.-O.; Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M.; Helv. Chim. Acta 2013, 96, 799; Haindl, M. H.; Schmid, M. B.; Zeitler, K.; Gschwind, R. M.; RSC Adv. 2012, 2, 5941.
  • 73
    Alemán, J.; Cabrera, S.; Chem. Soc. Rev. 2013, 42, 774; Sun, B. F.; Tetrahedron Lett. 2015, 56, 2133; Ishikawa, H.; Shiomi, S.; Org. Biomol. Chem. 2016, 14, 409; dos Santos, D. A.; Deobald, A. M.; Cornelio, V. E.; Ávila, R. M. D.;Cornea, R. C.; Bernasconi, G. C. R.; Paixão, M. W.; Vieira, P. C.; Corrêa, A. G.; Bioorg. Med. Chem. 2017, 25, 4620; Deobald, A. M.; Corrêa, A. G.; Rivera, D. G.; Paixão, M. W.; Org. Biomol. Chem. 2012, 10, 7681.
  • 74
    Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H.; Org. Lett. 2010, 12, 776.
  • 75
    Melgar-Fernández, R.; González-Olvera, R.; Olivares-Romero, J. L.; González-López, V.; Romero-Ponce, L.; Ramírez-Zárate, M.; Demare, P.; Regla, I.; Juaristi, E.; Eur. J. Org. Chem. 2008, 655.
  • 76
    González-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E.; Arkivoc 2008, VI, 61.
  • 77
    Ávila-Ortiz, C. G.; López-Ortiz, M.; Vega-Peñaloza, A.; Regla, I.; Juaristi, E.; Asymmetric Catal. 2015, 2, 37.
  • 78
    Bowmaker, G. A.; Chem. Commun. 2013, 49, 334; James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.;Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C.; Chem. Soc. Rev. 2012, 41, 413; Takacs, L.; Chem. Soc. Rev. 2013, 42, 7649.
  • 79
    Šepelák, V.; Düvel, A.; Wilkening, M.; Becker, K.-D.; Heitjans, P.; Chem. Soc. Rev. 2013, 42, 7507; Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.; Streletskii, A.; Wieczorek-Ciurowa, K.; Chem. Soc. Rev. 2013, 42, 7571.
  • 80
    Lazuen Garay, A.; Pichon, A.; James, S. L.; Chem. Soc. Rev. 2007, 36, 846.
  • 81
    Ralphs, K.; Hardacre, C.; James, S. L.; Chem. Soc. Rev. 2013, 42, 7701.
  • 82
    Friščić, T.; J. Mater. Chem. 2010, 20, 7599.
  • 83
    Braga, D.; Maini, L.; Grepioni, F.; Chem. Soc. Rev. 2013, 42, 7638; Friščić, T.; Jones, W.; Cryst. Growth Des. 2009, 9, 1621.
  • 84
    Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J.; Chem. Commun. 2016, 52, 640; Jones, W.; Eddlestone, M. D.; Faraday Discuss. 2014, 170, 9.
  • 85
    Wang, G.-W.; Chem. Soc. Rev. 2013, 42, 7668; Sarkar, A.; Santra, S.; Kundu, S. K.; Hajra, A.; Zyryanov, G. V.; Chupakhin, O. N.; Charushin, V. N.; Majee, A.; Green Chem. 2016, 18, 4475; Brahmachari, G.; RSC Adv. 2016, 6, 64676.
  • 86
    For a complete monograph about Mechanochemistry in organic synthesis, see: Margetic, D.; Štrukil, V.; Mechanochemical Organic Synthesis; Elsevier: Amsterdam, Netherlands, 2016.
  • 87
    Hernández, J. G.; Juaristi, E.; J. Org. Chem. 2010, 75, 7107; Štrukil, V.; Bartolec, B.; Portada, T.; Ðilović, I.; Halasz, I.; Margetić, D.; Chem. Commun. 2012, 48, 12100; Landeros, J. M.; Juaristi, E.; Eur. J. Org. Chem. 2017, 687.
  • 88
    Konnert, L.; Gonnet, L.; Halasz, I.; Suppo, J.-S.; de Figueiredo, R. M.; Campagne, J.-M.; Lamaty, F.; Martinez, J.; Colacino, E.; J. Org. Chem. 2016, 81, 9802.
  • 89
    Ranu, B. C.; Chatterjee, T.; Mukherjee, N. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, RSC Green Chemistry, No. 31; Ranu, B.; Stolle, A., eds.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2015, ch. 1, p. 1.
  • 90
    Polindara-García, L. A.; Juaristi, E.; Eur. J. Org. Chem. 2016, 1095.
  • 91
    Hernández, J. G.; Friščić, T.; Tetrahedron Lett. 2015, 56, 4253.
  • 92
    Machuca, E.; Juaristi, E. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, RSC Green Chemistry, No. 31; Ranu, B.; Stolle, A., eds.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2015, ch. 4, p. 81.
  • 93
    Rodríguez, B.; Rantanen, T.; Bolm, C.; Angew. Chem., Int. Ed. 2006, 45, 6924; Rodríguez, B.; Bruckmann, A.; Bolm, C.; Chem. Eur. J. 2007, 13, 4710; Jörres, M.; Mersmann, S.; Raabe, G.; Bolm, C.; Green Chem. 2013, 15, 612.
  • 94
    Guillena, G.; Hita, M. C.; Nájera, C.; Viózquez, S. F.; Tetrahedron: Asymmetry 2007, 18, 2300; Guillena, G.; Hita, M. C.; Nájera, C.; Viózquez, S. F.; J. Org. Chem. 2008, 73, 5933.
  • 95
    Hernández, J. G.; Juaristi, E.; J. Org. Chem. 2011, 76, 1464.
  • 96
    Hernández, J. G.; García-López, V.; Juaristi, E.; Tetrahedron 2012, 68, 92.
  • 97
    Hernández, J. G.; Juaristi, E.; Tetrahedron 2011, 67, 6953.
  • 98
    Machuca, E.; Rojas, Y.; Juaristi, E.; Asian J. Org. Chem. 2015, 4, 46.
  • 99
    Machuca, E.; Granados, G.; Hinojosa, B.; Juaristi, E.; Tetrahedron Lett. 2015, 56, 6047.
  • 100
    Lisnyak, V. G.; Kucherenko, A. S.; Valeev, E. F.; Zlotin, S. G.; J. Org. Chem. 2015, 80, 9570.
  • 101
    Wan, W.; Gao, W.; Ma, G.; Ma, L.; Wang, F.; Wang, J.; Jiang, H.; Zhu, S.; Hao, J.; RSC Adv. 2014, 4, 26563.
  • 102
    Hu, X.-M.; Zhang, D.-X.; Zhang, S.-Y.; Wang, P.-A.; RSC Adv. 2015, 5, 39557.
  • 103
    Yadav, G. D.; Singh, S.; RSC Adv. 2016, 6, 100459.
  • 104
    Triandafillidi, I.; Bisticha, A.; Voutyritsa, E.; Galiatsatou, G.; Kokotos, C. G.; Tetrahedron 2015, 71, 932.
  • 105
    Pedotti, S.; Patti, A.; J. Sep. Sci. 2014, 37, 3451.
  • 106
    Gandhi, S.; Singh, V. K.; J. Org. Chem. 2008, 73, 9411.
  • 107
    Hernández, J. G.; Juaristi, E.; Chem. Commun. 2012, 48, 5396; Hernández, J. G.; Juaristi, E.; Educ. Chim. 2013, 24, 96; Hernández, J. G.; Ávila-Ortiz, C. G.; Juaristi, E. In Comprehensive Organic Synthesis II, vol. 9, 2nd ed.; Knochel, P.; Molander, G. A., eds.; Elsevier: Amsterdam, Netherlands, 2014, p. 287.
  • 108
    Wells, M. J. M. In Chemical Analysis: Sample Preparation Techniques in Analytical Chemistry, vol. 162; Winefordner, J. D.; Mitra, S., eds.; John Wiley & Sons, Inc.: Hoboken United States, 2003, ch. 2, p. 37.
  • 109
    Żwir-Ferenc, A.; Biziuk, M.; Pol. J. Environ. Stud. 2006, 15, 677.
  • 110
    Taygerly, J. P.; Miller, L. M.; Yee, A.; Peterson, E. A.; Green Chem. 2012, 14, 3020; Mack, J. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, RSC Green Chemistry, No. 31; Ranu, B.; Stolle, A., eds.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2015, ch. 8, p. 190.
  • 111
    Kokotos, C. G.; Limnios, D.; Triggidou, D.; Trifonidou, M.; Kokotos, G.; Org. Biomol. Chem. 2011, 9, 3386; Kaplaneris, N.; Koutoulogenis, G.; Raftopoulou, M.; Kokotos, C. G.; J. Org. Chem. 2015, 80, 5464.
  • 112
    Vega-Peñaloza, A.; Sánchez-Antonio, O.; Ávila-Ortiz, C. G.; Escudero-Casao, M.; Juaristi, E.; Asian J. Org. Chem. 2014, 3, 487.
  • 113
    Pearson, R. G.; J. Am. Chem. Soc. 1963, 85, 3533.
  • 114
    Attanasi, O. A.; Bartoccini, S.; Favi, G.; Giorgi, G.; Perrulli, F. R.; Santeusanio, S.; J. Org. Chem. 2012, 77, 1161.
  • 115
    Braun, M.; Angew. Chem., Int. Ed. 2012, 51, 2550.
  • 116
    Vargas-Caporali, J.; Juaristi, E.; Synthesis 2016, 48, 3890; Vargas-Caporali, J.; Cruz-Hernández, C.; Juaristi, E.; Heterocycles 2012, 86, 1275.
  • 117
    Olivares-Romero, J.; Juaristi, E.; Tetrahedron 2008, 64, 9992.
  • 118
    Reyes-Rangel, G.; Vargas-Caporali, J.; Juaristi, E.; Tetrahedron 2016, 72, 379.
  • 119
    Jung, M. E.; Piizzi, G.; Chem. Rev. 2005, 105, 1735.
  • 120
    Zhu, S.; Yu, S.; Ma, D.; Angew. Chem., Int. Ed. 2008, 47, 545; Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas III, C. F.; Org. Lett. 2004, 6, 2527.
  • 121
    Zhang, X.-J.; Liu, S.-P.; Lao, J.-H.; Du, G.-J.; Yan, M.; Chan, A. S. C.; Tetrahedron: Asymmetry 2009, 20, 1451.
  • 122
    He, T.; Gu, Q.; Wu, X.-Y.; Tetrahedron 2010, 66, 3195.
  • 123
    Bringmann, G.; Gulder, T. A. M.; Reichert, M.; Gulder, T.; Chirality 2008, 20, 628.

Publication Dates

  • Publication in this collection
    May 2018

History

  • Received
    21 Sept 2017
  • Accepted
    27 Nov 2017
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br