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The use of insects to identify drugs in a cadaver has often been explored in the field of 
entomotoxicology. There are accurate methods; however, they require a high cost and are very 
time-consuming. The objective of this study was to develop two methods based on differential 
pulse voltammetry (DPV) and fluorescence excitation-emission matrix (EEM) spectroscopy to 
classify necrophagous larvae (Chrysomya megacephala, C. albiceps, Lucilia sp. and Cochliomyia 
macellaria) containing flunitrazepam. The voltammograms of larval extract samples were analyzed 
by principal component analysis (PCA), successive projection algorithm (SPA) and genetic 
algorithm (GA): linear and quadratic discriminant analysis (LDA and QDA). The EEM fluorescence 
data from larval extract samples were analyzed by 2D and parallel factor analysis (PARAFAC) 
with LDA. These results suggest that DPV and EEM combined with chemometrics can be used 
as tools for the classification of flunitrazepam in fly larvae presenting innovative applications.

Keywords: differential pulse voltammetry, fluorescence spectroscopy, flunitrazepam, 
entomotoxicology, necrophagous larvae

Introduction

Forensic entomology is the science that investigates 
traces of insects and other arthropods for criminal, legal 
or civil investigative purposes.1 It is often requested for 
estimation of minimum postmortem interval.2,3 However, 
recent techniques have allowed the collection of robust 
entomological evidence to resolve questions about the 
corpse movement, submersion interval, decapitation or 
dismemberment time, identification of specific traumas 
and artifacts postmortem cells.4,5 More recently, the 
identification of drug of abuse or other chemicals important 
to the crime scene was achieved in insects, which gave rise 
to a new research field, Entomotoxicology.6,7 Flunitrazepam 

has been reported as the rape date drug. Its illicit 
consumption added to alcoholic beverages strengthens its 
sedative effects, favoring the action of criminals, in which 
the victims become defenseless due to the loss of muscular 
control and loss of consciousness, being vulnerable to 
assaults and rape. Illicit use of flunitrazepam is also 
common in nightclubs, in which youngsters and adults use 
the drug individually or in combination with other drugs 
such as cocaine and heroin.

In skeletons or bodies in an advanced stage of 
decomposition, biological materials such as blood, urine 
or internal organs may not be available. Considering the 
necrobiontophagous nature of some Diptera larvae, when 
feeding of tissue of the corpses of intoxicated humans, they 
introduce in their own metabolism toxins or drugs used by the 
individuals when in life. Thus, by receiving target substances 
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from the human organism, some insects, especially fly larvae, 
can serve as an alternative for toxicological analysis.8

In addition to the identification of drugs and toxins 
in corpses and the development of immature insects, 
entomotoxicology may be useful in investigating the effects 
of such substances on the development of arthropods in 
order to assist in a more precise postmortem estimation, 
since the presence of certain chemical substances may 
influence the decay process of a cadaver. The increase in 
the number of drug-related deaths, especially by abuse 
of heroin and cocaine or deaths connected to accidental 
or suicidal consumption of poisons or toxic substances, 
justifies the substantial interest in forensic entomology, 
especially entomotoxicology.9

Insects and other arthropods can be analyzed by standard 
toxicological procedures, such as radioimmunoassay, 
gas chromatography, thin-layer chromatography, high 
performance liquid chromatography (HPLC), and gas 
chromatography-mass spectrometry.1,8,10 However, forensic 
toxicology analysis requires simpler and faster methods 
for the screening of chemical substances that aid in the 
elucidation of crimes,10 for example, using attenuated 
total reflectance Fourier transform infrared (ATR-FTIR) 
spectroscopy11 or near infrared spectroscopy.12

Electrochemical techniques are powerful and versatile 
analytical tools that offer high sensitivity, precision, with 
a large linear dynamic range and low-cost instrumentation. 
The development of more sensitive electrochemical 
techniques allows its application in the detection of 
chemical substances such as drugs, both in its crude form 
and added to biological samples.13 Voltammetric techniques 
are examples of electrochemical methodologies used in the 
identification and dosage of pharmaceutical compounds in 
various forms (tablets, capsules, injections, suspensions) 
as well as in biological samples.13-23

Voltammetric measurements are simple and easily 
performed.13 In this sense, the present report proposes a 
simple, low cost and high precision electrochemical method 
to detect the presence of flunitrazepam in necrophagous larvae 
using differential pulse voltammetry (DPV). Voltammograms 
were submitted to multivariate classification analysis, linear 
discriminant analysis (LDA) and quadratic discriminant 
analysis (QDA), aided by data dimensionality reduction 
algorithms: principal component analysis (PCA), successive 
projections algorithm (SPA) and genetic algorithm (GA). The 
proposed combination of voltammetry and chemometrics 
was evaluated in the identification of necrophagous larvae 
containing flunitrazepam.

Several groups have applied fluorescence spectroscopy 
to identify spectral characteristics that correspond to the 
presence of target analytes in complex mixtures. The 

main focus of these approaches is to identify drug abuse 
such as flunitrazepam in fly larvae that have fed on a 
decomposing victim of a crime, the so-called “rape date”, 
where it is possible to compare specimens with and without 
flunitrazepam through an analysis of their spectral profiles. 
In this context, the application of multivariate analysis is 
considered a powerful tool to improve classification or 
quantification analysis. For example, fluorescence excitation-
emission matrix (EEM) has been used in oil samples to 
monitor the content of polycyclic aromatic compounds,24 
developing a method to facilitate discrimination of diesel 
fuel with rebate tax from oil that is illegally processed 
by the sorption process.25 It has also been used the EEM 
fluorescence combined with parallel factorial analysis 
(PARAFAC) to develop a quantitative method for analyzing 
simulated amphetamine-type illegal drugs.26 Satisfactory 
results were found for the simultaneous determination of 
methamphetamine and 3,4-ethylenedioxymethamphetamine 
in the presence of the drug.

This paper reports a method using DPV and fluorescence 
spectroscopy combined with multivariate analysis to 
discriminate control and flunitrazepam contamination 
in larvae of necrophagous flies. EEM data classification 
was performed using unfolded LDA,27 QDA27 and support 
vector machines (SVM).28 These methodologies were 
compared with three-way EEM data using 2D algorithms, 
including parallel factor analysis with linear discriminant 
analysis (PARAFAC-LDA)29 and two-dimensional linear 
discriminant analysis (2D-LDA).30

Experimental

Animals used in the experiment

The experiments were performed with 32 Wistar 
rats (Rattus norvegicus) having an average weight 
of 255 ± 30 g (Ethics Committee Approval Protocol 
044/2013). The rats with age of 60 ± 5 days used at the 
beginning of the experiment from the vivarium of the 
Department of Biophysics and Pharmacology of the Federal 
University of Rio Grande do Norte were accommodate 
(4 animals per cage) in nursery cages with free access to 
water (or ethanol solutions) and food (Purina®, Labina). 
The rats were divided into four groups with 8 rats each, 
where each group received different treatment: (i) ethanol, in 
which ethyl alcohol (Alcoolabor®, Segmenta) was used in 
increasing concentrations of 2% (3 days), 4% (3 days), 6% 
(15 days) totaling a period of 21 days;31 (ii) flunitrazepam, 
dosage of 2 mg kg-1 orally;32 (iii) conjugated (ethanol plus 
flunitrazepam), ethyl alcohol (Alcoolabor®, Segmenta) 
was used in increasing concentrations of 2% (3 days), 
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4% (3 days), 6% (15 days) totaling a period of 21 days31 
and received doses of 2 mg kg-1 flunitrazepam orally;32 
(iv) control, received only water ad libitum. After one hour 
of administration of flunitrazepam, the rats were euthanized 
by guillotine decapitation and each rat was placed in 
individualized plastic bags. Animals belonging to the four 
treatments were transported separately.

In the field, the smell traps containing the rats were 
distributed on an 8 grid (grid distance of approximately 
50 m and at 1.50 m high from the ground) along one of the 
trails in the 7th Combat Engineering Battalion (The Brazilian 
Army), an Atlantic forest area located in the city of Natal, 
Brazil. Each grid contained one rat of each treatment 
(control, ethanol, flunitrazepam, and conjugate) distant 
5 m apart. Traps remained in the field for five consecutive 
days. On the third and fourth days, 10 immatures were 
collected (resulting from oviposition, prioritizing the 
largest larvae, representing the first generations that arrived 
in the carcass) of each trap. The larvae were placed in a 
glass vial containing glycerin and sent to the laboratory for 
identification and chemical analysis.

A set of 3 larvae was added to 2 mL of dimethyl 
sulfoxide (DMSO), then triturated, homogenized and 
centrifuged. The supernatant solution was stored in a 
cryotube and then sent for analysis. Two groups were 
formed for classification, (i) control plus ethanol, larvae 
collected in carcasses of the control and ethanol groups; 
(ii) flunitrazepam, larvae collected on flunitrazepam and 
conjugate groups. In total, 40 samples (20 control and 
20 containing flunitrazepam) were directed to DPV and 
fluorescence EEM analysis.

The analyzes were performed with larvae of 
Chrysomya megacephala, C. albiceps, Lucilia sp. and 
Cochliomyia macellaria from the 3rd instar, with specimens 
of each species in both control and flunitrazepam groups.

Electrochemical analysis

Differential pulse voltammograms
All DPV measurements were performed by a portable 

bipotentiostat/galvanostat µStat 400 (DropSens, Spain), 
controlled by DropView software, and carried out in 
0.1 mol L-1 phosphate buffer at pH = 7, from +1.0 to –1.0 V, 
scan rate of 15 mV s-1, pulse time of 50 ms and pulse amplitude 
of 100 mV. The three-electrode system was composed by an 
Ag/AgCl reference electrode, a graphite lead as the auxiliary 
electrode, and a carbon nanotubes paste electrode as the 
working electrode. The following composition was used 
in the preparation of the working electrode: 55% m/m of 
multiwall carbon nanotubes (Sigma-Aldrich) and 45% m/m 
of mineral oil (Specsol). The electrode was assembled by 

compacting the carbon nanotubes paste at the tip of a 1 mL 
plastic syringe. The internal electric contact was made by a 
cleaned copper wire, which also acts as a plunger for paste 
extrusion. Renewal of the electrode surface was achieved by 
paste extrusion and smoothing onto a sulfite paper before 
each new measurement. All voltammograms were obtained 
in triplicate.

Computational analysis
All voltammetric data was processed using MATLAB® 

R2014 software33 with PLS Toolbox version 7.9.3.34 Raw 
voltammograms were pre-processed by cutting between 
–0.2 and +0.9 V, and applying Savitzky-Golay first derivative 
(window 15 points). Dataset comprising 80 voltammograms 
was divided into training (n = 52), validation (n = 14) and test 
(n = 14) sets using the Kennard-Stone (KS) sample selection 
algorithm.35 The KS algorithm was applied separately to each 
class to extract a representative set of objects from a given 
class by maximizing the minimal Euclidean distance between 
the selected and the remaining objects. The training samples 
were used in the modeling procedure, whereas the test set 
was only used in the final evaluation of the classification. 
The optimum number of variables for SPA-LDA, SPA-QDA, 
GA-LDA, and GA-QDA was based on the average risk G 
of LDA/QDA misclassification. Such a cost function is 
calculated in the validation set as:

 (1)

where NV is the number of validation samples, and gn (risk 
of an incorrect classification of the object xn of the nth 
validation sample) is defined as

 (2)

where I(n) is the index of the true class for the nth validation 
object xn, mI(n) the samples mean of their true class, mI(m) 
the samples mean of the closest wrong class, and r2 is the 
square of the Mahalanobis distance between the object xn 
and the mean of its class (ml(n)).

Sensitivity (SENS, the confidence that a positive result 
for a sample of the label class is obtained), specificity (SPEC, 
the confidence that a negative result for a sample of non-label 
class is obtained), positive predictive value (PPV, measures 
the proportion of correctly assigned positive examples), 
negative predictive value (NPV, measures the proportion 
of correctly assigned negative examples), Youden’s index 
(YOU, evaluates the classifier’s ability to avoid failure), and 
the likelihood ratios LR(+) (the ratio between the probability 
to predict an example as positive when it is truly positive, 
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and the probability to predict an example as positive when 
it is actually not positive) and LR(–) (the ratio between the 
probabilities to predict an example as negative when it is 
actually positive, and the probability to predict an example 
as negative when it is truly negative) were calculated as 
important quality parameters in test evaluation.

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

FN is defined as false negative, FP as false positive, TP 
as true positive and TN as true negative.

Fluorescence spectroscopy

Emission excitation matrix
This procedure was performed for obtaining the 

individual EEM of control and contaminated with 
flunitrazepam classes. The sample spectra were acquired 
with an RF-5301 Shimadzu spectrofluorometer using 
a 0.5 mm quartz cuvette. The excitation and emission 
monochromator slit widths were fixed at 1.5 and 3 nm, 
respectively. The samples were added to a cuvette with a 
100 µL micropipette. The cuvette was cleaned by ultra-pure 
water after each measurement. The temperature was kept 
at 25 °C throughout the experiments. For larval extract 
samples, the spectral surfaces of emission/excitation 
were obtained in the excitation range from 280 to 390 nm 
(10 nm steps) and in the emission range from 350 to 900 nm 
(1 nm steps). This protocol resulted in a data matrix size 
of 9 × 322 variables for each sample.

Computational analysis
All EEM data was processed using MATLAB® R2014 

software33 with PLS Toolbox version 7.9.3,34 EEMscat 

algorithm36 and lab-made routines. The data was firstly 
pre-processed by removing Rayleigh and Raman scatterings 
using EEMscat algorithm and then mean centered before 
chemometric analysis.

The samples were divided into training (n = 20), validation 
(n = 10) and test (n = 10) sets using the KS sample selection 
algorithm.35 The training set was composed of 10 samples 
of class 1 (control) and 10 samples of class 2 (drugged with 
flunitrazepam); both validation and test sets had 5 samples 
of class 1 and 5 samples of class 2. For classification, the 
data were initially unfolded and the first-order classification 
algorithms were tested. The unfolded procedure reshaped 
each EEM matrix with the size of 9 × 322 to a vector of size 
1 × 2898. LDA, QDA, and SVM were applied to the data 
after principal component analysis (PCA) reduction.37 PCA 
reduced the unfolded data to a few numbers of principal 
components (PCs), in which the scores on the selected PCs 
were used as input variables for classification.

In addition, second-order classification algorithms were 
applied to the original EEM matrices using PARAFAC-LDA 
and 2D-LDA algorithms. PARAFAC-LDA is based on a 
PARAFAC38 decomposition of the three-way data of 
EEM matrices, followed by the application of LDA to the 
PARAFAC scores matrix. The PARAFAC decomposition 
is represented by:29

 (10)

in which  represents the three-way EEM matrices; 
A is the PARAFAC scores; B is the PARAFAC loadings 
representing the excitation direction; C is the PARAFAC 
loadings representing the emission direction;  is the 
residual tensor; and ⊗ represents the Khatri-Rao product.

The 2D-LDA algorithm is an adaptation of LDA to 
three-way data. The classification of a test sample is based 
on assigning its feature matrix Ytest to the class p* with the 
smallest average distance:39

 (11)

in which  is the average distance between the 
test sample and the Np training samples of class Cp can be 
calculated by:

 (12)

where  is the Euclidian distance between Ytest 
and the feature vector Yk of samples in the training set. The 
feature vector Y of each sample is calculated for a given 
data matrix X as:
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Y = XB (13)

where B is a projection matrix obtained by maximizing 
Fisher’s linear projection criterion; thus, maximizing the 
between-class over the within-class scatter matrices.39

Statistical validation
The statistical validation of the models built was 

evaluated according to the accuracy, sensitivity and 
specificity parameters. The accuracy represents the total 
number of samples correctly classified considering true and 
false negatives. This parameter is calculated as follows:40

 (14)

where TP stands for true positive; TN for true negative; 
FP for false positive; and FN for false negative.

Results and Discussion

Electrochemical analysis

In total, 80 voltammograms were acquired. The average 
differential pulse voltammograms for each class in the range 
of –1.0 to +1.0 V presented similar shape (control, black 
line; flunitrazepam, red dashed line, Figure 1a). Baseline 
correction was performed in the voltammograms by using 
a B-spline interpolation function after baseline points 
established by first derivative Savitzky-Golay smoothing 
filter with a first-order polynomial (3-points windows size). 
Figure 1b shows the baseline-corrected voltammograms.

The voltammogram related to flunitrazepam-contaminated 
samples shows two important differences compared to the 
voltammogram of the control samples. First, a broad less 
intense peak between –0.2 and +0.2 V, which could be 
attributed to a redox process of 7-aminoflunitrazepam,41 
a pharmacologically active metabolite of flunitrazepam. 
The scan initiates at +1.0 V, promoting the oxidation of the 
amine group to hydroxylamine, which is back reduced to 
the amine, as described by equation 15, and giving rise to 
peak 1 (Figure 1b).

R – NH2 + H2O ↔ R – NHOH + 2H+ + 2e- (15)

The second difference is related to peak 2, composed 
of two redox processes partially overlapped in the 
voltammogram of control samples, related to the composition 
of sample matrix. In the average voltammogram of samples 
contaminated with flunitrazepam, peak 2 appears with 
higher current intensity and peak potential, which could 
be due to the contribution of the reduction of 7-nitro group 
of non-metabolized flunitrazepam to hydroxylamine32 
according to equation 16.

R – NO2 + 4e- + 4H+ ↔ R – NHOH + H2O (16)

Insert of Figure 1b shows the average voltammograms 
after Savitzky-Golay first derivative. One can see 
an additional peak between –0.3 and –0.7 V in the 
voltammogram of contaminated samples, confirming a third 
redox process related to the presence of flunitrazepam. It is 
important to point out that the best results of classification 
were obtained with voltammograms transformed by first 
derivative and potential window from –0.2 to +0.9 V, i.e., 
by using information related only to peak 1. Consequently, 
in postmortem specimens, the drug metabolized over time 
to 7-aminoflunitrazepam makes it a critical analyte for 
this study.

PCA was applied as an unsupervised exploratory 
method to visualize the distribution of the samples in 
the multidimensional space. Figure 2 presents the PCA 
scores plot. One can observe that approximately 98% of 
data variability was explained by two PCs, and there is 
a substantial dispersion and overlapping of the control 
and flunitrazepam-contaminated samples. Following, the 
application of supervised algorithms of classification, 
more specifically LDA or QDA, was performed to build 
multivariate classification models. These were adopted 
systematically to discriminate control vs. contaminated 
samples based on DPV.

Table 1 presents the figures of merit of the obtained 
classification models for each class. According to the 

Figure 1. Average DPV data for control (black solid line) and 
flunitrazepam-contaminated (red dashed line) samples (a) before and 
(b) after baseline correction. Insert: voltammograms transformed 
by first-derivative. Arrows indicate the main differences in the mean 
voltammogram for each class.
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results shown in Table 1 for control samples, it is possible 
to conclude that this class presents a more homogeneous 
composition measured by DPV, always reaching ideal 
scores by any of the evaluated methods. On the other 
hand, for flunitrazepam-contaminated class, the figures of 
merit obtained with QDA models were better than those 
obtained with the LDA ones. This could be related to the 
greater heterogeneity of such class due to the more complex 

process of assimilation and metabolization of flunitrazepam 
by larvae, which required a quadratic discriminant function 
to perform a better classification. For example, sensitivity 
values of QDA models were superior to that obtained 
with LDA, being 92.9, 92.9, and 100% for PCA-QDA, 
SPA-QDA, and GA-QDA, respectively. Considering all 
figures of merit of Table 1, GA-QDA model presented the 
maximum efficiency for classification.

Figure 2. Exploratory analysis with PCA: PC1 × PC2 scores plot.

Table 1. Figures of merit of linear (LDA) and quadratic discriminant analysis (QDA) classification models for each class

Algorithm Control Flunitrazepam Algorithm Control Flunitrazepam

PCA-LDA

SENS 100 SENS 78.6

PCA-QDA

SENS 100 SENS 92.9

SPEC 100 SPEC 78.6 SPEC 100 SPEC 100

PPV 100 PPV 78.6 PPV 100 PPV 100

NPV 100 NPV 78.6 NPV 100 NPV 93.3

YOU 100 YOU 57.1 YOU 100 YOU 92.9

LR(+) 0.0 LR(+) 0.0 LR(+) 0.0 LR(+) 0.0

LR(–) 0.0 LR(–) 0.3 LR(–) 0.0 LR(–) 0.1

SPA-LDA

SENS 100 SENS 85.7

SPA-QDA

SENS 100 SENS 92.9

SPEC 100 SPEC 85.7 SPEC 100 SPEC 100

PPV 100 PPV 85.7 PPV 100 PPV 100

NPV 100 NPV 85.7 NPV 100 NPV 93.3

YOU 100 YOU 71.4 YOU 100 YOU 92.9

LR(+) 0.0 LR(+) 0.0 LR(+) 0.0 LR(+) 0.0

LR(–) 0.0 LR(–) 0.2 LR(–) 0.0 LR(–) 0.1

GA-LDA

SENS 100 SENS 78.6

GA-QDA

SENS 100 SENS 100

SPEC 100 SPEC 100 SPEC 100 SPEC 100

PPV 100 PPV 100 PPV 100 PPV 100

NPV 100 NPV 82.4 NPV 100 NPV 100

YOU 100 YOU 78.6 YOU 100 YOU 100

LR(+) 0.0 LR(+) 0.0 LR(+) 0.0 LR(+) 0.0

LR(–) 0.0 LR(–) 0.2 LR(–) 0.0 LR(–) 0.0

SENS: sensitivity; SPEC specificity; PPV: positive predictive value; NPV: negative predictive value; YOU: Youden’s index; LR(+): positive likelihood 
ratio; LR(–): negative likelihood ratio.
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The excellent discrimination power obtained for 
GA-QDA model is presented in Figure 3. GA-QDA 
model employed 13 variables (Figure 4). Four selected 
potentials seem to be of particular interest. Variables 
–0.02, +0.14, +0.28, and +0.30 V are located at peak 1, 
and model the influence of the presence of the metabolite 
7-aminoflunitrazepam in differentiating each class with 
success. The other nine variables are located at the baseline 
and model the change on background current regarding the 
presence of flunitrazepam and its metabolite.

SPA-QDA model employed two variables (Figure 4). 
Despite the lower classification efficiency offered by the 
SPA-QDA model, it can be considered that its results 
were satisfactory given the lower number of variables 
selected, which implies greater robustness when compared 
to GA-QDA. Examination of the selected potentials 
showed that the model used information associated to the 

presence of the drug detected by DPV in the contaminated  
samples.

Fluorescence analysis

Average EEM data for class 1 (control) and class 2 
(larvae with flunitrazepam) are shown in Figure 5. As 
can be seen, a visual inspection cannot reveal significant 
differences between the two classes, since both profiles 
seem very similar.

A closer look into the excitation and emission profiles 
for each EEM can be seen in Figure 6. As demonstrated 
by Figure 6, both excitation and emission profiles for 
control and flunitrazepam contaminated samples are much 
superposed among the samples, where no clear separation 
can be observed.

For an initial assessment, each EEM data matrix 
was unfolded into a vector and first-order classification 
algorithms were tested. LDA, QDA and SVM were applied 
to the PCA scores on the first 10 PCs (99.36% of cumulative 
variance). The results are shown in Table 2.

Table 2 shows that first-order classification algorithms 
did not successfully discriminate the two classes. The best 
accuracy and sensitivity was found with LDA (60%) and 
the best specificity with QDA (80%). However, overall 
these values are unsatisfactory for entomotoxicology 
applications, since the gold method using HPLC reaches 
values above 90% sensitivity and specificity. New 
methodologies such as 2D-LDA are strongly able to achieve 
the efficiency of gold methodologies and have a lower 
cost, require less sample preparation and analysis time, 
and keep the analytical accuracy at acceptable levels for 
expert requirements.

Figure 3. The discriminant function calculated by GA-QDA model for control (purple) versus flunitrazepam-contaminated (black) samples.

Figure 4. Average first-derivative voltammograms of each class ((a, black) 
control; (b, red) flunitrazepam) and the variables selected by GA-QDA 
(solid vertical lines) and SPA-QDA (dashed vertical lines).



Identification Using Classification Analysis of Flunitrazepam in Necrophagous Larvae J. Braz. Chem. Soc.2602

Second-order classification algorithms were applied by 
means of PARAFAC-LDA and 2D-LDA. PARAFAC-LDA 
was built with 5 components, and 2D-LDA was built with 
2 factors. Their classification results are shown in Table 3.

The overa l l  c lass i fica t ion  performance of 
PARAFAC-LDA was very similar to that obtained using 
first-order algorithms (Table 2), in which poor discrimination 
between control and flunitrazepam-contaminated samples 
were observed. On the other hand, 2D-LDA presented a 
perfect performance with classification rates equal to 100% 
for all figures of merit. The 2D-LDA discriminant function 

(DF) plot is shown in Figure 7, where a perfect separation 
of the two classes is clearly observed.

Figure 5. Average EEM data for (a) control and (b) flunitrazepam-contaminated samples.

Table 2. Figures of merit calculated using different classification methods 
applied to the principal component analysis (PCA) scores of unfolded 
fluorescence excitation-emission matrix (EEM) data

Classifier Accuracy / % Sensitivity / % Specificity / %

LDA 60.0 60.0 60.0

QDA 50.0 20.0 80.0

SVM 50.0 40.0 60.0

LDA: linear discriminant analysis; QDA: quadratic discriminant analysis; 
SVM: support vector machines.

Figure 6. (a) Excitation and (b) emission profiles for control (blue) and flunitrazepam-contaminated (red) samples.

Table 3. Figures of merit calculated using PARAFAC-LDA and 2D-LDA 
applied to the three-way fluorescence excitation-emission matrix (EEM) 
data

Classifier Accuracy / % Sensitivity / % Specificity / %

PARAFAC-LDA 50.0 40.0 60.0

2D-LDA 100 100 100

PARAFAC: parallel factor analysis; LDA: linear discriminant analysis.

Figure 7. Discriminant function (DF) plot for factor 1 versus factor 2.
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2D-LDA has been reported as being superior to other 
classification methods such as PARAFAC in many chemical 
applications.39 Second-order classification algorithms seem 
superior to their unfolded versions due to the loss of spatial 
distribution information during unfolding procedure.40 
Therefore, the use of two-dimensional classification 
algorithms is the best option to analyze EEM data.

Conclusions

The results of this study show that differential pulse 
voltammetry combined with multivariate classification may 
be an alternative tool for the detection of flunitrazepam in 
necrophagous larvae. We report a fast, clean and low-cost 
method, which involves minimum samples preparation 
to classify the specimens. In this report, the resulting 
GA-QDA model successfully detected flunitrazepam 
providing 100% accuracy and specificity. This method 
was completely validated, showing potential for use as an 
official methodology for entomological methods. EEM 
fluorescence spectroscopy with 2D-LDA was effective 
to differentiate control and larval extract drugged with 
flunitrazepam for an entomotoxicology application. 
Using this methodology, 100% accuracy, sensitivity and 
specificity were found for discriminating the two classes. It 
represents a fast, precise and low-cost method for forensic 
analysis of larval extract, having a minimum sample 
preparation and with a small amount of sample required for 
analysis. This study is restricted to a local level application 
due to the number of samples used in the experiment and 
the environmental conditions submitted to the insects. 
Future studies are needed for the purpose of increasing 
sample space aiming at a global model, and may enable 
the analysis of new drugs for forensic interest.
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