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In this work, we tested a linear interpolation approach in order to select polarization functions 
(exponents) to be used with Gaussian basis sets. The Gaussian primitive functions were generated 
here for Ga to Kr and also for Sc to Cu. The general contraction method was used for the construction 
of contracted Gaussian basis sets of 6Z and 7Z quality. Polarization functions were added to the 
contracted bases by explicit optimization and also by interpolation of exponents. The performance 
of the contracted basis sets, augmented with polarization functions obtained by interpolation, 
was tested with molecular configurations interaction single and double excitations (CISD) and 
density functional theory (DFT) calculations for the systems Se, Se2, Se6, Ge2, CrH and FeH. The 
outcomes obtained in this work with interpolated polarization functions agreed very well with the 
ones augmented with polarization functions obtained by explicit optimization. The interpolation 
methodology presented here is useful to generate polarization functions for any Gaussian basis 
set in different series of atoms of the periodic table.
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Introduction

In 1986, Mohallem et al.1 introduced in the scientific 
literature the so-called generator coordinate Hartree-Fock 
(GCHF) method. In the years to follow, the GCHF method 
was employed to generate a set of universal Slater and 
Gaussian basis sets.2-4 In that time, we were interested in 
the generation of universal basis sets, believing that they 
could be useful to reduce the number of integrals to be 
calculated,5,6 as we had an only set of exponents to be used 
for a large number of atoms.

In 2003, Barbosa and da Silva7 modified the way of 
solving the integral equations of the GCHF method with the 
aim to generate more flexible Gaussian basis sets to be used 
in atomic and molecular calculation. In 2015, the first set 
of primitive (extended) Gaussian basis sets, for the atoms 
from hydrogen (H) to barium (Ba), that is from Z = 1 to 56, 
was presented in the literature by employing the new way 

to discretize the integral equations of the GCHF method 
by using a polynomial.8

Basically, there are three steps to follow in order to 
get a basis set ready to be used in molecular calculation: 
(i) the construction of the primitive set of exponents; 
(ii) the contraction of this primitive set; (iii) the addition 
of polarization functions.

In the generation of basis sets, usually the primitive 
set is constructed for the free atom in its ground state and 
the description of the outer part of the electron density 
distribution is generally poor, so the addition of higher 
angular momentum functions (exponents) in the body of 
the primitive set of exponents improves the performance 
of a basis set in the molecular environment.

Generally, the polarization exponents are assigned by 
optimizing the total energy for a small set of molecules, for 
example at the Hartree-Fock (HF) and density functional 
(DFT) levels of theory. Thus, the values of the polarization 
exponents for the 6+31G* basis sets were determined by 
the HF energy optimization for a set of small molecules 
at their equilibrium configuration.9 On the other hand, the 
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pc-n basis sets from Jensen used a BLYP10 (Becke-Lee-
Yang-Parr) energy optimization.11,12

Calculations including electronic correlation are also 
used to determine polarization exponents by the energy 
minimization of isolated atoms.13

In the case of the consistent correlation (cc-pVXZ) 
basis sets, the polarization exponents were determined 
by minimization of the atomic energy14-16 by using the 
configurations interaction single and double excitation 
(CISD) method, whereas the Pople and co-workers17 
6-311G(d) basis sets employed Moller-Plesset second 
order perturbation theory (MP2) to optimization at the 
atomic level.17,18

In this work, the polarization exponents have been 
determined by using a methodology based on an interpolation 
of Gaussian basis set exponents, combined with the generator 
coordinate (GC) method, with the aim to avoid the explicit 
optimization of the polarization exponents for each atom 
within a same period of the periodic table. As one example, 
we present the results obtained with Gaussian basis sets for 
Ga to Kr and the 3d series of the transition metals (Sc-Cu).

This idea is not exactly new, that is, generating 
polarization Gaussian functions by interpolation,19,20 but 
we did not know if it could be successful when using it 
with the GC method. Despite that, in this work we show 
that this idea is competitive with other methods (explicit 
optimization of Gaussian exponents) and it can be used 
with different set of Gaussian exponents.

Methodology

In order to generate our Gaussian basis sets for this 
work, we have employed the polynomial generator 
coordinate Hartree-Fock (PGCHF) method.7 The PGCHF 
method is the result of employing the GC ansatz1 in the 
independent particle model:

	 (1)

where fk is the generator function and it can be either Slater-
type functions (STFs) or Gaussian-type functions (GTFs), 
fk is the weight function, α is the generator coordinate 
(exponents of the STFs or GTFs) and n is the number of 
particles. The application of the variational principle to the 
energy expectation value leads to the Griffing-Wheeler-
Hartree-Fock (GWHF)1 equation:

	 (2)

where εk are the orbital eigenvalues and F(α,β) and S(α,β) 
are the Fock and overlap kernels, respectively.21

Initially, the GWHF equation was discretized by using 
the integral discretization technique through an equally 
spaced numerical mesh21 and used successfully in the 
generation of Slater- and Gaussian-type universal basis 
sets.22,23

In the PGCHF method,7 the exponents (α) of each 
atomic orbital symmetry w are determined using a 
polynomial expansion of q order:

	 (3)

where A is a scaling parameter determined numerically 
(A = 6.0), N is the number of discretization points and 

 and  are, respectively, the initial point of the 
mesh and the increment used to obtain the subsequent 
points of the mesh.

Alternatively to the original GCHF method,21 a version 
developed by Jorge and de Castro,24 named improved 
generator coordinate Hartree-Fock (IGCHF) method, in 
which the space Ω is discretized for each orbital symmetry 
by using two or three independent arithmetic sequences, 
was used in the generation of Gaussian basis sets for the 
atoms of the periodic table.25-28

In this work, we have used the PGCHF7 method to 
generate primitive Gaussian basis sets to the series from Ga 
to Kr and Sc to Cu. Afterwards, each generated Gaussian 
basis set was contracted through the general contraction 
scheme from Davidson.29 The best contraction was defined 
by considering the lowest loss in the atomic total HF energy 
when compared with the respective numerical Hartree-Fock 
(NHF) energy value.30 Having defined the quality of the 
Gaussian basis sets, different polarization functions were 
added to the contracted bases in order to produce polarized 
basis sets to be used in atomic and molecular calculations.

The choice of the polarization exponents was carried 
out in two forms: first, we have determined the polarization 
exponents by explicit optimization from atomic calculations 
at the CISD level of theory; second, we have obtained 
the polarization exponents by numerical interpolation 
from linearization (least squares fitting) of the exponents 
generated in the first form described above in function of 
the atomic number.

In order to check out the performance of the basis 
sets augmented with the polarization functions generated 
by exponent interpolation, we have carried out a series 
of exploratory calculations of the total energy: (i) at the 
CISD level for the atoms under study and (ii) employing 
the B3LYP31 (Becke-three parameters-Lee-Yang-Parr) 
functional for the molecular systems studied. The results 
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are compared with those obtained from Gaussian basis 
sets augmented with polarization exponents obtained by 
explicit optimization. Both atomic and molecular calculated 
energies were acquired with the Gaussian 09.32

Results and Discussions

In this section, we are going to present initially the 
results obtained with our interpolation methodology for 
the series of atoms from Ga to Kr, but this methodology is 
also valid for any series of atoms of the periodic table, as 
we are going to comment ahead in this work. Also, we are 
going to present molecular property results for molecules 
containing atoms of the 3d series of the transition metals 
using polynomial generator coordinate Gaussian basis 
sets augmented with polarization functions obtained by 
interpolation.

Having defined the PGC basis set composition in terms 
of primitive functions consisting of 22s16p10d for Ga to 
Kr8 and with the aim to reach the accuracy of mHartree 
for the total energy, when compared to NHF results,29 we 
employed the general contraction scheme for each primitive 
set in order to obtain a contracted basis set of 6Z quality in 
the valence region. Finally, we determined the polarization 
functions corresponding to the symmetries f, g and h. Three 
sets of polarization exponents 2f1g, 3f1g and 3f2g1h were 
obtained by minimizing the total CISD energy for the atoms 
from Ga to Kr.

In fact, we observed that the values of the polarization 
exponents increase linearly (within a “period”) with the 
increasing of the atomic number. The tendency of the 
polarization exponents corresponding to the polarization 

sets 2f1g, 3f1g and 3f2g1h is presented in Figure 1 as a 
function of the atomic number. Curves of linearization of 
the same exponents with their respective R2 (coefficient 
of determination) values are also shown in Figure 1. The 
range of R2 varied from 0.9897 (1h exponent) to 0.9258 (2f 
exponent) for the polarization set 3f2g1h. The results for 
the linearization for other polarization functions are within 
this range including the polarization set 2f1g.

The curves presented in Figure 1 also show a deviation 
for Se (Z = 34) and can be observed that such deviation 
is common for all orbital symmetries of Se used as 
polarization functions. Although the curves obtained from 
the optimized exponents for the atomic series 4p of the p 
block (Figure 1) do not have a perfect linear behavior, it is 
possible, therefore, to approximate these curves to a straight 
line through the generation of exponents, for example, to 
only two atoms of the series (in this case Ga and Kr) and 
afterwards to obtain the polarization exponents for the 
remaining atoms of the series by interpolation.

The exponent interpolation strategy used here avoids 
the explicit (whole) optimization of polarization exponents 
(in Gaussian basis sets) for each atom within one period. 
Thus, we have made a linear adjustment of the explicitly 
optimized exponents 2f1g and 3f2g1h as a function of the 
atomic number to Ga and Kr, and then we recalculated 
the exponents from the linear equation obtained. The 
interpolated exponents were calculated by using the QtiPlot33 
software with the precision of 10-4 provided by the software.

The values of the exponents both optimized and 
interpolated for Se are presented in Table 1. We have chosen 
Se since it presents the greatest deviation (Figure 1) from 
linearization. Nonrelativistic total energies calculated with 

Figure 1. Optimized and interpolated polarization exponents for the PGC-6Z basis sets: 2f1g, 3f1g and 3f2g1h for the Ga-Kr series.
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the PGC-6Z-2f1g and PGC-6Z-3f2g1h Gaussian basis sets 
are shown in Table 2 for the ground state of molecular 
systems containing the Se atom.

When comparing the results for the linearized exponents 
with the explicit optimized exponents, we can see that the 
exponent differences are in a range from 0.030764 (1f) for 
2f1g to 0.002791(2g) for 3f2g1h.

Initially, we thought this difference was quite significant; 
however, the difference between the energies with explicit 

optimized and interpolated exponents listed in Table 2 
showed that the polarization exponents do not need to be 
numerically very similar, since the errors obtained are out of 
the required precision in atomic and molecular calculations.

We have also performed calculations for molecular 
properties (harmonic vibrational frequencies and equilibrium 
distance) at the B3LYP level of theory using the PGC-6Z 
basis sets with polarization functions 3f2g1h (optimized and 
linearized). The results are present in Table 3 and in both 
cases the B3LYP/PGC-6Z-3f2g1h (optimized and linearized 
exponents) Se2 harmonic vibrational frequencies are less 
than 2% of the experiment value 385 cm-1 reported by Huber 
and Herzberg.34 The harmonic vibrational frequency of Ge2 
compares very well with the experimental value reported by 
Li et al.35 (308 cm-1).

Also from Table 3, we can see that the CPU (central 
process unit) time is lower for some cases when we used 
the basis set with linearized polarization.

Similarly, in Table 3, we compare the calculated 
vibrational modes of Se6 with the experimental spectra 
obtained for the rhombohedral structure: 103, 151 and 
253 cm-1, with symmetry assignment Eu, A2u and Eu, 
respectively.36

Table 2. CISD atomic energy values for the Se atom and B3LYP molecular energies for molecular systems containing the Se atom. Calculations were 
performed with the primitive PGC-6Z basis set plus the polarization functions for both interpolated and optimized 2f1g and 3f2g1h sets of polarization 
functions

Polarization set Se Se2 Se6

2f1ga –2399.990878 –4809.296058 –14409.978527

2f1gb –2399.990863 –4809.296052 –14409.978325

RE / % 6.38 × 10-7 1.39 × 10-7 1.40 × 10-7

3f2g1ha –2399.993435 –4809.29689 –14409.98

3f2g1hb –2399.993431 –4809.296079 –14409.98

RE / % 1.54 × 10-7 2.08 × 10-7 1.31 × 10-7

aOptimized exponents; blinearized exponents. RE: relative error.

Table 1. Comparison between optimized and interpolated polarization 
exponents for the polarization sets 2f1g and 3f2g1h for the Se atom by 
employing the PGC-6Z basis set

Symmetry 2f1ga 2f1gb 3f2g1ha 3f2g1hb

Se

1f 0.70243581 0.7332 0.86523399 0.8705

2f 0.28185646 0.2990 0.47581691 0.5062

3f – – 0.20682194 0.2224

1g 0.575403655 0.5907 0.88804667 0.9002

2g – – 0.39750892 0.4003

1h – – 0.70745011 0.7223

aOptimized exponents; blinearized exponents.

Table 3. B3LYP/PGC-6Z-3f2g1h harmonic vibrational frequencies (ωe), equilibrium distances (Re) for the lowest-lying states of Se2, Se6 and Ge2. Results 
are shown for both optimized (Opt) and interpolated (Inter) sets of polarization functions

Re / Å ωe / cm-1 CPU time / (h:min:s)

Opt Inter Opt Inter Opt Inter

Se2 (3∑g) 2.19 2.19 381.168 379.672 3:31:54 2:55:59

Expa 2.16 385

Ge2 (∑g) 2.29 306.209 306.200 4:25:54 4:28:19

Expb 2.447 308

Se6 2.37 2.37 79.513(Eu), 
151.914(A2u), 
257.912(Eu)

79.472(Eu), 
151.914(A2u), 
257.912(Eu)

9:11:50 9:01:21

Expc 2.30 103(Eu), 151(A2u), 253(Eu)
aReference 34; breference 35; creference 36. 3∑g and ∑g: ground state for Se2 and Ge2, respectively; CPU time (h:min:s): process time in hour:minutes:seconds; 
Eu, A2u and Eu: symmetry assignment to the vibrational modes to Se6.
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As additional calculation, we present results for the 
atoms of the 3d series of the transition metals using PGC-
7Z basis sets. In this case, the optimized polarization 
exponents were generated by explicit optimization at the 
CISD level of theory from Sc to Cu. For this series, both 
the tendency of the polarization exponents corresponding 
to the polarization sets 2f1g, 3f2g and 3f2g1h, as a function 
of atomic number, and the curves of linearization with their 
respective R2 values are shown in Figure 2.

The range of R2 varied from 0.9935 (1f exponent) 
to 0.9414 (2g exponent) for the polarization set 3f2g1h. 
The results for the linearization for other polarization 
functions are within this range including the polarization 
set 2f1g. From Figure 2, it is observed that the polarization 
exponents for Cr are more deviated from the linearity in 
all cases.

For the linearization process, we have used optimized 
polarization exponents obtained for Sc and Cu. The 
linearization equation attained has been used to recalculate 
the polarization exponents. The comparison between 
optimized and interpolated polarization exponents for 

the polarization sets 2f1g and 3f2g1h for the Cr atom is 
presented in Table 4.

The molecular property calculations were performed 
using the PGC-7Z basis sets with 3f2g1h polarization 
functions. Our results are compared with those obtained 
from basis sets augmented with polarization exponents 
obtained by explicit optimization. Results for CrH and FeH 
are presented in Table 5.

Table 5. B3LYP/PGC-7Z-3f2g1h harmonic vibrational frequencies (ωe), equilibrium distances (Re) for the lowest-lying states of CrH and FeH. Results 
are shown for both optimized (Opt) and interpolated (Inter) sets of polarization functions

Re / Å ωe / cm-1 CPU time / (h:min:s)

Opt Inter Opt Inter Opt Inter

CrH (6Σ) 1.667 1.665 1637 1634 00:17:25.2 00:18:26.3

Expa 1.662 1587

FeH (4Δ) 1.563 1.561 1829 1820 00:24: 70.4s 00:26:38.7

Expa 1.589 1827
aReference 37. 6Σ and 4Δ: lowest-lying states for CrH and FeH, respectively; CPU time (h:min:s): process time in hour:minutes:seconds.

Figure 2. Optimized and interpolated polarization exponents for the PGC-7Z basis sets: 2f1g, 3f2g and 3f2g1h for the Sc-Cu series.

Table 4. Comparison between optimized and interpolated polarization 
exponents for the polarization sets 2f1g and 3f2g1h for the Cr atom by 
employing the PGC-7Z basis set

Symmetry 2f1ga 2f1gb 3f2g1ha 3f2g1hb

Cr

1f 2.762645 2.6968 3.914512 3.7858

2f 0.850861 0.8309 1.403771 1.3960

3f – – 0.346343 0.3152

1g 1.709404 1.6759 2.880982 2.8756

2g – – 0.832711 0.8269

1h – – 1.74975 1.7363
aOptimized exponents; blinearized exponents.
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Comparing the results for the linearized exponents 
with the explicit optimized exponents, we can see that the 
exponent differences are in a range from 0.06584 (1f) for 
2f1g to 0.00538 (1g) for 3f2g1h.

The results presented in this work showed that suitable 
polarization exponents can be obtained by interpolation of 
any Gaussian exponents, taking advantage of the variation 
of the Gaussian exponents with the atomic number. Here 
we would like to point out that such tendency is always 
observed for a sequence of atoms in a row with the same 
structure valence, for example the series 2p B (Z = 5) to 
Ne (Z = 10); 3p Al (Z = 13) to Ar (Z = 18); 4p Ga (Z = 31) 
to Kr (Z = 36), etc., and for the series 3d Sc (Z = 21) to Zn 
(Z = 30); 4d Y (Z = 39) to Cd (Z = 48), etc., for the case 
of the transition metals.

Thus, our methodology becomes important for series 
with a larger number of atoms, for example the p, d and f 
blocks of atoms of periodic table and unnecessary for the 
atoms of the s block of the periodic table, since these have 
only two atoms (series 2s Li (Z = 3) and Be (Z = 4); 3s Na 
(Z = 11) and Mg (Z = 12), etc.).

Conclusions

In this work, we have determined polarization 
exponents by linearization using the periodic dependence 
of the polarization exponents with the atomic number for 
sequences of atoms within the same period of the periodic 
table. The PGC-6Z and PGC-7Z Gaussian basis sets for 
the atoms from Ga through Kr and Sc through Cu were 
generated employing the polynomial generator coordinate 
Hartree-Fock (PGCHF) method. The PGC-6Z basis sets 
were augmented with the polarization function sets 2f1g 
and 3f2g1h obtained both by explicit optimization and 
interpolation. The PGC-7Z basis sets were augmented 
with polarization functions set 3f2g1h, also using explicit 
optimization and interpolation. The atomic and molecular 
calculations performed here (with the CISD and B3LYP 
methods) show that the calculated total energy obtained 
with the PGC-6Z basis sets (augmented with interpolated 
polarization functions) are as accurate as the ones obtained 
with explicit optimized polarization functions (with a 
relative error of 10-7 Hartree).

The results presented in this work, employing an 
interpolation methodology, show that this strategy is a 
good alternative for the generation of polarized Gaussian 
basis sets without compromising the quality of the basis 
sets in atomic and molecular calculations when using any 
Gaussian basis set.
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