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Over the years, laser-induced breakdown spectroscopy (LIBS) has been reported in the 
literature as an alternative to traditional methods of analysis, becoming well established among 
spectroanalytical techniques. LIBS is a technique widely used for qualitative approaches; however, it 
is necessary considerable effort for use in quantitative analysis, mainly due to severe matrix effects. 
These limitations make it difficult to broaden the application of LIBS in quantitative analysis. 
In this sense, this review discusses recent advances in calibration strategies applied in LIBS for 
minimizing matrix effects and enabling determination with satisfactory accuracy and precision. 
Applications, advantages, and limitations of the calibration strategies, such as matrix-matching 
calibration (MMC), internal standardization (IS), standard addition (SA), multi-energy calibration 
(MEC), one-point gravimetric standard addition (OP GSA), one-point and multi-line calibration 
(OP MLC), slope ratio calibration (SRC), two-point calibration transfer (TP CT), single-sample 
calibration (SSC), multiple linear regression (MLR), principal component regression (PCR), partial 
least squares (PLS) and artificial neural networks (ANN) are discussed.
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1. Introduction

Currently, laser-induced breakdown spectroscopy 
(LIBS) has been reported1-3 as the most prominent 
spectroanalytical technique due to its attractive set of 
advantageous analytical characteristics. LIBS is versatile, 
presenting several features, such as high analytical 
frequency, minimal sample preparation and reagent 
consumption, and the ability to provide information for 
practically any type of sample.4-6

After advances and the establishment of the use of 
LIBS in several applications, it seems reasonable to 
repeat the words once said by Winefordner et al.:7 they 
stated in 2004 that LIBS would be the “next superstar” 
within the group of spectroanalytical techniques. This 

statement can be evidenced by the number of scientific 
publications in the last 39 years (1981-2019) regarding 
LIBS with approximately 5,000 papers according to 
the Web of Science database, where in the last 12 years 
(2008-2019) account for approximately 80% of the total 
publications. These data exemplify the community interest 
in LIBS, as it is currently possible to find a wide variety 
of studies8-19 proposing innovations and improvements 
to this technique.

For qualitative analysis purposes, LIBS is well 
established. However, for quantitative goals, LIBS 
require considerable effort due to difficulties in preparing 
and obtaining calibration standards and the absence of 
commercial certified reference materials (CRM) with mass 
fractions on the order of μg. In addition, there are problems 
with matrix effects, which are currently the main challenge 
in quantitative LIBS analysis.20-28
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To minimize possible matrix effects normally observed 
in LIBS analysis, some calibration strategies have been 
reported in the literature29-35 over the last few years to 
improve its figures of merit. The main calibration strategies 
employed in LIBS can be divided into three groups: 
(i) traditional calibration, (ii) nontraditional calibration, and 
(iii) multivariate calibration. Our intention is to provide to 
the reader a clear guide about how to apply each calibration 
strategy correctly and in which situation to use each one. In 
addition, we present the advantages and limitations related 
to each approach.

2. Description of the Main Matrix Effects in 
LIBS

One of the inherent challenges in LIBS is quantitative 
analysis due to the complexity of laser-sample interaction 
processes, involving laser parameters, sample properties, 
and plasma chemistry, and due to plasma-particle 
interaction processes that depend on both space and time.3,36 
For quantitative aspects, it has always been reported3,36,37 
that traditional calibration strategies applied to LIBS suffer 
severe matrix effects.

Besides matrix effects, there is also spectral effects that 
occur when a strong line interferes with the emission region 
of a weak line for a monitored element. This problem can 
easily be circumvented by selecting an alternative line of the 
element, carefully adjusting the peak area of the analytical 
signal, or switching the spectrometer arrangement for 
a high spectral resolution system.38 On the other hand, 
problems related to matrix effects are more challenging 
and difficult to detect and solve when compared to spectral 
interferences.39

Matrix effects depend on the physical characteristics 
and chemical compounds in the sample, and there are 
many possibilities for how the matrix may influence the 
emission phenomenon during LIBS analysis.38 Physical 
matrix effects are directly correlated to the different 
physical properties of samples, e.g., irregular surface, 
heterogeneity, sample moisture content, compressive 
pressure for sample pelleting (when applied), heat of 
vaporization, thermal conductivity, and absorption 
coefficient, which affect the transport of the ablated 
sample mass in the plasma.3,22

Chemical matrix effects occur due to fluctuations of the 
plasma parameters related to the predominant organic and 
inorganic composition of the sample or the content of easily 
ionized elements.40,41 In addition, the interaction of the laser 
or sample with atmospheric conditions (e.g., ambient gas 
or reactive gas) may affect the plasma temperature and 
density, resulting in changes in the emission intensity of 

constituent elements.42 These matrix effects may contribute 
to the nonstoichiometric ablation of the sample and thus 
reduce the ability of quantitative analysis by LIBS.

3. Traditional Calibration Strategies Applied 
to LIBS

3.1. Matrix-matching calibration (MMC)

Among the traditional calibration strategies applied 
in LIBS, MMC is the most widely used. The calibration 
standards in MMC are prepared in the sample matrix, 
usually employing certified reference materials (CRMs). 
However, very few CRMs that are suitable for LIBS 
applications are commercially available. In addition, 
the reference values for available CRMs are only valid 
for applications involving a minimum material mass 
(typically 100 mg), which is usually incompatible with 
the amounts required for LIBS calibration (typically a 
few μg).2,20,21 

MMC can also be based on a set of samples with 
reference values that are obtained from well-established 
analytical techniques or the use of solid standards with 
the concomitants that present interference. This strategy is 
very interesting and, in many cases, solves matrix effects 
problems because the samples themselves are used to 
obtain calibration curves.43 The MMC method has been 
effectively applied to elemental determination in different 
types of matrices.44-51

3.2. Internal standardization (IS) 

The IS method consists of adding an element as the 
internal standard to all samples, calibration standards and 
analytical blank and using the analyte/internal standard 
signal ratio to obtain a calibration curve. The internal 
standard has a known concentration and, ideally, both 
internal standard and analyte must be affected by the same 
processes during instrumental measurement.52

Therefore, the IS method is often applied to minimize 
pulse-to-pulse variations and matrix effects. Two different 
types of internal standards can be used; however, in both 
cases, the ionization and excitation energies and emission 
line intensity must be similar for the internal standard and 
the analyte. In the first approach, the emission line of the 
element selected as IS must be already present in the sample 
spectra which its intensity remains constant for all standard 
samples. The second approach is applied to samples with 
very variable composition, in which an emission line of 
an added element that is not present in the unknown and 
standard samples can be used.53-56
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3.3. Standard addition (SA)

Standard addition is also a calibration strategy widely 
used in LIBS,20 minimizing matrix effects in complex 
samples. The SA method consists of adding known 
quantities of the element to be determined in the unknown 
sample, producing a similar behavior in the calibration 
series to that of the unknown sample.43,52

For using the SA method is important to point out 
that the sample itself is used to prepare the calibration 
solutions or mixtures. Thus, the matrix effects are 
naturally corrected, and no prior knowledge of the sample 
matrix is required. On the other hand, the main limitations 
associated with SA are the time consuming required to 
construct a calibration curve for each sample and the need 
for a considerable amount of sample. These problems 
become more critical for analysis of large number of 
samples and if a limited sample amount is available.12,43,52 
Several studies57-60 have successfully quantified analytes 
using SA and LIBS.

4. Nontraditional Calibration Strategies 
Applied to LIBS

In this section, we present calibration strategies that 
were recently developed for LIBS. These strategies explore 
the physicochemical properties of laser-induced plasma 
species, the use of analyte emission lines with different 
sensitivities, and a limited number of standards (one or two 
standards) to obtain a linear model or calibration curve.

4.1. Multi-energy calibration (MEC)

MEC is one of the most recent calibration strategies 
reported in the literature61,62 for minimizing matrix effects 
in different analytical techniques of atomic spectrometry. 
MEC is based on different transition energies (wavelengths) 
for analytical signal acquisition from the analysis of two 
standards: pellet 1, containing 50% m m−1 sample and 
50% m m−1 standard and pellet 2, containing 50% m m−1 
sample and 50% m m−1 blank. Analytical signals acquired 
from pellets 1 and 2 are plotted on the x-axis and y-axis (see 
Figure 1), respectively. Using the slope of the linear model 
and the analyte concentration of the standard (CStandard) added 
in the pellet 1, it is possible to obtain the analyte concentration 
in the sample (CSample).61 As shown in the Boltzmann equation 
(equation 1), the analyte concentration  (Cs) and excited-
state transition energy (Ek) are related to the instrument 
response at a given wavelength (λi). F is the experimental 
factor, Akj the transition probability, gk the degeneration of 
the upper level, Us(T) the partition function of the species 

present in the plasma, T the temperature of the plasma and 
KB the Boltzmann constant. If Cs is fixed and Ek is changed 
by using different wavelengths during the analytical signal 
acquisition, the instrument response is a dependent variable 
of both parameters.

Considering CStandard, CSample and a simple mathematical 
treatment used for elemental determination, it is possible 
to obtain equations 2 and 3:61

	 (1)

	 (2)

	 (3)

where the terms CStandard and CSample were defined previously, 
I(λi)Sample+Standard and I(λi)Sample are the instrument response 
at a given wavelength (λi) for both pellets, and Kp is a 
proportionality constant. After reorganization of equations 2 
and 3, it is possible to calculate CSample from equation 4:

	 (4)

The main advantages of MEC are related to the matrix-
matching capability due to the presence of the sample in the 
standards (pellets 1 and 2) and the possibility of identifying 
spectral interferences, as shown in Figure 1. Emission 
line number 6 (λ6) is an outlier, where its signal is shifted 
from the proposed linear model plot, indicating that λ6 is 
an emission line with spectral interference and must be 
removed and the model calculated again.

Figure 1. MEC plot and spectral interference at wavelength 6 (outlier).
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In this sense, Babos et al.29 applied MEC as a calibration 
strategy, for the first time, for the analysis of cattle mineral 
supplements by LIBS. The authors used different salts to 
prepare solid stock standards containing the analytes. High-
purity sodium carbonate (Na2CO3) was used as a blank (and 
as a diluent) to simulate the matrix of the analyzed samples 
due to the presence of carbonates. To build the linear models, 
several atomic (I) and ionic (II) emission lines were selected 
from the most sensitive lines for each analyte.

In addition, the authors also evaluated the influence of 
different standard mass (that is, different CStandard values) 
added to pellet 1 on the accuracy of the results. The 
precision, described as the relative standard deviation 
(RSD), ranged from 2 to 32%, and the trueness varied 
from 85 to 102% using MEC-LIBS. According to the t-test, 
at the 95% of confidence level, no significant difference 
was observed between the reference results obtained by 
inductively coupled plasma optical emission spectrometry 
(ICP OES) or reference materials and MEC-LIBS.

Some important aspects should be highlighted: (i) the 
selection of a blank material is a challenge because it must 
be a high-purity reagent to avoid contamination during 
the analysis, contributing to better method precision, 
and, at the same time, must have a similar composition 
to the matrix of the samples to be analyzed; (ii) the 
homogenization of the standard and blank material with 
the samples is a crucial aspect because a failure to do so 
can compromise the precision and the accuracy of the 
proposed method.

Some studies in the scientific literature30,33,63-66 have 
reported elemental determination in different samples using 

the MEC-LIBS method with good analytical performance 
parameters (Table 1).

4.2. One-point gravimetric standard addition (OP GSA)

SA is a calibration strategy that consists of increasing 
the analyte concentration in the samples, which are then 
plotted on the x-axis, and the analytical signals (S) are 
plotted on the y-axis. Thus, in an unknown sample, the 
analyte concentration can be calculated using equation 5 
proposed by Bader:67

	 (5)

where the intercept and the slope were obtained from the 
calibration curve, Vs is the fixed unit volume of the standard, 
Vx is the fixed unit volume of the unknown sample, Cs is 
the stock standard concentration and Cx is the unknown 
sample concentration.

For direct analysis of solids, a new gravimetric approach 
(G) was introduced to SA that considers masses instead of 
volumes. In 2008, Kelly et al.68 reformulated equation 5, 
considering the mass of the standard (ms), the unknown 
sample mass (mx) and the mass of the diluent (mD).

In gravimetric SA, the x-axis is represented by 
equation 6, the y-axis is represented by equation 7, and 
Cx is calculated using equation 8:68

	 (6)

Table 1. MEC-LIBS methods applications

Sample Analyte
Sample/standard 
or blank ratio / 

(% m m−1)
RSD / % Trueness / % Highlight Reference

Mineral supplements 
for cattle

Ca and P 80:20 4 to 26 80 to 109
Na2CO3 was used as the blank (and diluent); 

identified one spectral interference for P
30

Hard disk magnets
Fe, B, Dy, Gd, Nd, 

Pr, Sm and Tb
42:58 3 to 44 80 to 120

Na2CO3 was used as the blank, cellulose was used as 
a binder, and a sample was selected as the standard

33

Dietary supplements Ca, K and Mg 50:50 < 56 60 to 120

microcrystalline cellulose was used as the blank 
and diluent; evaluation of the influence of different 
proportions of the analyte in the stock solid mixture 

on analytical signals

63

Nickeliferous ores Ni and Cr 50:50 1 to 9 89 to 114 Na2CO3 as the blank and diluent 64

Liquid crystal 
display

In 40:60 12 to 20 80 to 120
SiO2 was used as the blank and cellulose as a binder; 

identified one spectral interference for In
65

High-silicon-content 
samples

Al, Fe and Ti 50:50 4 to 7 88 to 115

fused glass disks were prepared from CRM (brick 
clay and sediment), SiO2 and a lithium borate flux 
mixture; after the fusion procedure, fused samples 

were analyzed considering five emission lines for Al, 
seven for Fe and five for Ti; B and Li were evaluated 

as internal standards

66

RSD: relative standard deviation; CRM: certified reference material.
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	 (7)

 	 (8)

where CD is the analyte concentration in the diluent, and 
the term mDCD can be neglected in equation 6 because the 
diluent is usually of high purity, and S is the analyte signal. 
In addition to its advantages, SA usually requires five 
points, which causes long preparation of solid calibration 
standards for each sample.

Moreover, for the first time, Babos et al.30 proposed OP 
GSA for direct solid analysis by LIBS. This strategy uses 
two calibration standards (sample + blank and sample + 
standard), similar to the standards prepared when using 
MEC, and only one wavelength is monitored. Figure 2 
shows an example of the calibration curve employing OP 
GSA by LIBS, in which the unknown concentration of 
analyte in the sample is calculated by extrapolation of the 
calibration curve, according to equation 8.

In the literature, only two studies are available 
employing OP GSA, including one for determination 
of Ca and P in solid mineral supplements30 and one for 
determination of B, Fe, Dy, Gd, Nd, Pr, Sm and Tb in hard 
disk magnets.33 In general, the authors obtained sufficient 
RSD values (ranging from 1 to 39% in mineral supplement 
and 2 to 44% in hard disk magnet determinations, in 
addition to adequate trueness).

The OP GSA method has an advantage over conventional 
SA because it requires a small amount of sample to prepare 
the standards which only one SA point is used, and, 
consequently, there is a higher analytical throughput.

4.3. One-point and multiline calibration (OP MLC)

OP MLC is a new calibration strategy based on a single 
matrix-matched standard sample and multiple lines of 
determined elements. The main idea is that from the local 
thermodynamic equilibrium (LTE) in the temporal window 
of signal acquisition, the measured integral line intensity 
can be expressed according to the Boltzmann equation, as 
shown in equation 1.31

Therefore, measuring the intensity of spectral line 
Iλ1 is proportional to Iλ2 from the same species under 
the same plasma conditions. Moreover, if two emission 
lines λ1 and λ2 are emitted from the same element but in 
different samples, their intensity ratio can be expressed 
by equation 9:

	 (9)

where a and b indicate two different samples and Cs
a  and  

Cs
b are the concentrations of species in samples a and b. 

Therefore, the unknown concentration of the determined 
species can be obtained by employing only one sample as 
a standard in which the concentration of the analytes must 
be certified or known.

According to the authors,31 the use of a single line cannot 
be guaranteed due to background of the spectrum and 
intensity errors that can affect the unknown concentration. An 
alternative for this problem is to use the intensities of multiple 
lines of a standard or certified material and unknown samples 
to build a linear model, as shown in Figure 3. In addition, 
equation 9 was reformulated by replacing the intensity ratio 

 with the slope of the linear model. Therefore, equation 

Figure 2. OP GSA calibration curve.

Figure 3. OP MLC linear model for five spectral lines of an analyte.
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10 can be used to calculate the concentration of the analytes 
in the unknown samples.

Canalyte = slope × Cstandard	 (10)

Using OP MLC for quantitative determination by LIBS 
simplifies the analysis because it does not require a large 
number of standards and complicated calculations. In the 
literature, only one study31 has reported the use of OP 
MLC for Mn, Cr, Ni, Ti and Fe determination in standard 
low-alloy steel samples with average relative errors for 
determination in the range of 9-36%.

4.4. Slope ratio calibration (SRC) and two-point calibration 
transfer (TP CT)

The SRC method is a calibration strategy recently 
proposed by Nunes et al.32 This strategy is related to the 
increase of the ablated sample mass with the number of 
accumulated laser pulses on a single calibration standard. The 
emission intensity (I) is directly proportional to the analyte 
amount in the ablated sample mass (m), which, in turn, is 
proportional to the number of laser pulses (Np). Process 
related to sample ablation (k1), and analyte atomization and 
excitation efficiency (k2) are shown by proportionality (K) 
between I and Np, according to equation 11.

	 (11)

Two linear models are generated in SRC, one for a 
sample with an unknown analyte concentration and the 
other for a calibration standard, which can be a CRM 
or reference sample. These two models are obtained by 
plotting the analyte emission intensity as a function of 
the number of accumulated laser pulses in the sample and 
in the standard, as shown in Figure 4a. The analyte mass 
fractions in the sample with unknown concentrations are 
determined from the ratio of the corresponding slopes of 
these linear models.

Using the reference concentration (Cstandard) of the 
analyte in the calibration standard and the slope ratio 
obtained in the linear models for the sample (slopesample) and 
calibration standard (slopestandard), the analyte concentration 
(Canalyte) can be obtained using equation 12.

	 (12)

SRC was employed for the determination of B, Ca, Cu, 
Fe, Mg, Mn, P and Zn in plant leaves using between 5 and 
30 laser pulses per site for calibration. Analysis of CRMs 
and comparison with the results obtained by ICP OES were 
used to verify the accuracy of the SRC calibration strategy, 
with agreement at the 95% confidence level.

The TP CT method is another interesting calibration 
strategy and it was recently proposed by Castro et al.33 It is 
derived from the SRC approach with the difference of using 
only two points of accumulated laser pulses. Therefore, 
the linear model for the sample and standard is obtained 

Figure 4. Linear models obtained for the sample and standard using (a) SRC and (b) TP CT for LIBS.
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with two analytical signals monitoring only one analyte 
emission line, as can be seen in Figure 4b. The interest 
analyte concentration is also calculated as the SRC method 
(equation 12).

As in LIBS, hundreds of spectra are obtained for 
representative analysis, so it is easy to obtain two sets of 
spectra for the linear model plot. In addition, the sum of 
the intensity of the spectra obtained for each set should be 
used as data pretreatment.33 According to the pioneering 
study,33 the second set of spectra must be at least twice as 
large as the first set to obtain good linearity of the models. 
The linearity is obtained calculating the F-values (Fexperimental 
and Ftabulated) from the mean of square of regression and 
residue (MSR and MSr, respectively). If the ratio of  
Fexperimental/F tabulated is ≥ 10, the model is considered 
statistically valid with good linearity.30,69-71

A limitation of both methods (SRC and TP CT) is 
the difficulty in choosing an appropriate standard for 
obtaining a linear model for subsequent calibration 
transfer. The laser-to-sample/standard interaction depends 
on the physicochemical characteristics of the sample, the 
laser properties and the optical design.32 Therefore, it is 
necessary that the unknown sample and the standard have 
similar characteristics and concentrations of the analyte 
for a perfect matrix-matching. In addition, the analysis in 
LIBS should be performed using the same parameters for 
both samples (unknown and standard).33

TP CT was successfully employed for the direct analysis 
and determination of base and rare earth elements in eight 
obsolete hard disk magnets. The RSD values varied from 
2 to 28%.33 TP CT has also been successfully used by 
Gamela et al.70 for the direct determination of Ca, K and 
Mg in cocoa beans. The last three calibration possibilities 
presented (OP GSA, SRC and TP CT) require the selection 
of an emission line free of spectral interference. In this case, 
a good strategy is to first use MEC, identify the emission 
lines that are free of spectral interference and apply these 
lines in the calibration strategies that employ signal from 
an individual emission line.

4.5. Single-sample calibration (SSC)

The SSC method was recently proposed by Yuan et al.34 
This strategy is based on the Lomakin-Scherb formula, 
where the emission intensity of a spectral line of element j 
is equal to the multiplication of an experimental factor 
by the concentration of element j. Thus, to estimate the 
concentration of the analyte only one sample (CRM 
or sample with a reference concentration) is used as a 
calibration standard and subsequent correlation is calculated 
between the different emission lines of the analyte and other 

elements present in the standard and sample (unknown) 
and the concentration of all these elements present in the 
calibration standard.

The SSC method requires only a correlation between 
emission line intensity and concentration, eliminating the 
necessity to construct a calibration curve or linear models. 
The highlight of this strategy is that the analyte emission 
line and other emission lines of the elements present in the 
plasma formed after sample ablation are employed in this 
correlation to estimate the analyte concentration, which 
enables good accuracy in the determinations.34

Thus, the analyte concentration (Canalyte) is calculated 
using equation 13:

	 (13)

where Cstandard analyte and Ianalyte standard are the concentration and 
intensity of the emission line of the analyte in the sample 
used as a calibration standard, respectively; Ianalyte sample is the 
emission intensity of the analyte in the unknown sample, 
IN

element  sample is the emission intensity of the element N in 
the sample of unknown concentration, and CN

standard  element 
and IN

element  standard are the concentration and the emission 
intensity of the element N, respectively, in the sample used 
as a calibration standard.34

In SSC there is a direct correlation among the 
concentration and emission line intensities of the elements 
present in the plasma. It is important to mention for the 
concentration estimation that both standard and sample 
need to have similar physicochemical properties to 
minimize the matrix effects and, in addition, the selection 
of emission lines free of spectral interference.

In the study of Yuan et al.,34 SSC was employed to 
determine Fe, Cu, Zn, Ni, Cr, Nb, and Mo in steel, brass, and 
nickel-based microalloy samples. The analytical figures of 
merit obtained using SSC showed better results than those 
of matrix-matching calibration (multipoint calibration).34

5. Multivariate Calibration

Unlike univariate calibration, multivariate analysis 
is the study of several variables measured in a certain 
number of samples, of which the aim is to determine all 
types of variation in the data. This calibration refers as 
first-order calibration, where a vector is determined for 
each sample. Therefore, chemometric tools attempt to find 
the relationship between samples (scores) and variables 
(loadings).72-74
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Some advantages of multivariate calibration are noted 
as follows: (i) noise reduction is accomplished using 
multiple responses, improving the precision and obtaining 
robustness towards random artifacts; (ii) interferents can 
be handled when these interfering species are included 
in the calibration model and both signals (interferent 
and analyte) are not completely identical. On the other 
hand, if these species are not included in the calibration 
model, the presence of interference can be detected but 
not corrected; (iii) several parameters are obtained with 
the models, which can be used to investigate, understand 
and improve the model. With the scores, it is possible 
to observe the presence of outliers, for instance, where 
extreme scores can indicate an extreme sample (possibly 
an outlier).

To predict samples from validation with the calibration 
model, one important aspect is that the new sample should 
contain the same characteristics as those of the samples 
for which the calibration model was built; otherwise, the 
deviation can be observed, containing unmodeled variation, 
where the new samples cannot be accurately predicted with 
the model.75-77

There are many tools for multivariate calibration, 
such as multiple linear regression (MLR),78,79 principal 
component regression (PCR),80,81 partial least squares 
(PLS),82,83 and artificial neural networks (ANN).84,85 
According to Web of Science, since 2000, the number of 
publications with LIBS and multivariate calibration has 
presented a systematic increase, and among the methods 
mentioned, PLS proved to be included in the most 
published papers, followed by those reporting on ANN, 
PCR and MLR, as showed in Figure 5. In addition, Table 2 
presents some applications of multivariate calibration in 
LIBS.59,80,86-93

6. Conclusions and Perspectives

After evaluation of this review, the reader is probably 
asking: what is the best calibration strategy for LIBS? This 
is a very difficult question and depends on several factors, 
such as sample type, availability of standards (or reference 
values), correction or removal of the background signal, 
besides spectral normalization procedures. Currently, the 
calibration possibilities for quantitative analysis by LIBS 
are diverse. However, the optimal calibration will be one 
that allows determinations with satisfactory accuracy and 
precision, i.e., one that minimizes matrix effects in the 
analyte determination. The choice of the calibration strategy 
employed in the analytical method to be developed will 
depend on the intrinsic properties of the sample analyzed 
and the knowledge of the advantages and limitations 
inherent to each strategy. Table 3 briefly outlines the 
advantages and limitations of each calibration strategy 
presented in this review.

Table 2. Applications of multivariate calibration in LIBS

Goal Sample Calibration method Reference

Ti quantification sunscreen MLR, PCR and PLS 80

Pb quantification tea leaves external standard, IS and MLR 59

Total carbon concentration soil MLR 86

Mn quantification glass matrices PCR 87

Cu and Zn quantification brass alloys PCR and PLS 88

PC and ABS concentration plastics (PC/ABS) from WEEE PLS 89

Clay, silt and sand percent soil PLS 90

Cu quantification soil ANN 91

Quantification of trace levels of uranium forensic nuclear materials ANN 92

Cr, Mg, Mn and Cu determination Al alloys ANN 93

MLR: multiple linear regression; PCR: principal component regression; PLS: partial least squares; IS: internal standardization; PC: polycarbonate; ABS: 
acrylonitrile butadiene styrene; WEEE: waste of electrical and electronic equipment; ANN: artificial neural networks.

Figure 5. Publications since 2000 about multivariate calibration and LIBS.
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The authors of this review expect that the information 
presented here will help readers and LIBS users successfully 
perform quantitative analysis. Several different calibration 
methods (univariate and multivariate) were presented, 
emphasizing their advantages and limitations. Calibration-
free (CF) analysis was not mentioned because it is beyond 
the scope of our intentions. In our opinion, this review can 
aid users in the selection of a proper calibration alternative, 
fostering the application of LIBS for several types of 
samples. The challenges are many, but from the literature, 
it is possible to conclude that LIBS is already a superstar 
technique.
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