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Soy isoflavones have been reported as endocrine disruptors due to their ability to modulate 
the activity of estrogen receptors (ERs) in mammals; however, its ability to modulate other 
metabolic pathways is not entirely clear, which makes it necessary to identify new pharmacological 
targets that interact with these compounds present in soybean. In this work, a virtual screening 
was executed to identify potential targets of nine soy isoflavones, employing human proteins 
target from PharmMapper. The best 25 fit scores were selected and prepared for AutoDock Vina 
docking protocols. The results suggest that equol, daidzein and biochanin A, have the potential 
to interact with targets such as phenylethanolamine N-methyltransferase, sex hormone-binding 
globulin and vitamin D3 receptor, respectively. The validations of docking protocols showed 
good pose reproducibility (root-mean-square deviation (RMSD) ranged 0.001-3.854 Å) and 
a modest correlation between binding affinities and agonist concentration, AC50 (correlation 
coefficient (R) = 0.643, p < 0.001). Protein interaction network revealed that predicted targets 
for soy isoflavones are involved in different pathways, including neurotransmission, metabolism, 
and cancer remarking the need of a better understanding of the effects of these compounds on 
human health.
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Introduction

The endocrine disruptors (EDs) are substances or 
exogenous mixtures that alter the function of the endocrine 
system, and consequently cause adverse health effects in 
an organism or its progeny.1-3 Those include a wide variety 
of anthropogenic and naturally occurring compounds 
that work through several mechanisms, from mimicking 
hormones to interaction with downstream signals.4 Many 
EDs are commonly found in the human diet, including 
fruits, vegetables and beans, among others.5,6

Soybean is a common food for adults and infants 
that is particularly rich in phytoestrogens, in particular 
isoflavones.7 These natural products are derivatives of 
heterocyclic phenols that exhibit similar structure to 
estrogens. As typical phenolic compounds, they are potent 
antioxidants.8 Isoflavones include genistein, daidzein, 
equol, glycitein, biochanin A, among others.9,10 Most of 
these compounds are known as selective estrogen receptor 
modulators (SERM), and modulator of critical pathways 
for growth and cell proliferation, an event that affects 
multiple organs.11,12 The genistein inhibits the activity of 
protein tyrosine kinase (PTK).13,14 In vitro assays have 

shown that, although phytoestrogens activate transcription 
of genes dependent on both estrogen receptors, ERα and 
ERβ, usually have a selective binding affinity for ERβ.15‑18 
It has been reported that phytoestrogens may reduce 
estrogen-dependent prostate cancer,19 and related to the 
occurrence of cervical cancer, cardiotoxicity, polycystic 
ovarian syndrome, infertility, among others.5,20,21

In addition to binding to estrogen receptor, isoflavones 
may be targeting many other biochemical pathways. 
One way to discover those signaling routes is to use 
computational methods to find molecular targets. These 
include: the prediction based on ligand similarity with 
drugs or evaluated molecules,22,23 network prediction linked 
to known proteins,24 methods based on adverse effects 
of phenotypes generated by drugs, molecular docking, 
pharmacophore mapping, and comparison of binding site 
or fingerprints.25

Artificial intelligence methods have emerged as a 
powerful tool for identifying new targets in drug discovery. 
However, these methods have limitations when it comes 
to undeclared proteins as targets, since these methods are 
based on the principle that similar ligands exert similar 
biological effects, sometimes presenting erroneous 
predictions for targets with little information or noisy 
data available.26 The identification of new protein targets 
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for small molecules remains a major challenge in drug 
discovery, as well as, the study of their adverse effects. In 
recent years, the tireless search for reliable computational 
strategies has been growing, since experimental predictions 
require great expenditure of resources and time.

Virtual screening has made possible the identification 
suitable biological targets for particular compounds, mainly 
when conclusive experimental data are not available. 
There are many web servers that have been used for this 
purpose, including SwissTargetPrediction,27 idTarget,28 
INVDOCK,29 TarFisDock,30 among others. However, most 
do not generate the coordinate for protein-ligand binding 
site, and others base their search on molecular docking, but 
with a limited number of human target proteins. In this work 
we combined different criteria of computational chemistry. 
PharmMapper server31 was selected as the first filter, which 
is based on the search for targets based on the receptor 
pharmacophore mapping, with 23236 proteins, covering 
16159 pharmacophore models as druggable binding sites, 
and then combined with molecular docking and protein 
interaction network methods.

PharmMapper server is offered as a friendly tool whose 
purpose is finding potential targets for small molecules. 
PharmMapper fit score generates a nearly 7,000 × 7,000 
score matrix. After this, when a new molecule is submitted, 
the fit score to each pharmacophore will be calculated first, 
and then every fit score of a specific pharmacophore will be 
compared to the fit score matrix to measure its score level 
among all the scores of the pharmacophore.32 On the other 
hand, protein-ligand molecular docking is a computational 
method, which binds flexible molecules within a rigid or 
flexible representation of a receptor, allowing to obtain the 
best energetically-possible conformation and geometric 
orientation. The program AutoDock Vina33 has been widely 
used for this purpose.34,35

In this study, combined computational approach 
PharmMapper server,31 AutoDock Vina,33 pharmacophore 
mapping and protein interaction network were used 
to perform the virtual screening to identify potential 
target proteins for soybean isoflavones, with subsequent 
validation of in silico methods. Additionally, it is discussed 
the interactions and possible role of these compounds on 
the different metabolic pathways for the identified targets.

Methodology

Ligands optimization

Nine isoflavones present in soybean were evaluated 
as input ligands to find their plausible targets: genistein,36 
daidzein, equol,37 glycitein, biochanin A,38 formononetin,39 

dihydrogenistein (DHG), dihydrodaidzein (DHD) and 
O-desmethylangolensin (O-DMA).40

Identification of target proteins for isoflavones with 
PharmMapper

A three-step approach was applied to identify target 
proteins for soybean isoflavones. The process includes 
the optimization of the ligands, virtual screening of new 
targets based on pharmacophores, and the calculation 
of the protein-ligand affinity by molecular docking. 
First, the ligand structures were optimized with the 
density functional theory (DFT) method at the Becke, 
3-parameter, Lee‑Yang‑Parr (B3LYP)/6-31G (d’,p’) basis 
set. The calculations were performed using the Gaussian 09 
program.41 The resulting geometry was converted to Mol2 
format with the Open Babel program.42

The optimized isoflavone structures were submitted 
to the PharmMapper server using the option “Human 
Protein Targets Only”. This allows the identification of 
potential human protein targets for isoflavones using a 
pharmacophore mapping approach.43 This server contains 
23236 proteins (covering 16159 druggable, 459 of 
which are human protein targets), and 51431 ligandable 
pharmacophore models.44,45 The selection of potential 
pharmacological targets was carried out using the fit 
score value, employing the best 25 human proteins targets 
displayed in the target list (5.4% of human protein targets). 
The verification of protein binding sites coordinates was 
carried out visually with Sybyl-X 2.0,46 in order to ensure 
that the ligand remained in the cavities of the protein.

The molecular interaction between isoflavones and 
target proteins selected by PharmMapper was verified by 
molecular docking protocols with AutoDock Vina. Nine 
isoflavones optimized structures were docked on first 
25 target proteins according to the fit score value using 
AutoDock Vina program.33 3D protein structures were 
downloaded from Protein Data Bank47 and prepared with 
SYBYL-X 2.0 package.46 The preparation process consisted 
of removing water molecules and other co-crystallized 
ligands, repairing and fixing of amides in amino acid side 
chains, then hydrogens were added to amino acids residues 
(protonation). Optimization using Powell conjugate 
gradient method; with dielectric constant value of 1.0, 
gradient convergence fixed to 0.001 kcal mol−1, maximum 
number of iterations at 1000, and Kollman united/all-atoms 
force fields with AMBER charges.48 The protein-ligand 
molecular docking was defined by establishing a cube 
with the dimensions 24 × 24 × 24 Å, fixed at the geometric 
centre of each evaluated soy isoflavone, and grid point 
spacing of 1.0, covering the ligand-binding site provided 
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by PharmMapper. Molecular docking calculations for 
isoflavones included 20 number modes, an energy range 
of 1.5, and exhaustiveness equal to 25, and all docking run 
analyses were performed in triplicate; and their binding 
affinities (kcal mol–1) reported as mean ± standard deviation.

Identification of interacting protein residues and validation 
of protocols

The identification of amino acids in target proteins 
that interact with the isoflavones was performed 
employing LigandScout 3.0.49 This tool creates simplified 
pharmacophores models to detect the number and type of 
interaction between the ligand and the residue in the binding 
site of the protein. Images of each protein-ligand complex 
were displayed using PyMOL.50

Protein interaction network (PIN) of potential targets 
predicted for soy isoflavones

Protein interaction network analysis and pathway 
enrichment for the potential target of soy isoflavones 
were performed with STRING 11.0 web server,51 in order 
to identify and illustrate the protein-protein interactions 
and neighbor genes. Names of predicted PharmMapper 
protein targets for soy isoflavones were searched in Uniprot 
database and gen codes were extracted. Pathway analyses 
were processed according to the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) and Reactome database.52

Validation of docking protocols performed using two 
computational approaches

The first computational approach, re-docking 
calculations, was performed with co-crystallized ligand 
for the hits proteins, in total 100 AutoDock Vina docking 
runs were performed for each evaluated complex. The 
RMSD (root-mean-square deviation of atomic positions) 
values were calculated with Sybyl-X 2.046 for the best 
AutoDock Vina predicted ligand pose, as well as value for 
experimentally reported pose and calculated RMSD values 
as histogram graph of co-crystallized ligands.

A second validation approach included a correlation 
analysis, which was performed in order to establish a 
relationship between the calculated binding affinity values 
and the biological data. In this work, only the hormone 
binding globulin (SHBG) bioassay from PubChem 
assay ID: 31868053 was used for validation, because it 
contained a higher number of compounds evaluated, and 
unlike the assays recorded for the other targets predicted 
by PharmMapper, these have structural similarity with 

soy isoflavones. In addition, this benchmark data set 
of compounds has been used for validation of popular 
molecular field-based quantitative structure-activity 
relationship (QSAR) and molecular docking techniques.54

Biological data for a representative set of 60 active 
ligands of SHBG were extracted from PubChem database.53 
The biological information consisted in the displacement of 
[3H]-5-alpha-dihydrotestosterone from the human SHBG. 
Theoretical binding affinities for these active compounds 
on the SHBG (Protein Data Bank (PDB): 1LHO) were 
obtained using the molecular docking protocols previously 
described.

Results and Discussion

Virtual screening using PharmMapper and AutoDock Vina

An inverse virtual screening was carried out to predict 
potential targets of soy isoflavones (Figure 1). The results 
from PharmMapper, verified using AutoDock Vina are 
shown in Table 1. According to PharmMapper fit score, 
most protein targets for isoflavones are nuclear receptors, 
being the ER highly frequent as a target among the best 25 
main hits (Tables S1-S9, Supplementary Information (SI) 
section). The calculated AutoDock Vina affinity values 
were considerably poor for those targets above number 25 
according to the fit score.

Soy-derived compounds also had good theoretical 
binding preferences for different enzymes such as 
transferases, reductases, kinases, phosphatases and 
dehydrogenases, including also globulin-related 
proteins. Selected proteins as better targets based on 
AutoDock Vina calculations were the phenylethanolamine 
N-methyltransferase (PNMT, PDB: 1YZ3),55 sex hormone-
binding globulin, (SHBG, PDB: 1LHO)56 and vitamin D3 
receptor (VDR, PDB: 1DB1)57 for equol, daidzein and 
biochanin A, respectively.

Figure 1. Two-dimensional structures of evaluated soybean isoflavones.
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Interactions between protein residues and soy isoflavones 
on PharmMapper predicted hits

The greatest AutoDock Vina affinity value for PNMT 
was obtained for the isoflavone equol (–10.8 kcal mol–1). 
The binding site on PNMT-equol complex is characterized 
by interactions between the ligand and residues Val-23, 
Ala-24, Tyr-27, Phe-30, Phe-102, Leu-103, His-160 and 
Val-187 (Figure 2), with mostly hydrogen bonds and 
aromatic interactions.

In the case of SHBG, daidzein produced the best 
result with a binding affinity value of –10.4 kcal mol–1. 
The interacting residues identified were Ser-42, Thr-40, 
Asp-65 (hydrogen bond), Phe-56, Phe-67, Leu-80, Ile-141, 
Val-105, Met-139 and Leu-171 (hydrophobic interactions) 
(Figure 3).

Biochanin A was the best ligand for VDR, with a 
binding affinity value of –10.1 kcal mol–1 (Table 1). The 
predicted residues with LigandScout program for the 
complex VDR-biochanin A established the presence of a 
hydrogen bond with Ser-237 and aromatic interactions with 
Trp-286 (Figure 4).

Isoflavones DHD and genistein also showed promising 
affinity values. The complex SHBG-DHD displayed an 
affinity binding value of –10.2 kcal mol–1, and the binding 
site comprised Phe-56, Val-105, Ser-42, Thr-40, Leu-171, 
Phe-67, Leu-80, Met-139 and Asn-82 (Figure S1, SI 
section). The in silico binding of genistein on VDR resulted 
on an affinity of –10.0 kcal mol–1, and interactions with 
Ser-237 and Trp-286 (Figure S2, SI section).

Soy isoflavones are phenolic/non-steroidal bioactive 
compounds classified as phytoestrogens. The exposure to 

Table 1. Results of virtual screening for main soybean isoflavones with PharmMapper server,31 and docking calculations with AutoDock Vina program33

Compound
Protein PharmMapper AutoDock Vinaa ± SD / 

(kcal mol–1)Name PDB code Fit score

Biochanin A

vitamin D3 receptor 1DB1 3.72 –10.1 ± 0.0

aldose reductase 2DUX 3.91 –9.7 ± 0.1

estradiol 17-beta dehydrogenase 1 1I5R 4.44 –9.1 ± 0.0

Daidzein

sex hormone binding globulin 1LHO 3.68 –10.4 ± 0.0

estrogen receptor 1L2I 3.93 –9.4 ± 0.0

estrogen-related receptor gamma 1S9P 3.89 –9.2 ± 0.1

Dihydrodaidzein

sex hormone-binding globulin 1LHO 3.93 –10.2 ± 0.0

estrogen related receptor gamma 1S9P 3.81 –9.4 ± 0.0

estrogen receptor beta 2Z4B 3.81 –9.4 ± 0.1

Dihydrogenistein

dihydroorotate dehydrogenase mitocondrial 1D3H 4.23 –9.6 ± 0.2

sex hormone-binding globulin 1D2S 3.74 –9.1 ± 0.0

estrogen receptor beta 1L2J 3.79 –9.1 ± 0.0

Equol

phenylethanolamine N-methyltransferase 1YZ3 3.51 –10.8 ± 0.0

eukaryotic translation initiation factor 4E 1IPB 3.63 –9.3 ± 0.1

transthyretin 1RLB 3.74 –9.3 ± 0.0

Formononetin

estradiol 17-beta-dehydrogenase 1 1I5R 4.41 –8.9 ± 0.0

tyrosine-protein phosphatase non-receptor type 1 1Q1M 3.71 –8.9 ± 0.0

transthyretin 1RLB 3.50 –8.9 ± 0.1

Genistein

vitamin D3 receptor 1DB1 3.76 –10.0 ± 0.0

aldose reductase 2DUX 3.89 –9.5 ± 0.0

cell division proteinkinase 2 1DI8 3.72 –9.4 ± 0.0

Glycitein

ribosyldihydronicotinamide dehydrogenase 1SG0 3.78 –10.0 ± 0.0

serine/threonine-protein kinase Chk1 2AYP 3.83 –9.5 ± 0.0

transthyretin 1RLB 3.69 –9.1 ± 0.0

O-Desmethylangolensin

vitamin D3 receptor 1DB1 3.77 –8.9 ± 0.1

estrogen-related receptor gamma 1S9P 3.80 –8.8 ± 0.0

estrogen-related receptor gamma 2P7G 3.78 –8.8 ± 0.0

aAutoDock Vina binding affinities are expressed as mean ± standard deviation (SD) for three docking. PDB: Protein Data Bank.
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these chemical agents occurs mainly through the intake of 
soy and its derivatives, these are being consumed at varying 
rates according to the region and dietary preferences. 
Moreover, these phytoestrogens are also provided in food 
products for cattle.43 Isoflavones present in soybeans have 
been widely described as phytoestrogens,58-60 as a result 
of their ability to modulate hormonal function via ER,19,61 
making them well-known endocrine disruptors. However, 
additional pathways by which these chemical agents can 
exert various health effects are still unknown.

The results showed that soy-derived products could 
have health effects through their interaction with potential 
molecular targets. The best binding affinity for tested 
molecules was found for equol (–10.8 kcal mol–1) on 
PNMT, an enzyme important on the catecholamine 
biosynthesis. This protein participates on the conversion 
of norepinephrine to epinephrine.62 The latter is related 
to the sympathetic nervous system and adrenal medulla, 

involved in many physiological functions, including 
blood pressure, vasoconstriction, cardiac stimulation and 
regulation of blood glucose level.63 The protein-ligand 
interaction takes place near a binding site occupied by the 
cofactor S-adenosyl-L-homocysteine. In fact, equol also 
interacts with Phe-102 and Val-187 (Figure 2), residues 
that also bind to the purine ring in the cofactor.55

Daidzein, another recognized soy phytoestrogen, 
presented an affinity value of –10.4 kcal mol–1 when 
binding on the sex hormone binding globulin. SHBG 
is a glycoprotein, biosynthesized mainly in the liver, 
which participates in the regulation of free estradiol and 
testosterone in plasma.64,65 Moreover, it has been reported66 
that isoflavones or phytoestrogens increase the serum levels 
of SHBG. In addition, in vitro studies14,18 have showed 
that isoflavones displace testosterone and 17β-estradiol 
from the binding sites of SHBG, potentially altering the 
bioavailability of free steroids and the androgen/estrogen 

Figure 3. (a) SHBG-daidzein complex. Interacting residues with daidzein are shown in (b) 3D (Pymol) and (c) 2D (LigandScout).

Figure 4. (a) VDR-biochanin A complex. Interacting residues with biochanin A are shown in (b) 3D (Pymol) and (c) 2D (LigandScout).

Figure 2. (a) PNMT-equol complex. Interacting residues with equol are shown in (b) 3D (Pymol) and (c) 2D (LigandScout).
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balance. Likely, as shown by the docking results, the 
potential interaction of daidzein with SHBG may result 
on hormone displacement from SHBG. The docking 
SHBG-daidzein complex displayed the same binding site 
reported for the native ligand, 5α-androstan-3β,17β-diol 
(1LHO).56 This site includes Thr-40, Ser-42, Gly-58, 
Asp‑65, Phe-67, Asn-82, Leu-131 and Met-107 (Figure 3). 
The DHD, a derivative of daidzein, presented an affinity 
value of –10.2 kcal mol–1, occupying the same pocket in the 
protein, with small differences in protein-ligand interaction 
residues.

Molecular docking for biochanin A and genistein on 
VDR, a ligand-dependent transcription regulator, presented 
an affinity value of –10.1 and –10.0 kcal mol–1, respectively. 
This receptor is involved in the transcription of a wide 
variety of genes like miRNAs, MIR181a, CYP19A1, 
among others. In addition, it controls the transcription 
of messenger ribonucleic acid (RNA), the regulation of 
the amount of translated proteins, the differentiation of 
hematopoietic cells and the production of aromatase, a key 
enzyme on the biosynthesis of estrogens.67 The interaction 
VDR-biochanin A (Figure 4) involves residues Ser-237 
and Trp-286, amino acids that have been reported68,69 to 
have a critical role in the positioning of their natural ligand 
1α,25-dihydroxyvitamin D3 (1,25 (OH)2D3) on VDR. 
Trp-286 is also important as it allows an adjustment of the 
small conjugated chain (C=C‑C=C) that connects the rings 
A and C of 1,25 (OH)2D3, facilitating the processing of the 
ligand binding through a network of hydrogen bonds.57,68,70

Protein-protein interactions (PPI) for predicted soy 
isoflavones target proteins (Table 1) were evaluated again 
by using STRING 11.051 and these seed proteins were 
integrated into the total PIN with nodes 25, number of edges 

was 70, average node degree was 5.6, average clustering 
coefficient of 0.676, expected number of edges  = 24, 
and PPI enrichment p-value = 3.83 × 10–14. Pathways of 
hub neighbors were obtained from GO (Gene Ontology) 
proteins involved in the same pathway except NRH: quinone 
oxidoreductase 2 (NQO2), dihydroorotate dehydrogenase 
(DHODH), transthyretin (TTR), estrogen-related receptor 
gamma (ESRRG) (Figure 5). However, TTR and ESRRG 
participate in hormonal regulation processes.71

The KEGG analysis revealed the participation of these 
proteins in different pathways including cyclin-dependent 
protein serine/threonine kinase activity, hormone binding, 
kinase binding, nuclear receptor activity, among others 
(Table S10, SI section). On the other hand, Reactome pathways 
analysis showed the participation of these proteins in critical 
routes including transcription of genes involved in G1 cell 
cycle arrest, G1/S deoxyribonucleic acid (DNA) damage 
checkpoints, generic transcription pathway, and diseases of 
signal transduction (Table S11, SI section). These findings 
suggest that isoflavones could modulate different signaling 
pathways, explaining some of the effects observed for the 
evaluated compounds.72 However, some KEGG signaling 
pathways revealed the close relationship of these proteins 
in cancer-related mechanisms such as CDK2, CCEN1 and 
RB1, opening a door for the isoflavones present in soy to 
be used as a platform for the design of anticancer agents.73

Validation of molecular docking protocols

Two approaches were carried out to validate docking 
protocols. The first one included a superposition using 
the ligand in its X-ray complex and that predicted 
employing AutoDock Vina. For several complexes 

Figure 5. Protein interaction network analysis with STRING website 11.0,51 showing results obtained upon entering a set of 27 theoretical targets proteins 
for soy isoflavones.
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available in the PDB containing isoflavones as ligands 
or substrates, 100 re‑docking runs were carried out using 
the co-crystallized ligands previously extracted from the 
protein complex (Table S12, SI section). The capability 
of the molecular docking protocols to reproduce the 
crystallographic pose of the ligands were examined by 
RMSD calculation (Å).74 Calculated mean RMSD values 
ranged from 0.001 to 3.864 Å (Table 2). The maximum 
RMSD value (3.864 Å) was observed for the complex 
estradiol 17-beta-dehydrogenase 1/EM-1745 (C37H51N5O7), 
probably as a result of its bulky nature with a large number 
of rotatable bonds.33

Mean RMSD distributions are presented in Figure 6 
for PDB crystallographic structures, showing the 
reproducibility of poses by the AutoDock Vina, where 
trends are also presented with RMSD values for pose 

replication analyses, as well as some values far from the 
mean value. The histograms were drawn using PAST,75 
adjusted to eight class marks, with kernel density estimation 
(KDE), used to estimate the probability density function 
of a nonparametric random variable.75

Mean affinity values obtained for co-crystallized 
ligands in the analyzed proteins (VDR, PNMT and 
SHBG) showed similar magnitude to those presented for 
soy isoflavones, these affinity values ranged between –6.2 
and 11.7 kcal mol–1. However, for the PNMT protein, the 
affinity with the co-crystallized ligand was much lower 
(–6.2  kcal  mol–1) than with the soy isoflavone equol 
(–10.1 kcal mol–1). It is important to clarify that in most 
cases the binding sites of the co-crystallized ligands were 
different from those predicted by PharmMaper server for 
the soy isoflavones.

Table 2. RMSD values for superposition of AutoDock Vina predicted pose and co-crystallized ligand pose for protein target of soy isoflavones (n = 100)

Protein PDB code Co-crystallized ligand RMSD / Å
AV affinity / 
(kcal mol–1)

Vitamin D3 receptor 1DB1 1,25 dihydroxy vitamin D3 1.359 –11.7 ± 0.7

Dihydroorotate dehydrogenase mitochondrial 1D3H antiproliferative agent A771726 1.031 –7.6 ± 0.9

Sex hormone binding globulin 1LHO 5-alpha-androstane-3-beta,17beta-diol 0.001 –11.3 ± 0.0

Phenylethanolamine N-methyltransferase 1YZ3 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline 0.001 –6.2 ± 0.1

Ribosyldihydronicotinamide dehydrogenase 1SG0 resveratrol 0.754 –9.2 ± 0.3

Estradiol 17-beta-dehydrogenase 1 1I5R EM-1745 3.864 –11.6 ± 1.0

PDB: Protein Data Bank; RMSD: root-mean-square deviation; AV: AutoDock Vina.

Figure 6. RMSD values distribution for 100 re-docking runs for crystallographic structures of vitamin D3 receptor (PDB: 1DB1), dihydroorotate 
dehydrogenase mitocondrial (PDB: 1D3H), sex hormone binding globulin (PDB: 1LHO), phenylethanolamine N-methyltransferase (PDB: 1YZ3), 
ribosyldihydronicotinamide dehydrogenase (PDB: 1SG0), and estradiol 17-beta-dehydrogenase 1 (PDB: 1IR5). For illustrative purposes AutoDock Vina 
predicted pose (purple) and co-crystallized ligand pose (yellow) are presented on each PDB structure.
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A second validation approach consisted of a correlation 
between experimental and predicted biological data 
for SHBG agonists based on their binding affinities. 
Experimental agonist concentration 50 (AC50) were recovered 
from PubChem BioAssay Database for 60 compounds. 3D 
structures were docked on receptor sex hormone-binding 
globulin structure, and PDB: 1LHO with AutoDock Vina 
program. The PubChem chemical structure identifier (CID), 
AC50, AutoDock Vina affinity and logarithm of biological 
activity (log AC50) for compound set evaluated are shown 
in the Supplementary Information (Table S13).

Linear correlation analysis showed the acceptable 
prediction capacity of protein-ligand interaction and 
biological activity of SHBG agonists with molecular 
docking protocols used, as shown in Figure 7. Linear 
Pearson correlation obtained for AutoDock Vina was 0.643 
(p < 0.001), with a positive relation between binding affinity 
values (kcal mol–1) and log AC50. Details of statistical 
parameters for correlation analysis are described in 
Supplementary Information (Table S14).

The internal validation of molecular docking protocols 
generated RMSD values, mostly lower than 2 Å (Figure 6), 
as it has been reported for other studies using AutoDock 
Vina;76,77 supporting the reliability of this protein-ligand 
docking protocols. Moreover, external validation showed 
that binding affinity values from AutoDock Vina displayed a 
good correlation with biological data (Figure 7), suggesting 
the simulated protein-ligand dockings are likely to occur at 
the molecular level. The correlation coefficients obtained 
during the validation are similar to those generated in 
similar theoretical studies.48,78,79

The identification of potential targets for natural products 
using PharmMapper and AutoDock Vina, combining 
pharmacophore mapping, molecular docking and protein 
interaction network provides a theoretical strategy to detect 

molecular targets for small natural compounds. The results 
showed that soy isoflavones can interact with proteins 
present in different routes of hormonal metabolism, which 
agrees with the reported evidence that classifies these 
compounds as phytoestrogens. The advantages of these 
methodologies combine in a complementary way, including 
the identification of potential targets and the exploration of 
potential molecular mechanisms associated with bioactive 
natural compounds.22,60,80

Conclusions

Inverse virtual screening and molecular docking protocols 
were employed to discover theoretical human protein targets 
for isoflavones found in soybean such as equol, daidzein and 
biochanin A which have the potential to interact with proteins 
such as PNMT, SHBG, and VDR. These interactions were 
mostly of type aromatic, hydrophobic and hydrogen bonds; 
which is favored by the structure of isoflavones. Predicted 
macromolecules are present in critical pathways including 
neurotransmission, cell differentiation metabolism, cancer 
and homeostasis of estradiol/testosterone, among others. 
AutoDock Vina binding affinities for soy isoflavones 
were validated using in silico and experimental data. This 
information should promote additional pharmacological 
testing for isoflavones found in many food products, 
especially those recommended for children.

Supplementary Information

Supplementary information (fit score values and 
binding affinities for the best 25 protein targets predicted 
by PharmMapper, KEGG and Reactome pathways for 
soy isoflavones targets using STRING 11.0, data set 
for validation of docking protocols with experimental 
data, interactions for SHBG-DHD and VDR-genistein 
complexes) is available free of charge at http://jbcs.sbq.org.br  
as PDF file.
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