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Latent fingerprint is an important crime scene evidence, but it is not always recoverable or 
technically suitable for analysis with fingerprint patterns. Forensic science has shown that other 
information can be explored from traces using chemical compounds. Infrared spectroscopy is a 
nondestructive technique that is widely applied to a variety of forensic evidence. In this work, 
infrared spectroscopy and partial least square discriminant analysis were used to determine the 
human sex based on latent fingermark analysis. Fingerprint samples were taken from 42 male 
and female donors, then kept in either dark or light storage conditions, and the Fourier transform 
infrared (FTIR) spectra were measured considering a period of up to 30 days from collection. 
The regions from 3000 to 2800 cm-1 and 1790 to 1150 cm-1 presented the greatest differences in 
the peak intensities among the two sex groups. The results showed a correct discrimination rate 
higher than 80%.
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Introduction

Fingerprint analysis has always been of great importance 
in establishing the authorship of a crime. It is one of the 
most common traces found at a crime scene and, in this 
case, it is known as a latent fingerprint.1,2 Traditional 
techniques for print development, such as the use of 
cyanoacrylate, ninhydrin and other chemical developers, 
always work towards producing a better contrast between 
the fingerprint and the background where it was deposited.1 
Thus, the number of details and their characteristics that 
appear after their development individualize the fingerprint 
and enable the comparison with fingerprint patterns to be 
carried out, but the number of minutiae is often not enough 
to carry out a comparison.3

Since the 1990s, there have been a number of studies 
to extract other information from fingerprints, such as 
differentiating adults from children,4 finding traces of illicit 
substances and explosives,5,6 dating7,8 and, more recently, 
the discrimination of male and female subjects.3,9,10

The understanding of the chemical substances that 
form fingerprints is essential for these studies, since it 
is from the understanding of the degradation kinetics, 
concentration and verification of the existence of a given 
substance that these new results can be achieved. The 
chemical composition of fingerprints originates mainly 
from the eccrine and sebaceous glands. Eccrine sweat 
is mainly composed of water (98%), and the rest of its 
content is either organic material (e.g., proteins, amino 
acids, and lactate) or inorganic (e.g., Na+, K+, Cl− and other 
metal ions). Similarly, squalene, cholesterol, glycerides, 
fatty acids, and a range of lipid esters principally made up 
the sebaceous secretions. Contaminants detected in these 
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substances also include cosmetics, hair-care products and 
medications.11

Recent studies involving vibrational spectroscopy have 
shown that it is feasible to determine the sex of an individual 
for forensic purposes, using other traces that can be found 
at a crime scene. In our previous work,9 to determine sex, 
fingerprints from males and females were taken, kept under 
either dark or light conditions and then studied seven days 
later. The analysis used Raman spectroscopy with partial 
least square discriminant analysis (PLS-DA) and support 
vector machine discriminant analysis (SVM-DA), and the 
results of discrimination were approximately 80-93%. 
Huynh et al.3 carried out a biocatalytic method to identify 
sex using amino acids extracted from the fingerprint 
using ultraviolet and visible (UV-Vis) spectroscopy. In 
other studies to determine the sex of human subjects, 
Widjaja et al.12 used Raman spectroscopy to analyze nail 
clippings, and Lednev and co-workers13 used Raman 
spectroscopy to analyze saliva samples. 

Recently, Sharma et al.14 used attenuated total 
reflectance Fourier transform infrared (ATR-FTIR) 
with principal component analysis (PCA) and PLS-DA 
methods to classify and predict the sex of male and female 
nail clippings. The classification rate of the normalized 
derived data was found to be 100 and 90% for women and 
men, respectively. Another study15 demonstrated that it is 
possible to establish statistically significant differences 
between male and female groups when analyzing the 
absorption bands of proteins and lipids in saliva samples 
by infrared spectrometry. The authors demonstrated that the 
absorbance of the bands attributed to proteins and nucleic 
acids is greater for men, while the absorbance of the bands 
attributed to lipids is greater for women.

As already mentioned, fingerprints can provide other 
information besides authorship. Considering the advances 
in Fourier transform infrared (FTIR) and chemometric 
methods, the aim of this work is to evaluate the use of 
FTIR spectroscopy and the supervised method PLS-DA 
for discriminating the sex of human subjects based on 
latent fingermark analysis. FTIR spectroscopy has not been 
previously reported to identify sex in human subjects using 
latent fingerprints. In addition, the low cost and speed of 
the analyses, as well as the preservation of the sample, can 
be pinpointed as advantages of using this method.

Experimental

Ethics committee

The Ethics and Human Research Committee of the 
Faculty of Health Sciences of the University of Brasília 

approved this research (protocol 42304220.0.0000.0030), 
following resolution 466/12 of the National Health Council 
(CNS).

Samples acquisition and data measurements

To evaluate the feasibility of this technique for sex 
discrimination, this first study was conducted adopting a 
standard procedure followed by each donor. Firstly, the 
donors were instructed not to use cosmetics for a period 
of 24 h before the fingerprint collection procedure. To 
carry out the collection, each donor needed to wash his/
her hands with neutral liquid soap, rinsing until the soap 
was completely removed and waiting 10 min for the hands 
to dry without touching anything. To produce a sebum-
rich fingerprint, the donor was required to press the right 
thumb on the forehead for 3 s and thus to produce two 
fingerprints. Each fingerprint was produced on a glass slide, 
one square inch in size, covered with aluminum foil. FTIR 
measurements were performed with all samples on the 
day of collection (D0), 7 days later (D7) and after 30 days 
(D30). After the D0 measurements, the two fingerprints 
collected on D0 from each donor were divided into two 
groups, where the first group was stored under light 
conditions and the other group under dark conditions.

The fingerprint samples were obtained from 21 women 
(17 Caucasian and 4 Black) and 21 men (17 Caucasian and 
4 Black), aged between 25 and 65 years old. Considering 
that two fingerprints were obtained from each donor, which 
were analyzed at three different time periods after collection, 
a total of 252 standard samples were obtained. For different 
regions of each fingerprint, three spectra were acquired at 
the previously determined time periods (D0, D7 and D30). 
The average of these three spectra was calculated and used 
for further chemometric analysis. The spectra measurements 
were performed in the Bruker Vertex 70 equipment using the 
40º angle reflectance method with the manual reflection unit 
for tensor (model A513/Q, Ettlingen, Germany), with 64 s 
and 64 scans, in the spectral region from 400 to 4000 cm-1. 
Due to problems observed in some spectra during acquisition, 
246 samples were selected from the 252 standard samples.

Chemometric analysis

PLS-DA was carried out using appropriate functions 
from the PLS-toolbox (version 8.81, Eigenvector, 
Wenatchee, WA)16 and MATLAB R2020b (The Mathworks 
Inc., Natick, MA)17 or data modeling and multivariate 
analysis. The average of the spectra of each sample were 
used and all conditions (different days and light exposure) 
were considered.
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FTIR spectra from female and male samples were 
arranged in a single matrix X(m,n), where m is the number 
of training spectra and n the number of wavenumbers (cm‑1). 
The PLS-DA algorithm correlates the spectral data X with 
a y(n,1) vector that contains the information if the sample 
came from the class/sex female (y = 1) or male (y = 0). 
Thus, the female sample constituted a true positive result 
(y  =  1), while the male was considered a true negative 
(y = 0). PLS-DA had performed a binary discrimination 
through the use of the distributions of the class values (ŷ)  
predicted for both classes in the training step; this made it 
possible to keep at a minimum level the number of false 
positive and negative errors, in consonance with the Bayes 
theory.18 Further details of the PLS-DA algorithm can be 
obtained in specific references.19,20

An outlier is a result of a sample presenting distinct 
characteristics from the other spectra of the same class 
or even the entire training set. These abnormal spectra 
can occur due to changes in the chemical composition 
of the fingerprint or the instrumental measurements. The 
spectra measured for both sexes, considering D0, D7 and 
D30, were joined in the same matrix and the outliers were 
excluded based on Hoteling T2 and Q residuals of a PCA 
modeling using cross validation, with a significance level 
of 0.01. Next, the remaining spectra were divided using 
the Kennard-Stone algorithm; 33% of the samples were 
chosen for the test set, while the other 67% were attributed 
to the training set, following the standard settings of 
PLS-Toolbox and previous studies undertaken by this 
research group.20-22 

The Kennard-Stone algorithm starts by selecting the 
two most dissimilar samples using the Euclidean distance. 
In each following iteration, the algorithm singles out 
the sample showing the greatest distance from the other 
samples already selected. This procedure occurs repeatedly 
until the acquisition of the selected number of training 
samples.23 

Before discrimination modeling took place, the 
preprocessing of spectra was performed. An evaluation of 
preprocessing methods, such as smoothing, normalizing, 
derivative and mean center, enabled us to obtain the best 
performance using the model optimizer tool, available in 
the PLS-Toolbox.16 The preprocessing method was chosen 
after calculation of the root mean square error of cross 
validation (RMSECV).

The choice for the latent variables for PLS-DA 
modeling were obtained by venetian blinds cross-
validation, using the lowest value of the RMSECV or 
after this parameter reaches a plateau. The discrimination 
models calculated using the different preprocessing 
methods and latent variables were ranked as false negative, 

false positive and efficiency rate, calculated according to 
equations 1 to 3.19,24

	 (1)

	 (2)

	 (3)

where FN is the number of samples predicted as false 
negative, FP as false positive, TN is the number of samples 
predicted as true negative, TP as true positive. FNR is the 
false negative rate, FPR is the false positive rate and EFR 
is efficiency rate. Sensitivity (SEN) and specificity (SPEC) 
values were determined by 100 minus the respective values 
of FNR or FPR.

Results and Discussion

The same samples evaluated in this study was used in our 
previous work,9 applying Raman microspectroscopy and 
a different chemometric approach. However, as the FTIR 
spectra used in this study were obtained with a conventional 
reflectance accessory, the method development was more 
challenging since most of the sample surfaces were not 
covered by the fingerprint. For this reason, the average of 
the replicates was calculated for each sample. In addition, 
since no apparent signal or tendency was observed related 
to the time or storage conditions, all the conditions were 
considered in an attempt to develop a more robust PLS‑DA 
model.

The FTIR spectra used for the model training, after 
baseline correction and normalization, are presented in 
Figure 1a. Even after preprocessing, these spectra reveal 
significant noise and intensity variation at the beginning 
(500 to 400 cm-1) and at end of the middle infrared (IR) 
region (4000 to 3500 cm-1). Nevertheless, some differences 
in the peak intensities between the two sex groups can be 
seen from 3000 to 2800 and 1790 to 1150 cm-1, which are 
more visible on the average spectra presented in Figure 1b. 

The FTIR spectra of the fingerprint in Figure 1 present 
features suggestive of lipid, carotenoid, and protein bands. 
The spectral regions 1000-1850 and 2700-3600 cm-1 were the 
most informative and are attributed to molecular vibrations of 
eccrine and sebaceous material (Table 1). The hydrocarbon 
chains are found at 3000 cm-1, which correspond to the 
C−H stretching mode. At 1739 cm-1 there is an absorption 
band corresponding to a carbonyl stretching mode and the 
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shoulder at 1711 cm-1 is attributed to a second carbonyl 
stretching; these suggest the presence of triglycerides and/
or phospholipids and fatty acids, respectively. Additionally, 
bands related with proteins (secondary amide) can be 
observed at 1645, 1536 and 1229 cm-1.25-27 

The mean spectral measurements suggest that 
subtle FTIR spectral differences, which specifically 
relate to determining sex, are present. These signals are 
predominantly seen in the wavenumbers at 1739 and 
1711 cm-1. The changes noted in the intensities of these 
absorption signals may arise from the chemical, biological 
or physical processes that take place in fingerprints from 
its deposition until the carrying out of the FTIR measures. 
The initial composition of fingerprints changes by processes 
including degradation, drying, oxidation or polymerization. 
Some studies3,28 have pinpointed differences in the chemical 
composition of male and female fingerprints, especially 
related to the fatty acid content.

In some criminal cases, the latent fingerprint is not 
collected on the same day as the crime took place, as 

mentioned above. Therefore, the samples used to build 
the models were collected from 42 donors and the spectra 
were acquired on the day of the fingerprint deposition, and 

Figure 1. (a) Preprocessed reflectance FTIR spectra of latent fingermark samples used in the training set. (b) Average spectrum of latent fingermarks of 
female (red) and male (blue) classes. (c) Close view of female and male mean spectra from 1150 to 1800 cm−1, where the main spectral difference between 
them (1711 and 1743 cm−1) is highlighted.

Table 1. Major vibrational bands obtained from a particle in fingerprint 
deposit of an adult female25-27

Band / cm-1 Vibration

2915 CH3 symmetric stretch (long aliphatic C chains)

2847 CH2 symmetric stretch (long aliphatic C chains)

1739 C=O stretch (saturated esters)

1711 C=O stretch (fatty acids)

1645 C=O stretch (secondary amide)

1536 N–H in-plane bend and C–N stretch (secondary amide)

1451
CH3 asymmetric bend and CH2 symmetric bend 

(aliphatic C chains)

1375 CH3 symmetric bend (aliphatic C chains)

1229 C–N stretch (secondary amide)

1152 C–C–O stretch (saturated ester)

1108 O–C–C stretch (saturated ester)
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at seven and thirty days later. After the model calculations 
using the optimizer tool, Baseline (Automatic Weighted 
Least Squares, order = 5), Normalize (1-Norm, Area = 1) 
and Mean Centering were the methods chosen to develop 
the model. 

The initial data analysis to identify extreme outliers 
was performed with PCA models developed in each 
class using the preprocessed data and the entire FTIR 
spectra. After outlier exclusion by T2 and Q residuals, the 
training set for model development used 157 spectra from 
females and males, while 62 spectra were used for the 
test set. Then, a new model was calculated with this new 
training set using the entire spectral region, and the vector 
importance projection (VIP) scores were used for variable 
selection (Figure 2). The VIP scores show that the regions 
from 3000 to 2800 and 1790 to 1150 cm-1 seem to be the 
most suitable for sex estimation, which agrees with most 
of the bands highlighted in Figure 1 and Table 1. Three 
independent models were developed with each region and 
the combination of them (model 1: 3000 to 2800 cm-1; 
model 2: 1790 to 1150 cm-1 and model 3: 3000 to 2800 and 
1790 to 1150 cm-1), wherein the region 1790 to 1150 cm-1 
occurs, highlighted in Figure 2, presented the best results.

The results for both training and test set for the 
estimation of class values, after outlier exclusion and 
variable selection, with the PLS-DA model developed using 
14 latent variables, are shown in Figure 3. The high number 
of latent variables may be a result of the different sources of 
variation in the data (differences between the individuals of 
the same sex, the sample conditions and in the instrumental 
measurements). A few spectra still showed values of T2 and 
Q residuals that were higher than the 0.99 confidence limits 
(Figure 3a). Nevertheless, since only one exclusion step was 
performed during the model development and validation, 

these samples were not removed from the datasets. The 
decision to use only one outlier exclusion step arose from 
the restricted number of samples available for this work. In 
our opinion, the outlier samples present in Figure 3a may be 
a reflection of the small number of samples used to model 
the differences between light exposure and acquisition on 
different days. Most of the samples excluded in the FTIR 
data were different from the ones excluded in our previous 
study using Raman microspectroscopy, which may be a 
result of the significant differences in the experimental 
measurements and data analysis.9

The dispersion of the class values acquired using 
the PLS-DA model is shown in Figure 3b. These values 
showed notable variation, illustrating the difficulty of 
sex identification using latent fingerprints. However, the 

Figure 2. Vector importance projection (VIP) scores for the PLS-DA 
model developed with 14 latent variables and the full FTIR spectra. The 
delimited area is the region of the spectrum used for the PLS-DA model.

Figure 3. (a) Distribution of the Hoteling T2 versus Q residuals and (b) predicted class for the training and test sets using the PLS-DA model developed 
in the 1494-1768 cm-1 region. (---) 99% confidence limits, () training female (TR female), () training male (TR male), () test female (VAL female), 
() test male (VAL male).
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performance of the method can be better judged using 
its figures of merit (Table 2). The SEN and SPEC values 
showed that the model presented approximately the same 
discrimination rate for female and male samples, wherein 
approximately 95 and 82% were obtained for the training and 
test sets, respectively. The EFR encompasses the contribution 
of the other validation parameters, being the average/global 
parameter to judge the overall performance of the method. 
Although the estimated class values were significantly 
spread, good EFRs were acquired. The EFR obtained in the 
test set was 82.3%. Greater variability of data was observed 
in female samples, but it was not possible to establish any 
specific cause. However, hormonal variations and application 
of cosmetics should be considered in complementary 
follow-ups to this study. As in our previous study, SVM-DA 
models were also carried out in the FTIR data. However, 
the efficiency rate of these models was lower than the one 
observed with PLS-DA (< 60%). Therefore, these results 
were not included in this work.

It is important to highlight that this study aimed to 
evaluate the use of fingerprints as a tool for determining 
the sex of the subject. From the forensic point of view, 
this information is important, and it can be part of the first 
step in revealing the identity of the subject, especially 
when the latent fingerprint is not suitable for fingerprint 
identification, either due to poor deposition or a lack of 
database matches. 

Conclusions

Fingerprints are traces of great importance to forensic 

science, as they contribute to the identification of the 
author or even the victim of a crime. However, these traces 
collected at a crime scene sometimes lack the minutiae to 
be compared to a standard fingerprint. In this context, the 
chemical information extracted by instrumental analysis 
methods can help to reduce the list of suspects. This 
study moves in that direction and presents a methodology 
for classifying the sex of individuals based on latent 
fingerprints. Within a period of up to 30 days from the 
acquisition of the fingerprint, correct discrimination of 
the sex of subjects were obtained at a rate of over 80%, 
indicating that the method can determine the sex of the 
subject with a high correct identification rate.

The number of samples used in the training set of this 
study was relatively small, but despite this limitation, it 
was possible to confirm the possibility of determining the 
sex of the subject by means of the chemical information 
found in FTIR spectra from latent fingerprints, providing 
valuable forensic information. 

In addition, other challenges arise related to class 
discrimination based on latent fingerprint analysis, such 
as ethnicity and age groups, which can still be explored 
with the FTIR technique, resulting in new methodologies 
for forensic applications.
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