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Abstract 

This article aims at presenting the results of a historical-epistemological study conducted to identify criteria for 

designing tasks that promote the understanding of the limit notion on a real variable function. As a theoretical 

framework, we used the Onto-Semiotic Approach (OSA) to mathematical knowledge and instruction, to identify 

the regulatory elements of mathematical practices developed throughout history, and that gave way to the 

emergence, evolution, and formalization of limit. As a result, we present a proposal of criteria that summarizes 

fundamental epistemic aspects, which could be considered when designing tasks that allow the promotion of each 

of the six meanings identified for the limit notion. The criteria presented allow us to highlight not only the 

mathematical complexity underlying the study of limit on a real variable function but also the richness of meanings 

that could be developed to help understand this notion. 
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Resumen 

El objetivo de este artículo es presentar los resultados de un estudio de tipo histórico-epistemológico, que se llevó 

a cabo para identificar criterios a considerar en el diseño de tareas para promover la comprensión de la noción de 
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límite de una función en una variable real. Como marco teórico utilizamos el Enfoque Onto-Semiótico (EOS) del 

conocimiento y la instrucción matemáticos, para identificar los elementos regulativos de las prácticas matemáticas 

que se desarrollaron a lo largo de la historia y que dieron paso al surgimiento, evolución y formalización de la 

noción límite. Como resultado, se presenta una propuesta de criterios, que resumen aspectos epistémicos 

fundamentales, que se podrían considerar para el diseño de tareas que permiten promover cada uno de los seis 

significados identificados para la noción de limite. Los criterios presentados permiten resaltar no sólo la 

complejidad matemática subyacente al estudio del límite de una función en una variable real, sino la riqueza de 

significados que podrían desarrollarse para ayudar a la comprensión de esta noción.    

 

Palabras clave: Límite. Diseño de Tareas. Enfoque Ontosemiótico.  

 

 

1 Introduction 

 

The notion of limit is the basis of infinitesimal calculus, as it is a fundamental concept 

for the comprehension and development of other concepts, such as continuity, derivative, 

integration, and series (ELIA et al., 2009; PARAMESWARAN, 2007). In the last few years, 

multiple studies have examined the complexity of teaching and learning limits on a real variable 

function. These papers inform difficulties classified in three categories: a) epistemological 

obstacles (CORNU, 1991; ARTIGUE, 1995; SIERPINSKA, 1985; TALL; 

SCHWARZENBERGER, 1978); b) cognitive difficulties regarding the concept of infinity and 

the complexity of the formal concept 𝜀, 𝛿 (BARAHMAND, 2017; MAMONA-DOWNS, 2001; 

BLÁSQUEZ et al., 2006); and c) didactic challenges concerning limits teaching (CAGLAYAN, 

2015; MONAGHAN,1991; FUENTE; ARMENTEROS; FONT, 2012). 

Research has also evidenced difficulties regarding the tasks that teachers use to promote 

the learning of limits, such as the lack of meaningful activities and the emphasis on algebraic 

techniques and procedures (HEINE, 1988; ARTIGUE, 1995; KOIRALA, 1997) that negatively 

affect the development of students’ deep notion comprehension. In this regard, Koirala (1997) 

emphasizes that teachers teach rules, and students apply them not understanding what they are 

doing. 

In response to this trend, several investigations propose tasks to promote a meaningful 

learning of this notion. For example, Keene, Hall, and Duca (2014) designed tasks to help 

students learn the “formal” meaning of limit through activities that promote the dynamic and 

intuitive notion of the concept. These tasks are based on the theory of ‘Realistic Mathematics 

Education’. Irazoqui and Medina (2013) design tasks called Didactic Activities for Learning, to 

teach limits using Winplot software. Similarly, Soler de Dios (2014) designed tasks using 

fractals to foster intuitive limits learning through their geometric representation. 

Other studies concerning task design are focused on implementation and how their 

application affects students’ learning. For instance, Fuente, Armenteros, and Font (2012) 
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studied tasks concerning limits and concluded that its triple representation –graphical, 

numerical, symbolic– is paramount for learning this notion and that tasks that only promote the 

intuitive study of limit cause difficulties with the notion of actual infinity. 

Two main aspect are notable: 1) There is a significant number of studies (ELIA et al., 

2009; PARAMESWARAN, 2007; JONES, 2014; FERNÁNDEZ-PLAZA; RUIZ-HIDALGO; 

RICO, 2015) that use task design to enhance the learning of limits or to examine students’ ideas 

on limits; however, there are no studies that propose criteria to design tasks that consider the 

rich and complex nature of limits on a real variable function. 2) Some methodologies provide 

guidelines to design tasks, but they fall short in including criteria for both the complexity and 

diversity of meanings. In this regard, we take on to study the meanings of limits as they appear 

in the history of mathematics and to identify criteria that could be used to design meaningful 

tasks to improve the learning and teaching of limits on a real variable function. 

 

2 Theoretical Framework: The Onto-Semiotic Approach to Mathematical Knowledge and 

Instruction 

 

In order to study the meanings associated to limits on a real variable function concept 

along with history, we used some theoretical-methodological tools from the Onto-Semiotic 

Approach (OSA) of mathematical cognition and instruction (GODINO; BATANERO, 1994; 

GODINO; BATANERO; FONT, 2007; FONT; GODINO; GALLARDO, 2013). This approach 

is used to articulate primary mathematical objects- Linguistic elements, situations/problems, 

concepts/definitions, propositions/ properties, procedures, and arguments- that are organized in 

what is called: configurations. The notion of configuration “responds to the need of identifying 

the types of objects and processes that intervene and emerge in the mathematical practices used 

to solve the situations-problems” (GODINO; BATANERO; FONT, 2019, p. 39). The 

configurations emerge in the system of practices that refers to “any action or manifestation 

(linguistic or otherwise) carried out by someone to solve mathematical problems, to 

communicate the solution to other people, to validate and generalize that solution to other 

contexts and problems” (GODINO; BATANERO, 1994, p. 334). The mathematical practices 

can be personal or shared by a group within an institution (institutional practices). Godino and 

Batanero (1994, p. 337) define the institutional practices as “The institutional system of 

practices, associated to a field of problems, is constituted by the practices considered as 

significative to solve a field of problems C and shared in the heart of an institution I”.  

The notion of practices plays an essential role in the epistemological and didactic 
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perspective, because when someone inquiries about the meaning of limit, it is found that it 

refers to the system of practices that a person carries out (personal meaning), or that is shared 

within an institution (institutional meaning) to solve situation-problems. In mathematical 

practices, ostensive objects (symbols, graphs) and non-ostensive objects (concepts, 

propositions) that we evoke when doing mathematics and that are textually, orally, graphically, 

or even gesturally represented, intervene. 

New objects emerge from the system of operative and discursive mathematical 

practices, and these show their organization and structure. When an agent performs and 

evaluates a mathematical practice, it activates a conglomerate of basic entities or primary 

mathematical objects made of problems, linguistic elements, concepts, propositions, 

procedures, and arguments. Problems are the core of the activity; language can represent the 

remaining entities and serves as an instrument for action; arguments justify the procedures and 

propositions that connect concepts. These primary mathematical objects connect to form 

configurations of objects. These configurations can be socio-epistemic (networks of 

institutional objects) or cognitive (networks of personal objects) depending on whether the 

primary mathematical objects are put into play in institutional or personal practices, 

respectively. 

The presence of the primary mathematical objects previously mentioned is linked, 

respectively, with processes of problem-posing, communication, definition, algorithmization, 

enunciation, and argumentation. The systemic analysis of the primary mathematical objects and 

the underpinning processes are named as onto-semiotic configuration (PINO-FAN; GODINO; 

FONT, 2015), and can be epistemic or cognitive. Specifically, the notion of epistemic 

configuration allowed the reconstruction of the holistic meaning or holo-meaning (WILHEMI; 

GODINO; LACASTA, 2007; PINO-FAN; GODINO; FONT, 2011), through the identification 

of the partial meanings of the notion of limit, from the research and historical documents of 

infinitesimal calculus. Furthermore, the epistemic onto-semiotic configuration helps to 

determine criteria for task design that promotes the study of the meanings of limit on a real 

variable function. 

 

3 Methodology 

 

To establish valid criteria for task design that enhance the partial meanings of limits on 

a real variable function, it is necessary to identify epistemic configurations associated with each 

one of the six identified partial meanings of limits. The methodology proposed to revisit 
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primary, secondary, and tertiary bibliographic sources to identify meanings associated with 

limits throughout history. An epistemic configuration refers to a set of meanings, objects, and 

mathematical practices that give rise to a mathematics concept. A mathematical object exists in 

terms of its meanings, relationships among them, and problems that are solved.  

Primary sources (CAUCHY, 1833; D’ALEMBERT, 1766; EUCLIDES, 2007; 

NEWTON, 1736; NEWTON, 2011; DEDEKIND, 2014) provided information related to the 

notion of limit in the real context in which it was originated, and how it evolved through time. 

Secondary sources (BRUNSCHVICG, 1945; BOYER, 2016; COLLETTE, 1985; ZELLINI 

2004) and tertiary (CANTORAL; FARFÁN, 2004; MEDRANO; PINO-FAN, 2016), enable 

comparison among interpretations made with the results from recent investigations. 

The strategy to select the information is through the analysis of the materials written, 

considered as quasi-observable instruments, which in a way replace the observer and the 

interviewer in inaccessible situations (WOODS, 1987). 

 

4 Epistemic Configurations Meanings for Limits on a real variable function 

 

To establish criteria for task design that enhance the partial meanings of limits on a real 

variable function, it is necessary to identify epistemic configurations associated with each one 

of the limits six partial meanings identified. In what follows, the epistemic configurations are 

presented. 

 

4.1 Epistemic Configuration 1 (EC1): The notion of approximation according to Eudoxus 

and Archimedes 

 

This configuration is associated with the measurement of immeasurable magnitudes as 

well as volume and area computing. Eudoxus, Archimedes well as Euclid's recompilation is the 

historical base to investigate epistemic configurations. Primary mathematical objects that 

emerge in this configuration will be presented.  

Linguistic elements 

The representations used are verbal, graphic, and symbolic. The verbal representations 

refer to terms as a magnitude measurement, geometric ratio, geometrical continuum, and 

potential infinity. The graphic refers to geometric shapes and representations of approximation 

procedures. The symbolic is characterized by the use of letters of the Greek alphabet to label 

geometrical shapes (rectangle, parallelograms, etc.) 



 

ISSN 1980-4415 

DOI: http://dx.doi.org/10.1590/1980-4415v35n69a09 

Bolema, Rio Claro (SP), v. 35, n. 69, p. 179-205, abr. 2021                                                                                              184          

Concepts/Definitions 

Two notions are essential in this configuration; the first refers to magnitudes and 

proportions, and the second to infinity. Pythagoras established a correspondence between 

geometric elements and numbers, regarding “magnitude”. This correspondence gives rise to 

“proportion” between geometric magnitudes and whole numbers (BRUNSCHVICG, 1945). 

The Pythagorean notions of “magnitude” and “proportion” could not be applied to 

immeasurable magnitudes, according to the Greek conception of numbers. The solution to this 

problem was proposed by Eudoxus, who established the concept of “proportion”, which was 

subsequently described and elaborated in the book V of Euclid’s Elements: 

Magnitudes are said to be in the same ratio, first to second and third to fourth, 

whenever equal-times multiples of the first and third either together exceed than or 

together are equal to or together are less than equal-times multiples of the second and 

fourth, respectively, taken in a corresponding order (EUCLIDES, 2007, p. 184-185). 

 

Eudoxus’ main contribution to this configuration refers to the applicability of proportion 

to commensurable and incommensurable magnitudes that generalizes Pythagoras' proportion 

ideas. Furthermore, the proportion applies to the comparison of geometrical shapes, as was 

commented by Collette (1985, p. 97):  

This definition has the advantage of applying not only to numbers but also to 

geometric elements since the ratio between spheres can be equal to the ratio between 

cubes. 

 

The second contribution refers to infinity proposed by Aristotle as “a set of objects is 

unlimited if when trying to identify each of its elements it is not possible to form a whole unit 

with them since there will always be a non-considered element (potential infinity)” (ZELLINI, 

2004, p. 12). Infinity had to be considered as potential, as Aristotle was not familiar with the 

concept of actual infinity. The idea of potential infinity prevailed over centuries until Cantor 

questioned it in the XIX century. 

Situations/Problems 

Some geometry problems could be solved by establishing proportions between 

incommensurable and commensurable magnitudes that gave rise to two configurations: (a) 

Geometrical relations between incommensurable magnitudes and geometric magnitudes in 

general. (b) Numerical relations between geometric magnitudes, including incommensurable 

magnitudes. 

Properties/Propositions 

The method of exhaustion is the basis of this configuration, whose basis is in the 

Archimedean principle, interpreted by Euclides (2007, p. 88) in the following terms:  

Given two unequal magnitudes, if from the greater be subtracted greater than the half, 
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and so on continually, there will be left some magnitude which will be less than the 

lesser given magnitude 

 

Procedures  

The method of exhaustion, an algorithm of finite iteration, is the preferred procedure to 

deal with approximation problems. Eudoxus used proportions that involve infinite cardinality 

numerical sets. A procedure used to work with numerical sets is the 'double reduction to absurd' 

that, through the denial of the proposition to be proved, avoids working with infinite sets, which 

leads to operating with a finite number of elements.   

Arguments  

The propositional results that emerge rely on axiomatic-deductive reasoning that 

considers primitive objects that give rise to new objects are defined, and properties and relations 

are established. The axiomatic deductive method based on valid data and deduction rules, 

presented in the Euclid’ Elements, became the preferred argumentation model. The principles 

used to justify are the method of double reduction to the absurd, which is based on the logical 

principle of the excluded third party; and the trichotomy law (for each given pair of ratios of 

positive integers it is needed to  
𝑚
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𝑟
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4.2 Epistemic Configuration 2 (EC2): Limits based on indivisibles  

 

In the XVI and XVII centuries, research and development of mathematics were strongly 

influenced by other disciplines’ requirements, as well as by the need of solving concrete 

problems. The need for using mathematical knowledge also involves the search for more 

effective methods than those available in the Elements, due to the logical complexity of the 

exhaustion method. The infinitesimal methods are reconsidered and modified, which leads to 

infinitesimal calculus. The primary mathematics objects present in this configuration are:  

Linguistic elements 

The linguistic elements are expressed in a descriptive language based on an intuitive 

geometric foundation. Magnitudes or geometric objects are expressed as infinitely small and 

infinity of infinitely small elements. Regarding the linguistic, graphic element, the geometric 

shapes of Euclidean geometry are used to represent specific movements (Kepler’s problems), 

representations of physical problems in geometric shapes (Stevin and Oresme’s problems), and 

representations of geometric procedures for the calculation of area and volumes (Cavalieri’s 

problems). Concerning the symbolic aspect, the lack of adequate symbology complicates the 

exposition of the theory, as well as the comprehension of it. 
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Concepts/Definitions  

In this configuration, the indivisible concept is essential, which is considered as an 

essential part of “infinitely small” geometric objects (CAVALIERI, 1635, cited in 

BRUNSCHVICG, 1945). Geometric magnitudes (longitude, surface, and volumes) generated 

by magnitudes of inferior order that are added in unlimited form, are conceived. 

Situations/Problems 

The problems studied are mostly the same that Greek geometers addressed: a) 

quadrature problems; b) cubature problems. Additionally, situations originated from the 

application of mathematics to other disciplines, and daily life. Kepler studied astronomic 

problems; one of them refers to the radius of the vector joining the planet to the Sun sweeps out 

equal areas in equal times (BOYER, 2016). 

Propositions/Properties            

It is considered that every geometric magnitude is generated by an infinity of elements 

that correspond to a magnitude that is of an inferior order, which is added in an unlimited way 

to reproduce the given magnitude. A line is generated by infinite points, a surface by the addition 

of an unlimited number of parallel lines to the base of the plane shape, a volume by the addition 

of an unlimited number of parallel planes to the bases of the volume. These procedures originate 

a great proposition known as the Cavalieri’s Theorem:        

If two plane figures have equal altitudes and if sections made by lines parallel to the 

bases and at equal distances from them are always in the same ratio, then the volumes 

of the two plane figures are also in this ratio (BOYER, 2016, p. 417). 

      

Procedures 

The indivisibles procedure considers that every geometric magnitude is formed by an 

undetermined number of elements (indivisibles) corresponding to a strictly inferior geometric 

magnitude. However, these elements are limited by the magnitude of a superior order. Thus, the 

relations that are known or that can be established between magnitudes of a superior order 

enable them to operate indirectly with the indivisible set contained in them, not considering the 

quantity of these indivisibles. For example, the procedures that Cavalieri used established a 

univocal correspondence between the indivisibles of two geometric objects, which were 

compared to verify if they had the same area or volume, as appropriate (BOYER, 2016). 

Arguments 

The arguments postulate that surfaces and solids are composed by generative elements 

obtained by the cut of surfaces (or solids), by lines (or planes) parallel to the bases, which 

enables to determine the relationship between unknown magnitudes comparing them with the 
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known ones. For example, the procedures that Cavalieri used. 

 

4.3 Epistemic Configuration 3 (EC3): The intuitive notion of limits in Newton infinitesimal 

calculus. 

 

The emergence of the analytic geometry contributes to Newton’s proposal in solving 

physics problems, denying the concept of indivisibles, and proposing a new meaning for the 

limits’ dynamic character. Newton uses finite limits to represents dynamic particle character. 

Newton's proposal is referring to a new epistemic configuration because of the physical 

features, which brings into play the following elements.  

Linguistic elements 

The linguistic elements of a verbal nature are characterized by introducing a vocabulary 

of a technical nature to describe the fundamental theoretical elements, whose definitions are 

given based on relationships with other mathematical elements and concepts. This is how the 

terms are introduced: fluent quantities, fluxions, moments of fluent quantities, evanescent 

quantities, nascent quantities, last sums and reasons of evanescent quantities, sum and prime 

reasons of nascent amounts. 

The physics vocabulary refers to velocity, flow, the velocity of flow, magnitude of 

moment. Concerning linguistic elements of graphic nature, it is observed that geometric shapes 

represent procedures based on analytic geometry tools. The symbolic linguistic elements are 

expressed in algebraic language; the first letters of the alphabet: a, b, c, etc., are used to 

designate constant quantities; the last letters of the alphabet: v, x, y, z are used for flowing 

quantities (variable quantities). Furthermore, a special notation is introduced to designate 

fluxions of a flowing quantity: �̇�, �̇�, �̇�, 𝑧.̇  Additionally, any flowing quantity moments are 

represented by x, y, z …; and the increments or decreases of flowing quantities as: �̇� = 𝑥𝑜, 𝑦 ̇ =

𝑦𝑜 , 𝑧 ̇ = 𝑧𝑜; where o represents an infinitely small increment or decrease (PINO-FAN, 2014). 

Mathematical procedures are expressed in algebraic language that acquires a high level of 

abstraction.  

Concepts/Definitions 

Based on the conception of indefinitely small quantities, Newton introduces two 

essential concepts: fluents and fluxions, which he defines as “[…] those quantities which I 

consider as gradually and indefinitely increasing, I shall hereafter call fluents or flowing 

quantities […]” (NEWTON, 1736, p. 20). In the same fashion, he defines fluxion as “[…] the 

velocities by which every fluent is increased by its generating motion, (which I may call 
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Fluxions, or simply Velocities or Celerities) […]” (NEWTON, 1736, p. 20). Another essential 

concept in the development of the method is the moment of fluents:  

The moments of flowing quantities (that is, their indefinitely small parts, by the 

accession of which, in indefinitely small portions of time, they are continually 

increased,) are as their velocities of flowing or increasing (NEWTON, 1736, p. 24). 

 

Due to criticism that the fluxions method received from mathematicians at that time, 

Newton proposed the so-called first and ultimate ratios of nascent and evanescent quantities.  

[…] for by the ultimate velocity is meant that with which the body is moved, neither 

before it arrives at its place and the motion ceases, nor after; but at the very instant it 

arrives, that is, that velocity with which the body arrives at its last place, and with 

which the motion ceases. And in like manner, by the ultimate ratio of evanescent 

quantitates is to be understood the ratio of the quantities, not before they vanish, nor 

afterwards, but with which they vanish. In like manner, the first ratio of nascent 

quantities is that with which they begin… There is a limit which the velocity at the 

end of the motion may attain, but not exceed; and there is the ultimate velocity. And 

there is the like limit in all quantities and proportions that begin and cease to be […] 

(NEWTON, 2011, p. 170). 

 

It is important to mention that these definitions are descriptive and were established 

based on an analogy with the physical concept of velocity. Newton was aware of the controversy 

that his definitions could cause, he expressed:  

It may be also argued, that if the ultimate ratios of evanescent quantities are given, 

their ultimate magnitudes will be also given; and so, all quantities will consist of 

indivisibles… But this objection is founded on a false supposition, for those ultimate 

ratios with which quantities vanish are not truly the ratios of ultimate quantities, but 

the limits to which the ratios of quantities, decreasing without end, always converge; 

and to which they may approach nearer than by any difference, but can never go 

beyond, nor attain to, unless the quantities are diminished indefinitely (NEWTON, 

2011, p. 169-171)  

 

Situations/Problems 

Newton intended to solve two problematic situations of an entirely physic nature, which 

are detailed hereafter: 

i) The length of the space described being continually (that is, always) given; to find 

the velocity of the motion at any time proposed. ii) The velocity of the motion being 

continually given; to find the length of the space described at any time proposed 

(NEWTON, 1736, p. 19).  

 

In order to solve the first situation, the concepts of fluents and fluxions are introduced 

at first instance with which the modern interpretation of the first problem is: given by one 

equation that expresses the relation between fluent quantities, determine the equation that 

expresses the relation between its fluxions. The second problem can be interpreted as the inverse 

problem of the former: acknowledged an equation that expresses the relation between fluxions 

of fluent quantities determines the equation that expresses the relation of the fluent quantities.  

Procedures 

Procedures were geometric-analytic, based on Cartesian geometry. However, in the 
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work Philosophiae Naturalis Principia Mathematica he moves away from the theory proposed 

by Descartes and works with algebraic procedures using equations and variables. A modern 

interpretation (COLLETTE, 1985) is: 

Given the equation of the curve 𝑥3 − 𝑎𝑥2 + 𝑎𝑥𝑦 − 𝑦3 = 0, calculate fluxions. Newton 

proposed replacing the variables x e y by 𝑥 + �̇�𝑜 o e 𝑦 + �̇�𝑜 respectively, obtaining  

(𝑥3 + 3�̇�𝑜𝑥2 + 3�̇�2𝑜2𝑥 + �̇�3 𝑜3 ) − (𝑎𝑥2 + 2𝑎�̇�𝑜𝑥 + 𝑎�̇�2𝑜2)

+ (𝑎𝑥𝑦 + 𝑎�̇�𝑜𝑦 + 𝑎�̇�𝑜𝑥 + 𝑎�̇��̇�𝑜2) − (𝑦3 + 3�̇�𝑜𝑦2 + 3�̇�2𝑜2𝑦 + �̇�3𝑜3) = 0 

 

Then, he eliminated the equation 𝑥3 − 𝑎𝑥2 + 𝑎𝑥𝑦 − 𝑦3, since it is equal to zero. 

Subsequently, he divides the resulting equation by o and, in the obtained equation, eliminates 

all the expressions in which any factor of o appears. Thus, finally, the expression 3�̇�𝑥2 −

2𝑎�̇�𝑥 + 𝑎�̇�𝑦 + 𝑎�̇�𝑥 − 3�̇�𝑦2 = 0 is obtained. 

Propositions/Properties  

Changing operative principles, the method of fluxions is based in (for the use of 

indefinitely small quantities and the moments of flowing quantities), for evanescent quantities, 

first quantities, and increasing or decreasing increments of these quantities, two propositions to 

substantiate this new theory are introduced:  

Lemma 1. Quantities, and ratios of quantities, which in any finite time constantly tend 

to equality, and which before the end of that time approach so close to one another 

that their difference is less than any given quantity, become ultimately equal 

(NEWTON, 2011, p. 157). 

 

The latter propositions introduced intuitive ideas on the constant tendency of two 

variable quantities that tend to equality in a finite period. The uninterrupted decrease 

characterizes the tendency to zero by the difference of these variable quantities. Another 

instance refers to an equivalent proposition, but in a geometric context (Figure 1): 

Lemma 2. If in any figure AacE, comprehended by the straight lines Aa and AE and 

the curve acE, any number of parallelograms Ab, Bc,Cd, etc., are inscribed upon equal 

bases AB, BC, CD, etc., and sides, Bb, Cc, Dd, parallel to the side Aa of the figure; 

and if the parallelograms aKbl, bLcm, cMdn, etc., are completed; if then the width of 

these parallelograms is diminished and their number increased indefinitely: I say that 

the ultimate ratios which the inscribed figure AKbLcMdD, the circumscribed figure 

AalbmcndoE, and the curvilinear figure AabcdE, have to one another are ratios of 

equality (NEWTON, 2011, p. 157). 

 

 



 

ISSN 1980-4415 

DOI: http://dx.doi.org/10.1590/1980-4415v35n69a09 

Bolema, Rio Claro (SP), v. 35, n. 69, p. 179-205, abr. 2021                                                                                              190          

 
Figure 1 – Geometric Representation Newton’s Lemma 2 

Source: NEWTON (2011, p. 157) 

 

Arguments 

The arguments that justify the replacement of x e y by 𝑥 + �̇�𝑜 and 𝑦 + �̇�𝑜 respectively, 

are based on infinitesimals that rely upon algebra and geometry; as Collette (1985, p. 110) 

states, 

Since moments like �̇�𝑜, �̇�𝑜 are annexes or infinitely small expansions of the fluent 

quantities x e y during the infinitely small-time intervals, it follows that these 

quantities x e y, after an infinitely small-time interval, are converted into 𝑥 + �̇�𝑜 e 𝑦 +
�̇�𝑜 … In this way, it is possible to substitute in the same equation instead of x e y.  

 

4.4 Epistemic Configuration 4 (EC4): The infinitesimals idea of Leibniz   

 

The infinitesimal calculus developed by Leibniz is based on philosophic considerations 

on mathematics, in contrast to the work of Newton, whose focus was put on the creation of 

effective mathematical tools. The focal point of Leibniz was the foundation of infinitesimal 

calculus. In the following sections, we analyze the primary mathematical objects that comprise 

this configuration.  

Linguistic elements  

The verbal-linguistic elements identified are expressions, such as infinitesimal or 

differential of a variable. These expressions are related since the second concept derives from 

the infinitesimal notion. Regarding linguistic and graphic elements, the use of Euclidean 

geometry shapes and the use of graphs can be distinguished. Leibniz's particular triangle, 

formed by an infinitely small part of the tangent to a curve, in one point, and infinitely small 

portions of parallels can be represented by a Euclidean triangle (Figure 2). Regarding symbols, 

Leibniz proposed the notation for differentiation-the variables are x, y and their differentials are 

represented by dx, dy. Leibniz proposes the integral symbol ∫ 𝑦 𝑑𝑥 to indicate the infinite sum 

of ordinates under a curve y. In this sense, several authors (e.g., PINO-FAN, 2014) point out 

that the symbol used by Leibniz for the differential, and in general, the new language introduced 

by him, allowed the development of the theorems and applications that support today’s 
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Infinitesimal Calculus. 

Concepts/Definitions 

The concepts that can be recognized are a particular triangle, the differential of a 

variable, and the continuum. Leibniz considered the composition of the continuum as a central 

issue in differential and integral calculus. The conception of continuum went through three 

progressive stages: the first stage conceives continuum as formed by infinite parts, in which 

such parts would be considered as indivisibles (represented by planes and lines, etc.); the second 

stage denies the existence of indivisibles and proposes that the continuum is formed by 

infinitely small parts (infinitesimals); in the last stage Leibniz changes his conception of the 

division of the continuum and denies the existence of ultimate components of it. 

Situations/Problems 

Two main problematic situations can be identified, and the first is supporting and 

formalizing the continuum concept; the other problematic situation is the use of the differential 

calculus (PINO-FAN, 2014); the third problem refers to determine the equation of a tangent to 

a curve, the curvature and cubature problems. 

Procedures 

The use of operational activity with infinitesimal quantities and infinite processes can 

be identified. One such example refers to the sum of a convergent infinite series. The problem 

of constructing the tangent to a curve at a given point is translated into infinitesimal calculus; 

calculating differentials of the given variables in the equation that represents the curve and 

determining the tangent direction through the quotient of these infinitesimal quantities. Cantoral 

and Farfán (2004, p. 94) present a modern interpretation of using characteristic triangles, which 

is the one provided by 

To determine the longitude of a curve, the characteristic triangle of a curve 𝑦 = 𝑓(𝑥) 

is used, in which the differential in variable x is considered as dx and the 

corresponding increment dy is calculated in the variable 𝑦 = 𝑓(𝑥). The triangle, where 

ds is the infinitesimal increment in the graphic 𝑦 = 𝑓(𝑥), is completed. This can be 

observed in Figure 2: 

 

 

Figure 2 – Leibniz’s Characteristic Triangle 

Source: Cantoral and Farfán (2004, p. 94) 
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Leibniz maintained that the infinitesimal arc AB is indistinguishable from the chord 𝐴𝐵̅̅ ̅̅ , 

and then the curved triangle is identical to the right-angled triangle formed in it. Then, applying 

the Pythagoras' theorem: 𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2.  Thus, 𝑑𝑠 = √1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥, which represents the 

longitude of the infinitesimal arc, in terms of differences dx and dy. Hence, the longitude of the 

curve from a 𝑃(𝑥1, 𝑦1(𝑥1)) point to a 𝑄(𝑥2, 𝑦2(𝑥2)) point is the sum of all the infinitesimal 

arcs, in other words:  𝐿(𝑃, 𝑄) = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥
𝑥2

𝑥1
. Where 𝐿(𝑃, 𝑄) represents the longitude of 

the curve from P to Q. Furthermore, an operational activity between conventional numbers and 

these new mathematical objects, which are not clearly defined, characterized, nor represented, 

can be distinguished. However, there is an informal extension of the traditional operations 

(addition, subtraction, multiplication, division) to these new objects.   

Propositions/Properties  

The main properties regarding operation and application of infinitesimal calculus in an 

advantageous way are the introduction of the characteristic triangle that links the operational 

activity with infinitely small magnitudes, of the indivisibles geometry, with elements of 

Euclidean geometry; a relationship that allows studying geometric properties of curves in the 

Cartesian plane; the direction of the curve and the velocity on change of direction. Additionally, 

a differential algebra is formulated as well.  

Another property worth highlighting is the one signaled by Brunhschwicg (1945, p. 236) 

“[…] Leibniz brings into play infinity in the finite generation. In this sense, the science of the 

infinite is used to find the finite quantities”. In this respect, Leibniz, cited by Brunhschwicg 

(1945, p. 237), stated that: “[…] equality can be considered as an infinitely small inequality, 

and inequality can be approximated to equality as required […]”. The modern interpretation of 

this claim is the following: given a and b real numbers, then ∀ 𝜀 > 0, 𝑖𝑓 |𝑎 − 𝑏| < 𝜀 ⇔ 𝑎 =

𝑏. 

Arguments  

In this configuration, arguments refer to infinite processes (infinitesimal calculus), 

which are based on actual infinity. Additionally, these infinite processes are characterized by a 

continuous process, based on the general principle of continuity. Regarding the general 

principle of continuity, Leibniz states:  

With this law of continuity that excludes a leap in changing, also agrees on the 

following: the case of rest can be considered as a special case of motion, indeed, the 

case of vanishing or minimal motion, and that the case of equality can be considered 

as a case of vanishing inequality (LEIBNITZ, 1695, cited in BRUNSCHVICG, 1945, 

p. 238). 
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For Leibniz, there is a distinction between unfolding processes of things in general and 

the actual state of them; the unfolding is characterized by not admitting leaps or interruptions. 

On the other hand, the actual state of mathematical objects and things, in general, is conceived 

as a result of infinite processes. A finite quantity is generated by an infinite process where 

infinitely small quantities –infinitesimals- and equality as an infinitely small inequality. 

 

4.5 Epistemic Configuration 5 (EC5): Pre-formal conceptions of limits  

 

The epistemic configuration refers to geometry, physics, and commerce applications. 

The applications compel a reconsideration of the discipline foundations to make it suitable for 

generalization and application. This configuration is the beginning of the transition from 

preconceptions of limits to conceptions of limits, as are known today.  

Linguistic elements  

The verbal-linguistic elements that can be identified by terms such as magnitude, 

successive values, indefinitely approximation, or as small as required; these represent the 

supposition that the set of real numbers does not have leaps and that they are continuous (known 

today as the density of rational and irrational numbers). The graphic linguistic elements are 

identified as geometric representations of curves of functions, but they are studied in a dynamic 

way. The linguistic elements of the symbolic type are 𝑓(𝑥 + 𝛼) –  𝑓(𝑥), which represents an 

infinitely small magnitude, only if α is a small number; dx represents an infinitely small quantity 

that can be considered equal to zero. 

Concepts/Definitions 

The definition of infinitesimal provided by Euler:  

[…] an infinitely small quantity is simply an evanescent quantity, and therefore 

actually equal to zero. For Euler, calculus of the infinitely small consists in the study 

of the geometric ratio of the infinitely small quantities (COLLETTE, 1985, p. 195). 

 

Euler proposes that small quantities can be considered equal to zero. A modern 

interpretation of this idea is provided by Collette (1985), who explains that, if dx represents an 

infinitely small quantity, then 𝑑𝑥 = 0, consequently 𝑎 ± 𝑑𝑥 = 𝑎, where 𝑎 is any finite quantity, 

then in general 𝑎 ± 𝑛𝑑𝑥 = 𝑎, thus 𝑎 ± 𝑛𝑑𝑥 − 𝑎 = 0. Then the geometric ratio of the equality 

is (𝑎 ± 𝑛𝑑𝑥)/𝑎 = 1. Collette (1985, p. 195) described the notion proposed by Euler as “the 

infinitely small quantities tend to zero in comparison to the finite quantities, and, additionally, 

can be rejected when they are involved in these finite quantities”.   
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Another notion of limit worth highlighting is the one proposed by D’Alembert (1766, 

p. 542), 

One calls a magnitude a limit of another magnitude, when the second may 

approximate to the first closer than by a given magnitude, however small one may 

suppose it, without however that the approaching magnitude may surpass the 

magnitude that it approaches, in such a manner that the difference of such a quantity 

and its limit is unassignable.                                                       

 

D’Alembert describes a notion of limit in which the second and the first magnitude 

cannot coincide, i.e., both magnitudes are as close as one could wish. While D'Alembert 

showed a significant advance, it still lacks precision. For example, Medrano and Pino-Fan 

(2016, p. 309) stated that  

[…] regarding the approximation to the first quantity, is it with higher or lower values? 

How can the difference between the approximation and the limiting magnitude with 

the ‘as little as one could wish’ magnitude, be compared? Does this last expression 

refer only to positive quantities? 

 

It is worth highlighting that D’Alembert points out that his conception of infinitesimal 

quantities cannot be zero:  

a quantity is something or nothing; if it is something, it has not yet vanished; if it is 

nothing it has vanished. The supposition that there is an intermediate state between 

these two is a chimera (COLLETTE, 1985, p. 215).  

 

D’Alembert suggests that the notion of limits is the basis of calculus (BOYER, 2016). 

On the other hand, in the book “Cours d’Analyse”, Cauchy introduces the following 

definitions:  

A variable quantity is a quantity that one considers as being able to receive 

successively several different values. On the contrary a constant quantity is a quantity 

that receives one fixed and determined value. When the values successively attributed 

to the same variable approach a fixed value indefinitely, in such a way as to end up by 

differing from it as little as one could wish, this last value is called the limit of all the 

others (CAUCHY, 1833, p. 17). 

 

Cauchy's idea of limits shows that the approximation to a fixed value can have a 

difference as little as one could wish, which may be a generalization of D’Alembert conception. 

Furthermore, Cauchy proposes a new definition for infinitesimals: 

When the successive numerical values of the same variable decrease indefinitely in 

such a way as to fall below any given number, this variable becomes what one calls 

an infinitesimal or an infinitely small quantity. A variable of this kind has zero for its 

limit (CAUCHY, 1833, p. 17).  

 

It is essential to mention that Cauchy’s notion of infinitesimal caused that the concept 

of differential defined by Leibniz would take a secondary role, as Boyer states (1987, p. 648):  

The differential, that had played with Leibniz and his successors the primary role, he 

relegated to a subsidiary role, although he was aware of its operational facility. If 𝑑𝑥 

is a finite quantity, the differential 𝑑𝑦 of 𝑦 = 𝑓(𝑥) is defined simply as 𝑓′(𝑥) 𝑑𝑥. 
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Furthermore, that notion permitted Cauchy to introduce the concept of continuity of a 

function: “The function 𝑓(𝑥) is continuous within given limits of the variable 𝑥 if between 

these limits an infinitely small increment 𝑖 in the variable 𝑥 always produces an infinitely small 

increment, 𝑓(𝑥 + 𝑖) –  𝑓(𝑥), in the function itself” (BOYER, 1987, p.648). Cauchy's notion of 

continuity parallels the definition used today in calculus books; moreover, it allowed 

Weierstrass later to introduce the concepts of lateral limits in a 𝑥𝑜 number, a fundamental 

condition for a function limit in a number 𝑥𝑜 to exist (BOYER, 2016).   

Situations/Problems 

The problems that compel this configuration can be found in diverse areas, such as 

geometric, physic, commercial, and economic problems. For example, D’Alembert exposes the 

specific problem of a circle area: 

For example, suppose we have two polygons, one inscribed in a circle and the other 

circumscribed; it is clear that one may increase the number of sides as much as one 

wishes, and in that case each polygon will approach ever more closely to the circle 

circumference; the perimeter of the inscribed polygon will increase and that of the 

circumscribed polygon will decrease, but the perimeter or edge of the first will never 

surpass the length of the circumference, and the second will never be smaller than that 

same circumference; the circle circumference is therefore the limit of the increase of 

the first polygon and of the decrease of the second. (D’ALEMBERT, 1766, p. 542) 

 

In the previous cite, the notion of limit, which is a value that “is never reached”, is 

clearly stated.  

Procedures 

It is worth noting Euler's procedure used to determine a differential. Collette (1985) 

provides a modern interpretation: to determine the difference 𝑦 = 𝑥2, it is considered w and the 

increment of x and n the increment of y, then 𝑦 + 𝑛 = (𝑤 + 𝑥)2, which implicates 𝑛 = 𝑤2 +

2𝑤𝑥. Thus, the ratio of the increments, is 𝑤/𝑛 = 1/(𝑤 + 2𝑥) , as 𝑤 = 0, it can be deduced 

that (𝑑(𝑥2))/𝑑𝑥 = 2𝑥/1. In this procedure, it is possible to observe the assumption that 

infinitesimals can be zero, just as Euler proposed.  

Propositions/Properties  

One of the most transcendental properties identified in this configuration is the use of 

algebra limits proposed by D’Alembert (1766, p. 542):  

(1) If two magnitudes are the limit of the same quantity, the two magnitudes will be 

equal. (2) Suppose 𝐴 ⋅ 𝐵 is the product of two magnitudes A, B. Let us suppose that C 

is the limit of the magnitude A, and D the limit of the quantity B; I say that 𝐶 ⋅ 𝐷, the 

product of the limits, will necessarily be the limit of 𝐴 ⋅ 𝐵 [...].  

 

Furthermore, Euler used infinitesimal properties considering them as “zeros” just as 

mentioned before, and Cauchy utilized propositions in which the infinitesimal’ as little as one 
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wishes’, was used. On the other hand, Cauchy and Bolzano independently developed the 

concept of convergence of a sequence; although Bolzano introduced earlier the concept and 

criteria of convergence, it is Cauchy’s work that prevails to this day with the following 

proposition “a sequence 𝑆𝑛  converges to a limit if, and only if, the difference between 𝑆𝑝 and 

𝑆𝑞 for any values of 𝑝 and 𝑞 greater than 𝑛 is less in absolute value than any given value, 

considering 𝑛 sufficiently large” (MEDRANO; PINO-FAN, 2016, p. 312). This property helped 

to formally develop studies of sequence convergence, particularly to develop the completeness 

of the real numbers. 

Arguments 

The arguments are based on the different conceptions of infinitesimals. For Euler, the 

infinitesimal is an infinitely small magnitude that can be considered as zero. Additionally, 

Cauchy points out that the infinitesimal is an infinitely small quantity that tends to zero, while 

D’Alembert rejects the conception of infinitesimal since, for him, infinitesimal calculus must 

be based on the notion of limits (although, in a sense, in a pre-formal way). 

  

4.6 Epistemic Configuration 6 (EC6): Weierstrass limits notions  

 

Euler, D’Alembert, and Cauchy’s mathematical advances helped formalize the current 

limits’ concept. However, this was possible because of the formulation of both the function 

concept and the real numbers’ completeness. These new concepts helped the arithmetization of 

Calculus; the foundations are no longer on geometry nor algebra. According to Valdivé and 

Garbin (2008, p. 495): 

The concept of limit was defined from the arithmetic of real numbers, leaving aside 

the infinite processes and with them infinitesimals as differences, increments, and 

decreases. The transition of calculus from algebra to arithmetic, installed a view of 

infinitely small quantities in terms of limits and excluded the continuous variability, 

which made calculus move away from infinitesimals. 

 

Due to the arguments based on the complexity of real numbers, the notion of limit of 

Weierstrass is considered as a partial meaning with the following configuration:  

Linguistic Elements  

The verbal-linguistic elements that can be identified by expressions as variable, 

function, series, and limit of a function, the numerical value of a function, real numbers, 

convergent sequences, continuity, and absolute value. Additionally, the graphic linguistic 

elements, such as representations of real numbers as intervals, lines, and the use of graphs of 

functions in the context of analytic geometry. Regarding the symbolic aspect, notations like x 



 

ISSN 1980-4415 

DOI: http://dx.doi.org/10.1590/1980-4415v35n69a09 

Bolema, Rio Claro (SP), v. 35, n. 69, p. 179-205, abr. 2021                                                                                              197          

(as magnitude or variable), f(x) (as a numerical value of a function or variable dependent of x), 

Greek letters 𝜀, 𝜂 (that represent small positive quantities),  |𝑥 − 𝑥0| (distance between x and 

𝑥0 numbers), L (value of limit when it is a real number), can be identified. 

Concepts/Definitions 

The limits Dedekind' definition is:  

We say that a variable magnitude x, which passes through successive definite 

numerical values, approaches a fixed limiting value α when during the process x lies 

finally between any two numbers between which α itself lies, or, what amounts to the 

same, when the difference x-α taken absolutely becomes finally less than any given 

value different from zero (DEDEKIND, 2014, p. 101). 

 

Due to the advances and the formalization of real numbers by Cantor, Dedekind, and 

Weierstrass, the later could define the notion of limits in the following terms:  

If, given any 𝜀, there is an 𝜂0 such that for 0 < 𝜂 < 𝜂0  the difference 𝑓 (𝑥0 ± 𝜂 ) –  𝐿 

is less in absolute value than 𝜀, then 𝐿 is the limit of 𝑓 (𝑥) at 𝑥 =  𝑥0 (BOYER, 2016, 

p. 696). 

 

It should be noted that the notion of infinitesimal is equivalent to the number 𝜂 and the 

number 𝜀. The frames contain descriptive information, written in the form of text.  

Furthermore, the notion of limits provided by Weierstrass contributes to calculus 

arithmetization, as it deals exclusively with real numbers considering the set of real numbers as 

a complete ordered field, the field operations, and the operations that derive from them. 

Currently, the Greek letter 𝜂 is substituted by the Greek letter 𝛿. It is important to mention that 

that notion introduces the notion of lateral limits implicitly since it studies the limit in 𝑥𝑜 ± 𝜂,  

where 𝜂 is a positive number. Furthermore, the notion of limits has been taken into convergence, 

with generalizations in metric and topological spaces, the theory of filters and nets.   

It is worth noting that the Weierstrass limit’ definition eliminates infinitesimals use in 

mathematics until the introduction of Robinson’s Non-Standard Analysis. 

Situations/Problems  

There are diverse problems in this period; however, the problems that make the notion 

of limit emerge are typical of mathematics, in the sense of formalizing the concept of limit and 

not admitting ambiguity.  

Procedures 

They are based on the algebra of the operations with real numbers and the absolute value 

properties. Furthermore, it uses the functions’ representations in graphs in the context of 

analytic geometry. 

Propositions/Properties  

In this regard, it is worth noting the algebraic properties of the arithmetic operations 
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defined in the set of real numbers, which implicates that the set of real numbers may be a body. 

The relation of the order of real numbers that allow defining a metric as the absolute value; and 

the completeness of real numbers that makes possible using a notion of infinitesimal that is 

different from the ones previously defined. 

Arguments 

Weierstrass considers an infinitesimal as a continuous variable, Collette (1985, p. 355) 

interprets it as:  

a continuous variable is a variable in which 𝑥0 is any value of the value set attributed 

to the variable and 𝛿 is any positive number, there are other values of the variable in 

the interval (𝑥0 − 𝛿, 𝑥0 + 𝛿).  

 

The use of the completeness of real numbers helped Weierstrass to overlook the concept 

of infinitesimal proposed by Cauchy, D’Alembert, Euler, and Leibniz. 

So far, we have presented the historical-epistemological journey for the understanding 

of the notion of limit of a real variable function, analyzing from the practices that originated it 

to those that allowed its formalization. The mathematical richness observed in each of these 

configurations (associated to the different practices) can be used to propose activities that allow 

the progressive development for understanding this notion, from intuitive stages to its 

formalization. However, it should be noted that this notion has continued to develop from the 

point of view of mathematics itself, and has suffered formalizations and generalizations with 

respect to the elements presented in this article. One of such formalizations and generalizations 

is that which refers to a topological point of view; for example, in the book Calculus by Apostol 

(1967, p. 127) it is pointed out that:   

Let 𝑓 be a function defined in some open interval containing a point 𝑝, although we 

do not insist that 𝑓 be defined at the point 𝑝 itself. Let 𝐴 be a real number. The equation 

lim
𝑥→𝑝

𝑓(𝑥) = 𝐴 is read: The limit of 𝑓(𝑥), as 𝑥 approaches 𝑝, is equal to 𝐴, or 𝑓(𝑥) 

approaches 𝐴 as 𝑥 approaches 𝑝. It is also written without the limit symbol, as follows: 

𝑓(𝑥) → 𝐴 as 𝑥 → 𝑝.  
 

However, this article has not developed a type of configuration for the meanings 

associated to this type of generalizations, since its objective was to study the initial stages of 

understanding the meanings of the notion of limit that could generate that the student could 

develop progressive learning from the intuitive, pre-formal, and formal meanings until arriving 

at this type of more general definitions. 

 

5. Epistemic Configurations for Limits Designing’ Tasks 

 

Based on both the study of partial meanings of limit on real variable function and 
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primary mathematical objects, it was possible to determine fundamental aspects of every partial 

meaning that are expressed in epistemic configurations (language, concepts, procedures, 

propositions and arguments), that could be used to design tasks that take epistemic 

configurations into account. Table 1 summarizes fundamental epistemic aspects of each 

epistemic configurations, which constitute aspects that highlight the mathematic complexity of 

each of the six meanings of limit, which can be considered for the design of tasks in the 

instruction of the notion. 

The configurations presented agree with Mallart, Font, and Malaspina’s proposal 

(2016), regarding the aspects of mathematical richness for what they denominate a good 

problem. For the OSA, the meaning of a mathematical object is in accordance with 

mathematical practices in which this is included; Table 1 shows diverse configurations of 

meanings in which the mathematic study of a limit on a real variable function is put into play. 

This illustrates the vast complexity of the concept of limits, as well as the task design for its 

instruction.   

The didactic suitability (MALLART; FONT; MALASPINA, 2016) and the 

appropriateness of each epistemic configuration to comprehend the concept of limit on a real 

variable function, remain to be explored. Epistemic configurations can be used to identify 

emerging mathematical objects within mathematical practices, as well as to recognize possible 

conflicts of meaning that may appear during discussions with students (CASTRO; GODINO; 

RIVAS, 2011). Table 1 not only shows the diverse meanings in each epistemic configuration, 

but also the verbal, geometric, and symbolic resources used to discuss limits.  

The epistemic configurations are linked to descriptors (BREDA; PINO-FAN; FONT, 

2017), known as mathematic suitability’ criteria, that might be considered not only for tasks’ 

design but also for mathematics teaching, to be known: a) The partial meanings (constituted of 

definitions, properties, procedures, etc.), are representative samples of the complexity of the 

mathematical notion chosen to be taught as part of the curriculum; b) The use of different modes 

of expression (verbal, graphic, symbolic…), treatments and conversations amongst students are 

part of one or more of the constituents of partial sense; c) Relevant processes in mathematical 

activity (modeling, argumentation, problem-solving, connections, etc.). 

The following is an example of a task taken from the Chilean Mathematics’ curriculum 

(MINISTERIO DE EDUCACIÓN DE CHILE, 1998), chosen to illustrate the epistemic 

configurations shown in Table 1. The activity concerns the construction of the Sierpinski 

Triangle to analyze the area and perimeter of triangles (Figure 3).  
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Figure 3 – Sierpinski Triangle Activity 

Source: Ministerio de Educación de Chile (1998, p. 15) 

 

The Chilean Ministry of Education proposes that in this activity, students must, 

intuitively, discover that lim
𝑛→∞

𝐴(𝑛) = 0 and lim
𝑛→∞

𝑃(𝑛) = ∞. Students on this level do not know 

Weierstrass’ notion of limits (EC6). 

The activity analysis distinguishes that the linguistic elements put into play for the 

solution are verbal or symbolic, and they represent areas and perimeters of triangles. 

Furthermore, the geometric figures used are equilateral triangles. It is observed that the 

succession and the number of triangles are related to the concept of potential infinity, and that 

magnitudes are used to express the area and perimeter of the triangles that underlies the 

correspondence between geometric elements and numbers. 

Regarding situations/problems, the problem refers to identifying relations among the 

perimeters and areas of triangles. The procedure refers to the use of the exhaustion method 

because an infinite iteration of triangles is made. Furthermore, the properties/propositions that 

the exhaustion method uses is based on the Archimedean axiom. It is possible that students’ 

answers would not explicitly include this proposition, but they would use it in an intuitive way: 

‘the more iterations performed, the smaller the area of the triangles obtained becomes’. Finally, 

the solution could be based both on the iterations and calculation performed on the area and 

perimeter of the triangles in a finite quantity of iterations. Based on the latter, the arguments 

will be deductive.  

Thus, based on the analysis performed on primary mathematical objects involved in the 

activity, it can be said that task development is consistent within the Epistemic Configuration 

of ‘Limits as an approximation in Greek Mathematics’ (EC1).  
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Table 1 – Primary objects of each Epistemic Configuration for the notion of limit  

   Configuration 

 

Primary  

Objects 

(EC1) Limits as an 

approximation in Greek 

mathematics 

(EC2) Limits in the 

conception of the 

indivisibles 

(EC3) The intuitive 

notion of limit in 

Newton's 

infinitesimal 

calculus 

(EC4) Leibniz idea 

of infinitesimals  

 

(EC5)                 Pre-

formal conceptions 

of limit 

 

(EC 6) Weierstrass’ 

notion of limit 

Linguistic 

Elements 

Verbal: Verbal 

expressions related with 

geometric magnitudes. 

Geometric: 

Characteristic shapes 

from synthetic geometry. 

Symbolic: Use of Greek 

alphabet letters to 

represent geometric 

shapes.  

Verbal: Verbal 

expressions as 

"infinitely small" and 

"infinity of infinitely 

small elements" 

Geometric: 
Characteristic shapes 

from synthetic 

geometry, but with a 

different meaning of 

generation. 

Symbolic: Lack of 

adequate symbology. 

Verbal: Physics 

expressions as: 

velocity, flow, 

velocity of flow, 

magnitude of moment   

 

Geometric: 

Characteristic shapes 

from Analytic and 

Euclidean Geometry. 

Symbolic: 

Predominant use of 

algebraic language. 

Verbal: Expressions 

as "infinitesimal", 

"differential" and 

continuum. 

Geometric: 
Combination of 

elements of Euclidean 

geometry with 

elements of analytic 

geometry, for 

example: the 

characteristic triangle.  

Symbolic: Notations 

of differential (𝑑𝑥 and 

𝑑𝑦) and integral 

calculus.  

Verbal: Expressions 

like: Limits of a 

magnitude, variable 

and constant quantity, 

infinitesimal, 

successions, series, 

function, continuity 

and differential. 

Geometric:  

Use of graphic 

representations 

characteristic of 

analytic geometry.  

Symbolic: Algebraic 

language to represent 

constant and variable 

limits. 

Verbal: Expressions 

like continuity of 

geometric lines, 

rational and irrational 

numbers, set, etc. 

Geometrics: Great 

use of Analytic 

Geometry as 

representation of 

analytic expressions. 

Symbolic: Algebraic 

language to represent 

constant and variable 

limits  

Concepts and/or 

definitions 

Commensurable and 

incommensurable 

magnitudes. 

Potential infinity. 

Proportions between 

magnitudes. 

Indivisibles  Fluents, Fluxions. 

Moments of flowing 

quantities.  

Nascent and 

Evanescent quantities. 

First and Ultimate 

ratios.  

Characteristic 

triangle. 

 

Differential. 

 

Continuum. 

Limit of a magnitude 

(D’ Alembert). 

Limit of a variable 

quantity (Cauchy). 

Actual infinity. 

Sequence limit 

Continuity of a line. 

Completeness of real 

numbers. 

Weierstrass’ 

definition of limits. 

Problems and/or 

tasks 

To determine relations 

between geometric 
commensurable and 

incommensurable 

magnitudes in general. 

Difficulties of 

quadrature and 

cubature. Problems 

of application in 

daily life or of other 

disciplines.  

To determine the 

velocity of a motion, 

knowing its distance 

and its inverse 

problem. 

Constitution of the 

continuum. 

Determining the 

tangent to a curve and 

problems of 

quadrature and 

cubature 

Typical of 

mathematics to 

substantiate 

infinitesimal calculus 

and mathematic 

analysis.  

Completeness of real 

numbers. 

Continuity of the 

actual geometrical 

line. 

Procedures Method of exhaustion.  

Double reduction to 

absurdity. 

Use of indivisibles 

through the 

properties of 

Euclidean geometry. 

Calculus algorithm of 

fluxions: 

a) Inversed algebraic 

algorithm of 

fluxions calculus. 

b) Method of 

convergent series. 

Operatory (addition, 

subtraction, etc.) with 

infinitesimal 

quantities and infinite 

processes. 

Use of differential for 

the resolution of 

problems. 

Algebra of limits. 

Operations are made 

with infinitesimals of 

different orders.  

Demonstration of 

limits of functions and 

algebra of limits based 

on the Weierstrass’ 

definition of limits. 

Properties or 

propositions 

Archimedes' axiom. 

 

Proposition I from book 

X of Euclid's elements 

(foundation underpinning 

exhaustion method) 

Every geometric 

magnitude is 

generated by the 

addition of an infinity 

of elements 

belonging to an 

immediately inferior 

magnitude. 

Preconception of limit 

in an arithmetic 

context. 

 

Preconceptions of 

limits in a geometric 

context. 

Introduction of the 

characteristic triangle. 

Algebra of 

differentials. 

Acceptation of actual 

infinity. Principle of 

continuity of Leibniz. 

Generation of the 

finite by infinite 

processes.  

D'Alembert: the limit 

of a magnitude cannot 

be reached in the 

approximation 

process. Cauchy: The 

limit of a variable as a 

process of 

approximation to a 

fixed quantity, can be 

reached. 

Completeness of the 

set of real numbers.  

Continuity Axiom of 

the geometric line. 

Bijective 

correspondence 

between the points of 

a geometric line and 

real numbers.  

Arguments Based on the axiomatic-

deductive method of 

synthetic geometry. 

The surfaces and 

solids are composed 

by elements that 

generate 

"indivisibles", which 

allows to determine 

the relation between 

unknown magnitudes 

comparing them with 

known magnitudes.  

Conception of 

infinitesimal calculus 

as a mathematical 

model of physics.   

Operatory 

justification of the 

algorithmic processes. 

The geometric 

intuition as a basis of 

mathematic 

propositions. 

Based on the 

Principle of 

Geometric and 

Arithmetic 

Continuity. 

The current state of 

mathematical objects 

and things in general 

is the result of infinite 

processes.  

D'Alembert: the basis 

of differential and 

integral calculus is the 

concept of limits. 

Cauchy: Concepts of 

infinitesimals and 

limits can be 

consistently 

integrated.  

The set of real 

numbers as an 

organized and 

complete body. 

The geometric line as 

a representation of the 

set of real numbers. 

Assumption of 

different types of 

infinities, particularly 

actual infinity. 

Source: Prepared by the authors 

 

6. Conclusions 

 

The historic-epistemological research conducted on limits on a real variable function, 

helped identifying its genesis and development through time; it is worth highlighting that it had 

various facets during its institutionalization process, which evolved along with emerging 

problems in different periods. Many of these problems are characteristic of mathematics and 

are related to infinity, real numbers as an ordered and complete field, and function. The concept 
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of limits did not have a continuous and progressive path, but it had moments of rupture with 

previous knowledge and retrogression, grounded in the problems and obstacles in different 

epochs. 

Considering that history offers evidence about the formulation and the development of 

limits, it seems appropriate to consider these relevant aspects to design tasks that consider the 

epistemic configurations. These epistemic considerations provide information to design 

mathematical tasks, as well as, to identify representational resources and meaning conflicts that 

emerge during mathematical practices. 

The complexity of Figure 1 evidences that the study of limits on a real variable function 

requires a profound knowledge of the historical notion development; this document intends to 

be used during task design by offering diverse configurations as necessary representational 

elements for the instruction of limit on a real variable function. It is also helpful to approach 

the study of limits in a systematic way and accept that the comprehension of the concept is 

developed through time. Table 1 could be used in discussing even simple looking limit tasks 

(e.g., lim
𝑥→∞

𝑥 or the example in Figure 3), because the primary mathematical objects can be 

identified in one of the epistemic configurations summarized in this paper, this could be led to 

consider meanings and representations that could be ignored by tasks designers and that play 

an essential role in teaching and learning limits.  

Task design research highlights that design and implementation depend on the 

theoretical framework that supports them. Theoretical tools help guide task design, and they 

can be applied in the classroom. One challenge is designing the task using the criteria identified 

in this article, based on the theoretical-methodological tools provided by the OSA, to link tasks 

items to every meaning in order to promote a comprehensive understanding. 
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