Meio semi-seletivo para isolamento de Xanthomonas campestris pv. viticola

Semi-selective medium for isolation of Xanthomonas campestris pv. Viticola

Ana Rosa Peixoto¹ Rosa de Lima Ramos Mariano² Ivanise Oliveira Viana²

-NOTA-

RESUMO

O cancro bacteriano causado por Xanthomonas campestris pv. viticola é a fitobacteriose mais importante da videira no Submédio São Francisco. O isolamento de X. campestris pv. viticola de tecidos vegetais infectados é dificultado pela presença de contaminantes bacterianos, entre os quais Microbacterium barkeri. Objetivando-se a formulação de meio de cultura semi-seletivo, 22 isolados de X. campestris pv. viticola foram testados com relação a 30 antibióticos. O meio semi-seletivo NYDAM (extrato de carne 3, peptona 5, glicose 10, extrato de levedura 5, ágar 18 e ampicilina 0,1 em g L¹) inibiu M. barkeri e bactérias fitopatogênicas podendo ser utilizado para isolar X. campestris pv. viticola de hospedeiros com infecção natural em campo.

Palavras-chave: cancro da videira, Vitis sp., antibióticos.

ABSTRACT

Bacterial canker caused by Xanthomonas campestris pv. viticola is the most important bacterial disease of grapevine in Submédio São Francisco. The isolation of X. campestris pv. viticola of infected plant tissues is impaired by the presence of bacterial contaminants including Microbacterium barkeri. Aiming to formulate a semi-selective medium 22 X. campestris pv. viticola isolates were tested in relation to 30 antibiotics. The semi-selective NYDAM medium (meat extract 3, peptone 5, glucose 10, yeast extract 5, agar 18 and ampicilin 0.1 in gL¹) inhibited M. barkeri and plant pathogenic bacteria allowing X. campestris pv. viticola isolation from hosts naturally infected in the field.

Key words: bacterial canker of grapevine, Vitis sp., antibiotics.

No início de 1998, foi detectado, pela primeira vez no Brasil, o cancro bacteriano da videira em parreirais do Submédio São Francisco, onde a doença vem causando prejuízos em cultivares suscetíveis (MALAVOLTA et al., 1999). O agente causal da doença é a bactéria *Xanthomonas campestris* pv. *viticola* (Nayudu) Dye, cujo isolamento a partir de órgãos vegetais infectados é muitas vezes dificultado pela presença de bactérias saprófitas, destacando-se um contaminante de cor inicialmente branca e posteriormente amarela, com rápido crescimento, que dificulta o crescimento e reconhecimento de *X. campestris pv. viticola* em meios de cultura de rotina, identificado como *Microbacterium barkeri*.

Meios semi-seletivos são valiosos para o isolamento de bactérias fitopatogênicas de tecidos de plantas e solo e alguns podem ser tão sensíveis quanto a reação da polimerase em cadeia (PCR) (WANG et al., 1999) ou mais sensíveis que técnicas imunológicas (ALVAREZ & LOU, 1985; WANG et al., 1999), sendo fáceis de usar e menos dispendiosos (TOUSSAINT et al., 2001). Porém, um meio que restringe o surgimento de colônias de microrganismos saprofíticos, geralmente apresenta altos níveis de repressão do patógeno alvo (MOURA & ROMEIRO, 1998), ou seja, baixa eficiência (WYDRA et al., 2004).

Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia (UNEB), Av Edgard Chastnet, s/n, 48900-000, Juazeiro, BA, Brasil.

²Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), 52171-030, Recife, PE, Brasil. E-mail: rmariano@truenet.com.br. Autor para correspondência (R.L.R. Mariano).

Peixoto et al.

O objetivo deste trabalho foi formular um meio semi-seletivo para isolamento de *X. campestris pv. viticola* a partir de órgãos vegetais infectados.

Vinte e dois isolados de *X. campestris pv. viticola*, obtidos de videiras com sintomas típicos do cancro bacteriano ou de plantas invasoras com sintomas similares, coletados em parreirais comerciais (Tabela 1), foram multiplicados e mantidos em meio NYDA (extrato de carne 3, peptona 5, glicose 10, extrato de levedura 5, ágar 18g L⁻¹ de água destilada). A partir de cultivo com 48 horas em NYDA, as suspensões dos isolados foram feitas em água destilada esterilizada (ADE) e aferidas em fotocolorímetro Analyser 500 M, de acordo com equação previamente determinada, onde A₅₇₀ = 0,4 corresponde a 10⁸UFC mL⁻¹. Essas suspensões foram utilizadas nos antibiogramas e testes de eficiência.

Os antibiogramas qualitativos foram realizados em placas de Petri contendo NYDA solidificado, sobre o qual 100µL de suspensão bacteriana foram espalhados. Após secagem da suspensão, quatro discos de antibióticos distintos (Tabela 2) foram depositados por placa, com quatro repetições. A incubação foi realizada a 29°C, durante 48 horas, quando se verificou a ocorrência ou não de halos de inibicão.

No teste de supressividade, foram utilizadas culturas puras das espécies: *M. barkeri*, *Acidovorax avenae* subsp. *citrulli*, *Agrobacterium tumefaciens* (biovar 1 e biovar 3), *Pectobacterium carotovorum* subsp. *carotovorum*, *Pseudomonas cichorri*, *P. syringae* pv. *tomato*, *Ralstonia solanacearum* e *Xanthomonas campestris* pv. *campestris*. Cada isolado foi semeado, pelo método de estrias, em placas contendo meio semi-seletivo e NYDA (controle), com quatro repetições. As placas foram incubadas a 29°C, por 48 horas, quando se verificou o crescimento ou não das culturas.

No teste de eficácia, foram utilizados os isolados Xcv1, 1385-98, UnB1190 e UnB 1216. Alíquotas de $100\mu L$ de suspensões bacterianas com $10^3 UFC \, mL^{-1}$ foram plaqueadas em meio semi-seletivo e NYDA, incubadas por 48 horas, a 29°C, quando foi feita a contagem de colônias. A eficácia foi determinada pela fórmula E(%) = [(UFC em meio semi-seletivo)/(UFC em NYDA)] x $100 \, (WYDRA \, et \, al., 2004)$.

Dos antibióticos testados, amoxicilina (10μg), ampicilina (10μg), cefaclor (30μg), clindamicina (2μg), optoquina (5μg), oxacilina (1μg), nitrofurantoína (300μg) e trimetropina (5μg) apresentaram baixa eficácia (0 a 10%) contra os isolados de *X. campestris pv.*

Tabela 1 - Identificação, hospedeiros, origem e procedência dos isolados de Xanthomonas campestris pv. viticola avaliados para sensibilidade a antibióticos.

Identificação do isolado	Hospedeiro	Origem	Procedência
UnB 1216	Videira cv. Red Globe	Petrolina-PE	UnB^1
UnB 1190	Videira cv. Red Globe	Petrolina-PE	UnB
UnB 1223	Videira cv. Red Globe	Curaçá-BA	UnB
UnB 1224	Videira cv. Red Globe	Curaçá-BA	UnB
Xcv1	Videira cv. Red Globe	Juazeiro-BA	$UFRPE^2$
Xcv2	Fedegoso (Senna obtusifolia)	Petrolina-PE	UFRPE
Xcv3	Alecrim (Alternanthera tenella)	Petrolina-PE	UFRPE
Xcv4	Videira cv. Thompson	Petrolina-PE	UFRPE
Xcv5	Videira cv. Superior	Petrolina-PE	UFRPE
Xcv6	Videira cv. Superior	Petrolina-PE	UFRPE
Xcv7	Videira cv. Catalunha	Juazeiro-BA	UFRPE
Xcv8	Videira cv. Catalunha	Juazeiro-BA	UFRPE
Xcv9	Videira cv. Catalunha	Petrolina-PE	UFRPE
1370	Videira cv. Red Globe	Petrolina-PE	Instituto Biológico
1376	Videira cv. Red Globe	Petrolina-PE	Instituto Biológico
1377	Videira cv. Red Globe	Petrolina-PE	Instituto Biológico
1385	Videira cv. Itália	Terezina-PI	Instituto Biológico
1386	Videira cv. Ribiê	Terezina-PI	Instituto Biológico
1456	Videira cv. Red Globe	Santa Maria da Boa Vista-PE	Instituto Biológico
1502	Videira cv. Red Globe	Petrolina-PE	Instituto Biológico
1505	Videira cv. Red Globe	Petrolina-PE	Instituto Biológico
1506	Videira cv. Red Globe	Petrolina-PE	Instituto Biológico

¹ Universidade de Brasília.

² Universidade Federal Rural de Pernambuco.

viticola estudados (Tabela 2). Portanto, esses antibióticos foram adicionados separadamente ao meio NYDA, fazendo-se os testes de crescimento de X. campestris pv. viticola e do saprófita M. barkeri. O único antibiótico que inibiu esta última bactéria foi a ampicilina, quando adicionada ao NYDA na concentração de 100ppm.

A eficácia do meio semi-seletivo variou de 10,8 (isolado Xcv1) a 29,4% (isolado 1385-98), concordando com TOUSSAINT et al. (2001), que relataram índices de 5,7 a 30,6% para *X. campestris* pv. vitians em meio MMG. Por outro lado, 45,6 a 188,6% de eficácia foram obtidas no meio CCM para *X. axonopodis* pv. vignicola (WYDRA et al., 2004) e 65 a 100% para *Pectobacterium carotovorum* e *Pectobacterium atrosepticum* (CUPPELS & KELMAN, 1974).

O meio semi-seletivo foi supressivo apenas aos isolados de *A. avenae* subsp. *citrulli*, *de P. carotovorum* subsp. *carotovorum e de Microbacterium barkeri*, os quais tiveram o crescimento totalmente inibido. Segundo MOURA & ROMEIRO (1993), meios semi-seletivos ou seletivos desenvolvidos para outras espécies de bactérias fitopatogênicas podem apresentar alta supressividade.

O meio semi-seletivo NYDAM (NYDA + ampicilina) (extrato de carne 3 g, peptona 5g, glicose 10g, extrato de levedura 5g, ágar 18g, ampicilina 100mg L⁻¹ de água destilada) desenvolvido neste trabalho permitiu o isolamento de *X. campestris pv. viticola* sem a presença de saprófitas, a partir de diversos tecidos vegetais infectados, facilitando a identificação do patógeno. NYDAM é um meio de preparo fácil e

Tabela 2 - Sensibilidade de isolados de Xanthomonas campestris pv. viticola a diferentes antibióticos.

Antibióticos	Concentração	% de isolados sensíveis ¹
Ácido nalidíxico	30µg	100
Ácido Pipemidico	20cg	90
Amicacina	30µg	80
Amoxicilina/Ácido clavulânico	10µg	90
Amoxicilina ²	30µg	0
Ampicilina + Sulbactam	10µg	55
Ampicilina ²	10μg	10
Aztreoram	30µg	70
Cefaclor ²	30µg	0
Cefotaxima	30µg	100
Cefoxetina	30µg	55
Ceftazidima	30µg	100
Ceftriaxona	30µg	90
Ciprofloxacin	5μg	100
Clindamicina ²	2μg	0
Cloranfenicol	30µg	100
Eritromicina	15µg	100
Estreptomicina	10µg	100
Imipenen	10µg	100
Neomicina	30µg	90
Netilmicina	30µg	100
Nitrofurantoina ²	300µg	0
Norfloxacin	10μg	100
Optoquina ²	5μg	0
Oxacilina ²	lμg	0
Sulfazotrin	25µg	100
Sulfonamida	300µg	80
Tetraciclina	30µg	100
Ticarcilina/Ácido Clavulânico	85µg	100
Trimetropina ²	5μg	0

¹Porcentagem em relação a 22 isolados.

²Antibiótico com baixa eficácia a isolados de *X. campestris* pv. *viticola*.

Peixoto et al.

não requer luz UV ou reagentes para a visualização e contagem de colônias. Nesse meio, bem como em NYDA, as colônias apresentam coloração branca, forma arredondada e bordos lisos, diferindo apenas no diâmetro da colônia (cerca de 1,5mm no meio NYDAM e 2,5mm em NYDA) após 48 horas de cultivo a 29°C. WYDRA et al. (2004) também observaram redução do tamanho das colônias de *X. axonopodis* pv. *vignicola* de 5mm para 1,5mm quando usaram o meio semi-seletivo CCM. Para identificação dos isolados obtidos no meio NYDAM, recomenda-se a inclusão de isolados de referência de *X. campestris* pv. *viticola* e a realização de testes de patogenicidade.

AGRADECIMENTOS

À Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), pelo apoio financeiro; à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelas bolsas de Doutorado, Produtividade em Pesquisa e Apoio Técnico concedidas.

REFERÊNCIAS

ALVAREZ, A.M.; LOU, K. Rapid identification of *Xanthomonas campestris* pv. *campestris* by ELISA. **Plant Disease**, Saint Paul, v.69, n.12, p.1082-1086, 1985.

CUPPELS, D.; KELMAN, A. Evaluation of selective media for isolation of soft-rot bacteria from soil and plant tissue. **Phytopathology**, Saint Paul, v.64, n.4, p.468-475, 1974.

MALAVOLTA JR., V.A. et al. Ocorrência de *Xanthomonas campestris* pv. *viticola* em videira no Brasil. **Summa Phytopathologica**, Jaboticabal, v.25, n.3, p.26-27, 1999.

MOURA, A.B.; ROMEIRO, R.S. Desenvolvimento de um meio seletivo para *Pseudomonas syringae* pv. *lachrymans*. **Revista Brasileira de Sementes**, Brasília, v.15, n.1, p.209-214, 1993.

MOURA, A.B.; ROMEIRO, R.S. Meio seletivo para *Ralstonia solanacearum* baseado em resistência múltipla natural a antibióticos. **Fitopatologia Brasileira**, Brasília, v.23, n.4, p.466-470, 1998.

TOUSSAINT, V. et al. A new semi-selective medium for *Xanthomonas* campestris pv. *vitians*, the causal agent of bacterial leaf spot of lettuce. **Plant Disease**, Saint Paul, v.85, n.2, p.131-136, 2001.

WANG, Z. K. et al. Comparison of PCR, BIO-PCR, DIA, ELISA and isolation on semiselective medium for detection of *Xanthomonas albilineans*, the causal agent of leaf scald of sugarcane. **Plant Pathology**, Oxford, v.48, n.2, p.245-252, 1999.

WYDRA, K. et al. A diagnostic medium for the semi-selective isolation and enumeration of *Xanthomonas axonopodis* pv. *vignicola*. **European Journal of Plant Pathology**, Dordrecht, v.110, n.10, p.991-1001, 2004.