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ABSTRACT: The objective of this study was to simulate the yield of two cassava cultivars in two IPCC future climate scenarios, the SRES-
AIB (Cmip3) and the RCP4.5 (Cmip5), for the state of Rio Grande do Sul, Brazil. The Simanihot model, with the Thornthwaite and Mather
water balance sub-model, and the SRES-A1B (Cmip3 — Third Coupled Model Intercomparison Project) and RCP4.5 (Cmip5 - Fifth Coupled
Model Intercomparison Project) scenarios of the Fourth and Fifth IPCC Assessment Report, respectively, was used. Cassava cultivars used
in this study were ‘Fepagro — RS13’ (forrage) and ‘Estrangeira’ (human consumption). In both cultivars, there was an increase in tuberous
roots yield in future climate scenarios. The cultivar for human consumption benefits more roots yield in the scenario with higher CO, (Cmip3
scenario); whereas, the forage cultivar benefits more the Cmip5 scenario. Among the three future periods (2010-2039, 2040-2069 e 2070-
2099), changes in tuberous roots yield are more evident in the end of the century period (2070-2099) and for early planting dates (01 September
and 01 October). The northeastern region of the state has the greatest changes in tuberous roots yield in future climates, because this is the
coldest region, with winter minimum temperature during between 6 and 8°C.
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Produtividade simulada de mandioca em cenarios climaticos futuros do IPCC
para o Rio Grande do Sul, Brasil

RESUMO: O objetivo deste trabalho foi simular a produtividade de duas cultivares de mandioca em dois cendrios climaticos futuros do IPCC,
0 SRES-A1B (Cmip3) e o RCP4.5 (Cmip5), para o Rio Grande do Sul. Foi utilizado o modelo Simanihot, com o submodelo de balango hidrico
do solo didrio sequencial de Thornthwaite e Mather, e os cendrios SRES- A1B (Cmip3 - 32 Projeto de Intercomparagdo de modelos globais)
e 0 RCP4.5 (Cmip5 - 52 Projeto de Intercomparag¢do de modelos globais) do 4% e 5° relatério do IPCC, respectivamente, regionalizados por
downscaling dindmico com modelo RegCM3 e RegCM4 (Modelo Climdtico Regional), respectivamente. As cultivares utilizadas no estudo
foram a ‘Fepagro — RS13’ (uso forrageira) e ‘Estrangeira’ (uso para mesa). Em ambas hd aumento na produtividade de raizes em cendrios
climaticos futuros. A cultivar de mesa se beneficia mais na produtividade de raizes no cendrio com maior concentragdo de CO, (cendrio
Cmip3), enquanto a cultivar forrageira, se beneficia mais no cendrio Cmip5. Nos trés periodos futuros (2010-2039, 2040-2069 e 2070-2099),
as mudangas na produtividade sdo sempre mais expressivas no ultimo periodo (2070-2099) e nas primeiras datas de plantio (01/09 e 01/10).
A regido do Rio Grande do Sul com maiores mudangas na produtividade é a nordeste, a qual, no clima atual é a mais fria do Estado, com
temperatura minima do ar no inverno entre 6 e 8°C.

Palavras-chave: Simanihot, modelagem agricola, aumento de temperatura, aumento de CO,,

INTRODUCTION directly influence the growth and developmental
processes of agricultural crops. One of the most

The Intergovernmental Panel on significant crops for food security and the main

Climate Change (IPCC, 2007, 2013) has food source of several countries in Africa and
reported impacts of the greenhouse effect on Asia is cassava (Manihot esculenta Crantz L.).
meteorological variables such as air temperature, In the Rio Grande do Sul state, cassava plays a

solar radiation and precipitation, which in turn key role in family farming.
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As a result of its social significance
in the developing nations, field and greenhouse
experimental research is gaining momentum
(IMALI et al., 1984; ROSENTHAL et al., 2012) and
increasing in number (CHINVANNO, 2004; LIU
et al., 2008; LOBELL et al., 2008; SCHLENKER
& LOBELL, 2010). However, studies focused on
assessing the impact of climate scenarios in the
future on cassava productivity in Rio Grande do Sul
are not available.

Future climate scenarios of the
IPCC include the SRES-A1B scenario (Cmip3

31 Intercomparison Project global models),
an intermediate scenario between the least
advantageous scenarios (Al, A2) and the most
beneficial ones (B1, B2) of the 4" IPCC Assessment
Report, and the RCP4.5 scenario (Cmip5 - 5%
Intercomparison Project global models), which
is also an intermediate scenario of the 5% IPCC
Assessment Report. These two scenarios showed
variations in the trends of the meteorological
variables. In the SRES-AIB (Cmip3), the CO,
concentration begins with 300ppm in 1960 and
reaches 710ppm by 2100 (IPCC, 2007), while in the
RCP4.5 scenario (Cmip5) the CO, concentration is
around 300ppm in 1960 and goes up to 538ppm
by 2100 (IPCC, 2013). The surface temperature is
projected to increase during the 21* century in both
scenarios and rainfall changes will vary depending
upon location on the planet (IPCC, 2007, 2013).
To study the response of the cassava cultivation
in these future scenarios, dynamic process-based
models, such as the Simanihot (TIRONI, 2016), are
suitable tools as they describe the processes that
affect the root growth and take into account the
effect of CO, fertilization and soil water balance.

The objective of this study was to
simulate the yield of two cassava cultivars in two
future climate scenarios of the IPCC, the SRES-A1B
(Cmip3) and RCP4.5 (Cmip5) in the Rio Grande do
Sul state, Brazil.

MATERIALS AND METHODS

The Simanihot, version 1.2 <www.ufsm.
br/simanihot>, was the cassava model used in this
study. It is a dynamic process-based model which
calculates the crop growth and development in a daily
step, taking into account the effects of water stress
and the fertilizing effect of CO, on several growth
and developmental processes, including tuberous
roots (TIRONI, 2016). The Simanihot model was
forced by the SRES-A1B scenario (Cmip3) of

the 4th IPCC Assessment Report (IPCC, 2007)
and the RCP4.5 scenario (Cmip5) of the 5% IPCC
Assessment Report (IPCC, 2013). The boundary
conditions and CO, were from the ECHAMS global
model (ROECKNER, 2005) for the Cmip3 and
HadGEM2-ES global model (JONES et al., 2011)
for Cmip5. The scenarios were regionalized by
dynamic downscaling (HOSTETLER et al., 2011)
with the RegCM3 model (Regional Climate Model
version 3) for the Cmip3, and with the RegCM4
model (Regional Climate Model version 4) for the
Cmip5. The downscaling was for a total of 37 points
across the state.

In addition to a previous validation of
the Simanihot model by GABRIEL et al. (2014),
we also compared observed tuberous roots yield
data from field experiments at four locations
in the RS State (Santa Maria, Vera Cruz, Rio
Pardo and Glorinha) during 12 growing seasons
(Figure 1), for two cultivars (‘Fepagro-RS13’
and ‘Estrangeira’) in different planting dates,
harvesting dates, and plant densities. Yield was
calculated with the Simanihot in terms of tons/ha
of fresh weight using as the input data the actual
meteorological variables recorded at the weather
stations of the Instituto Nacional de Meteorologia
(INMET) and the meteorological variables of the
future scenarios.

The 120-year period for each climate
scenario was divided into the baseline period (1980-
2009) and three future periods: 2010-2039, 2040-
2069 and 2070-2099. Tuberous roots yield (ton/
ha of fresh weight) for each period was simulated
by running the Simanihot model in both scenarios
(Cmip3 and Cmip5) for two cultivars, ‘Fepagro-
RS13’ (grown for forage in the RS) and ‘Estrangeira’
(one of the most cultivated in the RS and well
accepted for consumption) (CARDOSO etal., 2004),
in four planting dates (dd/mm): 01/09, 01/10, 01/11
and 01/12. Harvest date was set on 15 June. The
Simanihot model was run without water limitation
(potential condition) and with the soil water-balance
model activated (rain fed condition) using the daily
water balance according to THORTHWAITE &
MATHER (1955). The potential evapotranspiration
(ETo) was calculated using the Penman-Monteith
method. The Simanihot software contains a database
of soils of the Rio Grande do Sul and the physical
properties such as the water content of the soils were
calculated for different water tensions, essential
for calculating the soil water balance, through a
pedotransfer function used in the Hydrus model
(SIMUNEK et al., 2013).
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Figure 1 - Tuberous roots yield (in fresh matter) of cassava, cultivars ‘Fepagro-RS13” and ‘Estrangeira’, as observed (Observed) and
simulated with the Simanihot model using measured meteorological data from weather stations (WS) and using meteorological
data from the Cmip3-A1B and Cmip5-RCP4.5 scenarios as inputs of the cassava model. Each bar is the average of 28
experiments in four locations in Rio Grande do Sul (Santa Maria, Vera Cruz, Rio Pardo and Glorinha) during twelve growing
seasons (1999/2000, 2002/2003, 2004/2005, 2005/2006, 2006/2007, 2007/2008, 2008/2009, 2009/2010, 2010/2011, 2011/2012,

RESULTS AND DISCUSSION

The tuberous roots yield averaged around
8 tons/ha more in the Cmip5 than in the Cmip3
scenario (Figure 1), because of greater solar radiation
in the Cmip5 scenario (annual average around 23MJ
m?day! in the Cmip5 compared to 15MJ m? day,
Figure 2A), lower precipitation (accumulated rainfall
achieving nearly 5000mm per year in the central
region of the state in the Cmip3 scenario compared
to 1500mm in the Cmip5 scenario), and a higher
inter annual variability of precipitation in the Cmip3
scenario (Figure 2B). Minimum air temperature is
similar in both future scenarios up to around 2060,
and from then on the increase in minimum air
temperature is greater in Cmip3 (Figure 2C). The
maximum temperature is higher in Cmip5 except in
the eastern part of the state, and overall, the Cmip3
scenario experiences had lower thermal amplitude
than does the Cmip5 (Figure 2D).

The tuberous roots yield for the baseline
period was higher in the Cmip5 scenario for both
cultivars, achieving values greater than 30 tons ha!
for nearly the entire State in the 01/09 and 01/10
planting dates (data not shown). Yields in the baseline

period was greater in the northwest part of the state,
where air temperature and solar radiation are higher.
This is in agreement with currently climatology,
where temperature and solar radiation in this region
is around 25°C and 26MJ m? day' during the
summer compared with the northeast region, where
they are around 19-20°C and 21-22MJ m? day
(MATZENAUER et al., 2011).

The ‘Fepagro-RS13’ cultivar in the Cmip3
scenario, for the three future periods (2010-2039,
2040-2069 and 2070-2099), showed higher tuberous
roots yield changes in the earlier planting dates (01/09
and 01/10) and in the end of the century (2070-2099).
The northeast part of the state, which is normally less
productive due to low winter temperatures (6 to 8°C)
(MATZENAUER et al., 2011), showed the highest
increase in cassava yield (Figure 3) benefiting more
from the rise in air temperature and CO, concentration.
The northwest region of the state revealed the least
changes in yield in all the planting dates and during
all the three future periods (Figure 3). For the cultivar
‘Estrangeira’, in this scenario, yield increase was also
during the last future period (2070-2099), with a rise
of up to 30 tons/ha in the earlier planting dates (01/09
and 01/10) in almost every state (Figure 4).
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The tuberous roots yield changes for the
cultivar ‘Fepagro-RS13” was higher in the Cmip5
scenario (Figure 5) and lower for the cultivar
‘Estrangeira’ (Figure 6) during the three future
periods (Figures 3 and 4). Elevated temperatures
in both scenarios were advantageous to the crop
because high temperatures are associated with
higher rates of growth and photosynthesis in
cassava (EL-SHARKAWY et al., 1992); however,
differences in CO, concentration between these two
scenarios was the main reason for the difference in
the results among cultivars. The CO, enrichment
(Cmip3 scenario) was more advantageous for the
cultivar ‘Estrangeira’ than for the forage cultivar
‘Fepagro - RS 13’ because in this scenario the
forage cultivar increased above ground growth,
which resulted in the reduced growth of the tuberous
roots. Precipitation did not appear to be a limiting
factor for tuberous root growth because the yields
simulated without (data not shown) and with the soil

water balance turned on was similar, implying that
seasonal water supply was enough.

Previous numerical studies indicated
decrease or almost no changes in the cassava yield
in future climate scenarios (LOBELL et al., 2008;
LIU et al., 2008; SCHLENKER & LOBELL, 2010),
varying from -3.7 to 17.5% over the African continent
(JARVIS et al., 2012), and increased productivity
during the wet seasons in Thailand (CHINVANNO,
2004). Most of these studies were in the tropics,
mainly Africa and Thailand, and only a few took
into account the influence of CO, on cassava yield
(CHINVANNO, 2004; LIU et al., 2008). Results of
the present study agree with the results from CO, field
enrichment experiments with cassava (IMAI et al.,
1984; ROSENTHAL et al., 2012), that cassava can
benefit from raising temperatures in the subtropics,
which are currently marginal its growth, because in
the future the risk for low air temperatures in these
regions is lower (ASSAD & PINTO, 2008).
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el L

,o,

v,

-

Co0 s

LS




Estimating cassava yield in future IPCC climate scenarios for the Rio Grande do Sul State, Brazil.

01/09

01/10

(2010-2039) - Baseline

(2040-2069) - Baseline

(2070-2099) - Baseline

£

BW slw 5w

Longitude

STW 50N

Lotitude

=]
&

o
o

s

siw

56

E

BN B3 B BIW

Longitude

T EW s bW W
Langitude

[

Lotitude

&
o

=

s

s

01/11

01/12

Er

564 55w SeN 53

Longitude

520

=

a7W

BEW

55w

S4B

SI%  SEW 55w SN SIW

Longitude

500

RTET
l.ongit;ude

S50

348

ST 5w GW G 5w OINE

Langitude

L]

i)and 01/12 (j, 1 m).

Lotitude

s

S

FEG

Sam Siw
Longitude

s W
Langitude

BT B

L d

5ew

L

L3 53w Lo 5w s0W

Longitude

i
T

—
1] 5w B

Longitude

Biw 5w

Figure 3 - Change in yield of tuberous roots fresh matter (ton ha™') of the cassava cultivar ‘Fepagro-RS’ 13 in Rio Grande
do Sul State, Brazil, as simulated with the Simanihot model for three future periods of the Cmip3-A1B scenario
(2010-2039, 2040-2069, 2070-2099) in four planting dates (dd/mm): 01/09 (a, b, c), 1/10 (d, e, f), 01/11 (g, h,
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Figure 4 - Change in yield of tuberous roots fresh matter (ton ha') of the cassava cultivar ‘Estrangeira’ in Rio Grande do Sul
State, Brazil, as simulated with Simanihot model for three future periods of the Cmip3-A1B scenario (2010-2039,
2040-2069, 2070-2099) in four planting dates (dd/mm): 01/09 (a, b, c), 1/10 (d, ¢, f), 01/11 (g, h, 1) and 01/12 (j, 1, m).
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Figure 5 - Change in yield of tuberous roots fresh matter (ton ha'') of the cassava cultivar ‘Fepagro-RS 13’ in Rio Grande do
Sul State, Brazil, as simulated with the Simanihot model for three future periods Cmip5-RCP4.5 scenario (2010-
2039, 2040-2069, 2070-2098) in four planting dates (dd/mm): 01/09 (a, b, c), 1/10 (d, e, f), 01/11 (g, h, i) and
01/12 (j, I, m).
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Figure 6 - Change in yield of tuberous roots fresh matter (ton ha') of the cassava cultivar ‘Estrangeira’ in Rio Grande do Sul
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CONCLUSION

Both cassava cultivars (forage and for
human consumption) reveal higher tuberous root
yield in future climate scenarios. However, while the
cultivar for human consumption benefits more in the
scenario with the highest CO, concentration (Cmip3
scenario), the forage cultivar appears to benefit more
in the Cmip5 scenario. The Cmip3 scenario, with its
high CO, concentration, appears to support increased
shoot growth in the forage cultivar. Among the three
future periods analyzed, tuberous roots yield changes
are higher during the end of the century period (2070-
2099) and in the early planting dates (01/09 and 01/10).
The Northeastern region of the state has the greatest
changes in tuberous roots yield in future climates,
because this is the current coldest region, with winter
minimum temperature during between 6 and 8°C.
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