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INTRODUCTION

Nitrogen is the primary component of 
rice protein and chlorophyll, which is critical for 
crop growth and yield (LEE et al. (2008); WANG et 
al. (2011)). Liaoning province in northeast China is 
currently facing three issues with the application of 
nitrogen fertilizer. Fertilizer nitrogen levels per hectare 
are high, fertilization is not balanced, and the utilization 

rate of nitrogen fertilizer is low. Excessive and unguided 
application of nitrogen fertilizer increases production 
costs, causes environmental pollution (WANG et al. 
(2014); DU et al. (2017)), and results in erratic and 
unstable stem growth (YU & XU, 2016). Conventional 
nitrogen content detection requires destructive sampling 
in the field and subsequent laboratory testing, which 
cannot be conducted in real time. More efficient 
methods for the detection of nitrogen content in rice are 
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ABSTRACT: The Nitrogen content of rice leaves has a significant effect on growth quality and crop yield. We proposed and demonstrated a 
non-invasive method for the quantitative inversion of rice nitrogen content based on hyperspectral remote sensing data collected by an unmanned 
aerial vehicle (UAV). Rice canopy albedo images were acquired by a hyperspectral imager onboard an M600-UAV platform. The radiation 
calibration method was then used to process these data and the reflectance of canopy leaves was acquired. Experimental validation was conducted 
using the rice field of Shenyang Agricultural University, which was classified into 4 fertilizer levels: zero nitrogen, low nitrogen, normal nitrogen, 
and high nitrogen. Gaussian process regression (GPR) was then used to train the inversion algorithm to identify specific spectral bands with 
the highest contribution. This led to a reduction in noise and a higher inversion accuracy. Principal component analysis (PCA) was also used 
for dimensionality reduction, thereby reducing redundant information and significantly increasing efficiency. A comparison with ground truth 
measurements demonstrated that the proposed technique was successful in establishing a nitrogen inversion model, the accuracy of which was 
quantified using a linear fit (R2=0.8525) and the root mean square error (RMSE=0.9507). These results support the use of GPR and provide a 
theoretical basis for the inversion of rice nitrogen by UAV hyperspectral remote sensing.
Key words: UAV, Hyperspectral remote sensing, Machine learning, Nitrogen content.

RESUMO: O teor de nitrogênio das folhas de arroz tem um efeito significativo sobre a qualidade do crescimento e o rendimento das culturas. 
Propõe–se  e demonstrou-se um método não invasivo para a inversão quantitativa do teor de nitrogênio do arroz com base em dados de detecção 
remota hiperespectral coletados por um veículo aéreo não tripulado (UAV). As imagens de albedo do dossel de arroz foram adquiridas por 
uma imagem de imagem hiperespectral a bordo de uma plataforma M600-UAV. O método de calibração da radiação foi então usado para 
processar esses dados e a reflectância das folhas do dossel foi adquirida. A validação experimental foi realizada utilizando o campo de arroz 
da Universidade Agrícola de Shenyang, que foi classificado em 4 níveis de fertilizantes: nitrogênio zero, baixo teor de nitrogênio, nitrogênio 
normal e alto teor de nitrogênio. A regressão do processo gaussiano (GPR) foi então usada para treinar o algoritmo de inversão para 
identificar bandas espectrais específicas com a maior contribuição. Isso levou a uma redução no ruído e uma maior precisão de inversão. A 
análise de componentes principais (PCA) também foi usada para redução de dimensionalidade, reduzindo assim a informação redundante e 
aumentando significativamente a eficiência. Uma comparação com as medidas de verdade no solo demonstrou que a técnica proposta foi bem 
sucedida no estabelecimento de um modelo de inversão de nitrogênio, cuja precisão foi quantificada usando um ajuste linear (R2 = 0,8525) e 
o erro quadrático médio quadrado (RMSE = 0,9507). Estes resultados suportam o uso do GPR e fornecem uma base teórica para a inversão 
do nitrogênio do arroz pela detecção remota hiperespectral do UAV.
Palavras-chave: UAV, detecção remota hiperspectral, aprendizado de máquinas, conteúdo de nitrogênio.
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needed to meet future requirements for crop production 
and environmental sustainability (LAN, 2013).

Remote sensing techniques have offered 
a non-invasive alternative to conventional crop 
sampling over large areas and are becoming ever more 
indispensable in plant nutrient research and precision 
agriculture (LI et al. (2016); MULLA et al. (2013)). 
Data from airborne imaging systems have been used for 
the calculation and retrieval of biophysical parameters 
such as chlorophyll content (VERRESLST et al. 
(2013)), leaf area index (LAI) (GARRIGUES et al. 
(2008)), and fractional vegetation cover (VERRELST 
et al. (2012)). Use of unmanned aerial vehicles (UAVs) 
has provided a low-cost option for the acquisition of 
such data. This approach has several advantages 
including flexibility in the choice of flight altitude, 
detection range, spectral resolution, and sensor type. 
The equipment is fast and easy to transport, allowing 
for timely deployment at specific crop life stages. 

The UAV-based imaging systems have 
recently been used for multiple aspects of vegetation 
monitoring (SUGIURA et al. (2005); LIU, 2014), 
including the fast acquisition of canopy reflectance 
data from crops (WATTS et al. (2012); COLOMINA 
& MOLINA, 2014). For example, the nondestructive 
evaluation of onion canopies led to the establishment of 
a direct relationship between canopy density and LAI 
(CÓRCOLES et al., 2013). Acquisition of hyperspectral 
images has allowed for the expansion and diversification 
of crop measurements, to include parameters such as 
yield, biomass, and water content (ADAM et al. (2010); 
GOVENDER et al. (2007)). Spectroscopy data have also 
been used for phenol typing (ZAMAN-ALLAH et al. 
(2015); SANKARAN et al. (2015)), and quantification 
of structural and biochemical vegetation properties. 
(SCHAEPMAN et al. (2009); USTIN & GAMON, 
2010; HOMOLAVÁ et al. (2013)).

However, this technology poses an 
important methodological challenge. Imaging 
spectroscopy data typically included highly 
correlated and noisy spectral bands, which frequently 
cause statistical problems due to small sample sizes. 
In this study we demonstrated the application of 
Gaussian process regression (GPR) to overcome 
these limitations. GPR is a type of machine learning 
algorithm capable of being trained to differentiate the 
contributions of various spectral bands. Bands with the 
highest weight (contribution to a specific parameter 
being measured) are selected while other less relevant 
bands are ignored. This leads to a reduction in noise 
and increased parameter measurement accuracy. The 
application of GPR is specifically demonstrated for 
the inversion of nitrogen content in rice crops.  

The remainder of this paper is organized 
as follows. Methods section described the process of 
image acquisition, processing, and the establishment 
of a nitrogen content ground truth by invasive field 
sampling. Data processing and  GPR algorithm are 
also explained in addition to the dimensionality re-
duction achieved using principal component analysis 
(PCA). This procedure was used to remove redundant 
information in the hyperspectral data, significantly 
increasing the efficiency of the proposed technique. 
Retrieved nitrogen content is then compared with the 
ground truth in  results section and quantified using 
the root-mean-square-error (RMSE) as well as a lin-
ear fit. Discussion then provides a rationale for the 
choice of GPR and a comparison between this and 
other UAV-based hyperspectral imaging studies. 
Comparisons are made and benefits of this proposed 
technique as a novel imaging tool for crop monitoring 
are presented, plans for future studies are discussed, 
and the paper is concluded.

MATERIALS   AND   METHODS

The study site was located at Shenyang 
Agricultural University (41°81′63″N, 123°55′85″E; 
altitude 65 m) in Shenyang, Liaoning Province, 
China (see Fig.1). The tested rice-529 cultivar were 
provided by the College of Agriculture at Shenyang 
Agricultural University. Rice plant spacing was 
~30cm, with a growth period of ~149 days. Stalks 
were transplanted on May 29, 2016. Seedlings were 
an early-maturing variety with dark green leaves, 
reaching a full height of ~107cm. A total of 12 
plots (5m×8m) were established, consisting of four 
nitrogen (N) treatments with three replicates in a 
randomized block design (see Figure 1). Subgroups 
were arranged as follows:
(1) 0 level (in 2016) designated as no nitrogen.
(2) 1 level = 2 level×0.5 (in 2016) designated as low nitrogen.
(3) 2 level (N: 0.2kg/ha, P: 0.23kg/ha, K:0.08kg/ha) 
(in 2016) designated as normal nitrogen.
(4) 3 level = 2 level×1.5 (in 2016) designated as high nitrogen.

A plastic plate isolation test plot was used, 
in which soil was inserted into a 10cm chamber to 
ensure fertilizer did not penetrate other plots.

UAV hyperspectral image acquisition
A six-rotor UAV (M600, DJI, China) 

was used for hyperspectral image acquisition. The 
device was capable of lifting 6.5kg with a flight time 
of ~20 minutes. The UAV was equipped with an 
attitude control system (RONIN-MX, DJI, China) to 
eliminate  vibrations effects in the spectral image 
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acquisition process. The Gaiasky-mini imager 
(Dualix Spectral Imaging, China) was used to collect 
top-of-rice hyperspectral reflectance data ranging 
from 400 to 1100nm with a 3.0nm resolution (256 
bands), from an altitude of 50m. The data acquisition 
time was consistently between 12:00 and 10:00 to 
ensure acquisition under the same sky conditions. 

Rice canopy spectral information was 
collected by a black and white calibration board 
and the digital number (DN) was converted to a 
reflectance. The experiment was conducted in the 
tilling, jointing, heading, filling, and maturity stages 
of rice. Spectral curves for the five rice growth stages 
and four nitrogen levels are presented in figure 2. 

Figure 1 - The distribution of experimental plots at varying nitrogen levels.

Figure 2 - Spectral curves for various rice growth stages.
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As is evident in the figure, the reflectance of various 
nitrogen levels was smaller in the visible light band 
(400-720nm) and larger in the near-infrared (NIR) 
region (800-980nm).  The NIR reflectance was 
significantly different in the heading, filling, and 
mature stages. The other fields were all consistent in 
the same growth stage, except for varying nitrogen 
levels. These variations in the NIR band could be used 
to non-invasively measure nitrogen levels in rice. 

Nitrogen measurements in rice
The acquisition of nitrogen levels from 

hyperspectral data requires knowledge of the growth 
conditions for each plant. As such, artificial destructive 
sampling was used to measure the nitrogen content 
of each plot and provide a ground truth for validating 
the nitrogen model.  Nitrogen content of the rice was 
obtained by Kjeldahl determination (AN et al. (2004); 
SEVERTSON et al. (2016)). A sample of 3-5 crops were 
selected from each cell and the fresh leaves were placed 
in an oven at 105°C for 15 minutes, dried at 70°C, and 
then crushed. After heating, samples were distilled and 
titrated. Nitrogen content was calculated as follows:

where V (mL) and V0 (mL) are the volumes of 
the acid standard solution used to titrate the test 
solution and the acid standard solution used for 
blank titration, respectively. The terms  (mol/L) and 
m are the acid standard solution concentration and 
dry sample quality, respectively.

Hyperspectral Data Processing
In addition to rice plant data, this hyperspectral 

imaging method collects information on the soil and 
water as well. The spectral angle mapper (SAM) 
method was used in this study to classify hyperspectral 
images and obtain pure rice information. This was done 
using the ENVI 5.3 software package (Harris Geospatial 
Solutions, Broomfield, CO, USA) and an n-dimensional 
angle to match pixels in the reference spectrum. The 
algorithm implemented a spectrum of N bands as an 
N-dimensional spectral vector. The similarity between 
any two spectra was determined by calculating the angle 
between the N-dimensional vector and the endmember 
spectrum, with smaller angles representing higher 
similarity. In this study, raw data from 50 regions of 
interest (ROIs) were selected from the hyperspectral 
remote sensing images. The maximum angle threshold 
was set to 0.1 (radians) for all classifications, indicating 
that if the angle between the pixel spectrum and 

endmember spectrum was less than 0.1, they were 
subdivided into a single class.

Dimensionality reduction
Image-based canopy reflectance data were 

acquired using cameras which access multispectral (2–
10) or hyperspectral (>10) radiation bands in the visible 
and near-infrared spectra. These properties may lead to 
a violation of basic assumptions underlying statistical 
models or may otherwise bias the outcome. Models 
fitted with such multi-collinear data are prone to over-
fitting, limiting the applicability of these results to 
other scenarios. These issues affect prediction accuracy 
as well as the interpretability of regression (retrieval) 
models. As such, it is beneficial to reduce the spectral 
dimension, either through reduction techniques or  
selection of particular spectral regions which are most 
applicable to targeted biophysical variables.

Principal component analysis (PCA) (CHEN 
& QIAN, 2011; JOLLIFFE, 2002) was used to improve 
operational efficiency and reduce data dimensionality. In 
this process, an orthogonal transformation was utilized 
to transform the original correlated random vectors into 
new uncorrelated vectors (SHLENS, 2002), thereby 
decomposing the eigenvalues of the covariance matrix 
using the Kullback–Leibler approach (ZENG et al. 
(2013). The feature vector corresponds to the principal 
component of the data and the eigenvalue corresponds 
to the weight of each principal component. Each base 
vector is independent of the other components and each 
component can be studied separately. The degree of 
influence can be determined from the corresponding 
eigenvalues, as smaller eigenvalues indicate less 
influence. The principal component was selected and the 
dimension reduced using singular value decomposition 
(SVD) (ZHAO et al. (2015)).

In this study, we first collected the initial 
hyperspectral data and calculated the correlation 
coefficient matrix. The covariance matrix R, established 
from the normalized correlation data matrix, reflects the 
degree of correlation, as higher values are indicative of 
improved principal component analysis. Among these 
values, Rij (i, j = 1, 2, …, p) is the correlation coefficient 
for the original hyperspectral information Xi and Xj. It 
is worth noting that R is a real symmetric matrix, that is 
Rij = Rji. As such, it is only necessary to calculate either 
the upper or lower triangular elements as follows:

(2)
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The number of principal components 
was determined by calculating the eigenvalues of 
the covariance matrix R, the principal component 
contribution rate, and the cumulative variance 
contribution rate. Solutions of the characteristic 
equation | λE –R|=0  were used to calculate the 
eigenvalues λi (i, j = 1, 2, …, p) in ascending order of 
size (λ1 ≥ λ2 ≥ … ≥ λi ≥ 0). These eigenvalues are the 
variance (influence) of each principal component. 
The contribution of a given principal component 
Zi is given by:

                                                                
The cumulative contribution rate can then 

be expressed as:

Eigenvalue criteria were used to select 
principal components, which were required to be 
larger than 1 with a cumulative contribution rate 
of 80–95%. The A values corresponded to main 
components of 1, 2, and M (m, P), where m is the 
number of principal components. Characteristic 
values λ1, λ2, …, λm corresponded to principal 
components  1, 2, …, m (m ≤ p). The initial factor 
load matrix was established, in addition to the 
correlation coefficient R (Zi, Xi) of the principal 
component Zi and original index Xi. The significance 
of principal components is demonstrated by their 
correlation with hyperspectral information.

Gaussian Process Regression
Gaussian process regression (GPR) is a 

nonparametric black box model (TAERYON, 2007)
equivalent to kernel ridge regression or kriging 
(VERRELST et al. (2016)).These methods have 
not been widely applied in machine learning until 
recently, due to their high computational complexity.  
The GPR is a family of kernel methods with the 
additional advantage of providing full conditional 
statistical descriptions for predicted variables, 
which are primarily used to establish confidence 
intervals and set hyper-parameters (RASMUSSEN 
& WILLIAMS, 2006). The system can be identified 
by searching relationships in the training data, which 
are suitable for the analysis of high-dimensional, 
small sample, and nonlinear problems. For any set 

of random variables {xi ϵ X, i = 1, 2, …, n}, the joint 
probability distribution of the process corresponds to 
states {Y(x1), Y(x2), …, Y(xn)}, which are subject to 
the n-dimensional Gaussian distribution. In function 
space, all statistical features for the Gaussian process 
are determined by its mean μ (x) and covariance 
functions C(x, x`) C(x, x`). These can be expressed as:

Where x, x ϵ X are random input variables and 
d is a dimensional vector. The Gaussian process can then 
be defined as  f(x)~GP(μ(x), C(x, x’)). A total of n data sets 
were used as the training sample D = {( xi, yi), i = 1, 2, …, 
n} for the Gaussian process, where xi is the d-dimensional 
input vector and the observed target is denoted as yi ϵ R. 
Noise affected the observation of the target y and real 
output difference for ε. The standard linear regression 
model with Gaussian white noise can be expressed as:

y= f (X)+,                                                                           (6)                                                                                                                        
where  is a random noise-independent variable 
expressed as ε~N (0, ), where  is the noise variance. 
The prior distribution of the target value x is given by:

                                               (7)                     
where  is I the identity matrix.

This Bayesian framework can be used in the 
functional space, defined by the GPR prior distribution, 
to calculate a posterior distribution of the function and 
predict its output value. The training sample output y 
and the test sample output y* were combined with the 
Gaussian prior distribution as follows:

(8)                
In this formula, C (X, X) is the covariance 

matrix of positive definite n x n order. The correlation 
between xi  and xj is characterized by the arbitrary term 
cij. The term C (X, x*)  represents the covariance matrix 
for the training set input X and the test set x*. The term 
C (x*, x*) is the covariance of the test set x*.

The objective of GPR, given a known input 
x* and training set D, is to compute . The Bayesian 
probability of the posterior distribution is then given by:

The predictive value of y* follows the 
normal distribution, with an expected value of μy

* and 
a variance of  . These can be expressed as:

(10)  

(11)  

 (3)

 (4)

 (5)

   (9) 
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For a level of 1- α, the confidence interval 
for GPR probability prediction results is given by:

 
where Lb1-α (y*) and Ub1-a (y

*) are the lower and 
upper bounds of the predictive values and Z (1-α)/2  
is the quantile of the standard normal distribution.

RESULTS   AND   DISCUSSION

Pure rice information acquisition
In addition to rice plants, fields include 

soil, water, and green algae which act as interference 
factors (see Fig. 3). It is necessary to classify 
and extract images to obtain pure hyperspectral 
information from rice, which is used for the 
subsequent inversion modeling. The SAM method 
was used in this study to classify hyperspectral data. 
Figure 4 demonstrates the viability of this technique 
as the rice can be easily separated from adjacent 
objects. This is because the average spectrum of 
known rice points was extracted from the image 
as a reference and the similarity between the two 
spectra was determined. The generalized angle 
was calculated between each pixel vector and the 
reference spectral vector in each hyperspectral 
image. This method assumes the image data have 
been reduced to ‘apparent reflectance,’ which implies 
all dark radiation and path radiation deviations have 
been removed.

Machine learning
The accuracy of the proposed GPR model 

was calculated using a linear fit and the root mean 
square error (RMSE), achieving values of R2=0.8525 
and RMSE=0.9507. A comparison between the 
predicted and measured data is shown in figure 5. It 
is evident from the figure that this inversion effect is 
more accurate in the middle part of the nitrogen range.

Hyperspectral images have been used 
in prior studies to monitor rice growing conditions 
(SWAIN et al. (2010)). For example, Uto et al. 
(2013) developed a low-cost UAV sensor to estimate 
chlorophyll densities in plants with high accuracy 
(UTO et al. (2013)). Zhu et al. (2009) used a low-altitude 
UAV and object-oriented segmentation to estimate 
nitrogen rates in rice crops (ZHU et al. (2009)). While 
GPR has been used previously for the monitoring of 
various rice plant parameters, such as LAI (CAMPOS-
TABERNER et al. (2016)), this study represents the 
first application of GPR specifically to measuring rice 
nitrogen content.  The GPR was selected for this study, 
as opposed to more conventional techniques, because 
of its efficiency and accuracy. 

Verrelst et al. (2012) recently evaluated 
several parametric and non-parametric techniques 
for estimating vegetation parameters, using data 
from the hyperspectral Compact High-Resolution 
Imaging Spectrometer (CHRIS) (VERRELST et 
al. (2012)). This comparison included conventional 
parametric techniques such as generic narrowband 
vegetation indices (VIs) and the normalized area over 
reflectance curve method.  The GPR  outperformed 

Figure 3 - Sample field canopy hyperspectral images.

(12)           
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these other methods while including only 4 of the 
available 62 bands.  This represents a significant 
decrease in data processing requirements, leading 
to increases in operational efficiency and reduced 
runtimes.  The GPR has also been shown to provide 
higher estimation accuracy when compared with 
support vector regression (SVR), general regression 
neural networks, and band ratio polynomial 

regression (PASOLLI et al. (2010)). As discussed 
by Verrelst et al. (2013), GPR algorithms are easier 
to train than neural networks and allow for more 
flexibility than support vector machines (SVMs) in 
the choice of kernel type (VERRELST et al. (2012)); 
ARENAS-GARCIA et al. (2013)). The utilization 
of dimensionality reduction further increased the 
efficiency of the proposed technique (MAATEN 

Figure 4 - Pure hyperspectral images of rice.

Figure 5 - The relationship between predicted and measured GPR values.
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et al. (2007)), which has been demonstrated as a 
viable new tool for crop monitoring.

Results demonstrated the proposed SAM 
technique accurately extracted high-detail information 
from the acquired rice images. This is primarily 
because the spectral characteristics of plants differed 
significantly from those of adjacent water or soil. As 
is evident in Figure 5, the error between the measured 
and predicted values was larger at the boundary of 
the nitrogen range and smaller in the middle. Spectral 
bands in this study were located within a range of 
400–1000nm. It is possible that the sensitive bands in 
this range may have been weak, resulting in relatively 
low inversion accuracy. In future research, the scope 
of this study will be broadened to include other 
wavelengths, as well as various sampling sights, 
terrain distributions, and crop types.

CONCLUSION

In this study, a hyperspectral remote sensing 
platform was used to extract nitrogen content from 
a rice canopy. Machine learning based on Gaussian 
process regression was utilized to identify the most 
relevant spectral bands, thereby reducing noise and 
increasing inversion accuracy. Ground truth rice leaf 
nitrogen levels were obtained by invasive ground 
sampling and compared with information from the 
proposed inversion technique. Principal component 
analysis was used for dimensionality reduction to 
eliminate redundant spectral data, thereby increasing 
system efficiency. Results demonstrated the proposed 
spectral angle mapper could acquire accurate pure rice 
information from the original image. These processed 
data were used to establish a nitrogen inversion model, 
the accuracy of which was assessed using two metrics 
with resulting values of R2=0.8525 and RMSE=0.9507. 
This suggested that the proposed method could be 
a valuable new imaging tool for the non-invasive 
measurement of nitrogen nutrition levels in rice fields.
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