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INTRODUCTION

Chlorophyll is a vital pigment for 
photosynthesis in plants. It is well correlated with 
nitrogen nutrition status at different growth stages 
of crops and can be used as an essential indicator to 
characterize crop growth and for nutrient monitoring 

(MAO et al., 2018). Currently, the chlorophyll content 
in plants is mainly measured by chemical methods 
(EVANS et al., 2012; LOH et al., 2012; SCOTTER, 
2011) and the chlorophyll meter method. However, 
these methods are time-consuming and damage 
leaves. In addition, measurement of chlorophy-
ll is not possible over a large area. In recent years, 
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ABSTRACT: Chlorophyll is a major factor affecting photosynthesis; and consequently, crop growth and yield. In this study, we devised a 
chlorophyll-content detection model for millet leaves in different stages of growth based on hyperspectral data. The hyperspectral images of 
millet leaves were obtained under a wavelength range of 380–1000 nm using a hyperspectral imager. Threshold segmentation was performed 
with near-infrared (NIR) reflectance and normalized difference vegetation index (NDVI) to intelligently acquire the regions of interest (ROI). 
Furthermore, raw spectral data were preprocessed using multivariate scatter correction (MSC). A correlation coefficient-successive projections 
algorithm (CC-SPA) was used to extract the characteristic wavelengths, and the characteristic parameters were extracted based on the 
spectral and image information. A partial least squares regression (PLSR) prediction model was established based on the single characteristic 
parameter and multi-characteristic parameter fusion. The determination coefficient (Rv

2) and the root-mean-square error (RMSEv) of the 
validation set for the multi-characteristic parameter fusion model were reported to be 0.813 and 1.766, respectively, which are higher than 
those obtained by the single characteristic parameter model. Based on the multi-characteristic parameter fusion, an attention-convolutional 
neural network (attention-CNN) (Rv

2 = 0.839, RMSEv = 1.451, RPD = 2.355) was established, which is more effective than the PLSR (Rv
2 

= 0.813, RMSEv = 1.766, RPD = 2.167) and least squares support vector machine (LS-SVM) models (Rv
2 = 0.806, RMSEv = 1.576, RPD = 

2.061). These results indicated that the combination of hyperspectral imaging and attention-CNN is beneficial to the application of nutrient 
element monitoring of crops.
Key words: chlorophyll content, multi-characteristic parameters fusion, attention-CNN, hyperspectral imaging technology.

RESUMO: A clorofila é um fator importante que afeta a fotossíntese e, consequentemente, o crescimento e o rendimento das culturas. Neste 
estudo, um modelo de detecção de conteúdo de clorofila é construído para folhas de milheto em diferentes estágios de crescimento, com 
base em dados hiperespectrais. As imagens hiperespectrais dos diferentes estágios de crescimento das folhas de milheto foram obtidas para 
380–1000 nm, utilizando um gerador de imagens hiperespectrais. Uma segmentação de limiar foi realizada com refletância no infravermelho 
próximo (NIR) e índice de vegetação com diferença normalizada (NDVI) para adquirir de forma inteligente as regiões de interesse (ROI). Além 
disso, os dados espectrais brutos foram pré-processados usando o método de correção de dispersão multivariada (MSC). Um algoritmo de 
projeção de coeficiente de correlação sucessivo (CC-SPA) foi utilizado para extrair os comprimentos de onda característicos, e os parâmetros 
característicos foram extraídos com base nas informações espectrais e de imagem. O modelo de previsão de regressão parcial dos mínimos 
quadrados (PLSR) foi estabelecido com base nos parâmetros de característica única e na fusão de parâmetros de característica múltipla. O 
coeficiente de determinação (Rv2) e o erro quadrático médio da raiz (RMSEv) do conjunto de validação para o modelo de fusão de parâmetros 
com várias características foram obtidos como 0,813 e 1,766, sendo melhores do que os do modelo de parâmetro de característica única. 
Com base na fusão de parâmetros com várias características, foi estabelecida uma rede neural atenção-convolucional (atenção-CNN) (Rv2 
= 0,839, RMSEv = 1,451, RPD = 2,355) mais eficaz que o PLSR (Rv2 = 0,813, RMSEv = 1,766, RPD = 2,167) e mínimos quadrados que 
suportam modelos de máquina de vetores (LS-SVM) (Rv2 = 0,806, RMSEv = 1,576, RPD = 2,061). Estes resultados indicam que o modelo 
atenção-CNN atinge uma previsão efetiva do teor de clorofila nas folhas de milheto usando os dados hiperespectrais. Além disso, esta pesquisa 
demonstra que a combinação de imagens hiperespectrais e a atenção-CNN se mostra benéfica para a aplicação do monitoramento dos 
elementos nutricionais das culturas.
Palavras-chave: teor de clorofila, fusão de parâmetros com várias características, CNN da atenção, tecnologia de imagem hiperespectral.
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hyperspectral imaging technology has been widely 
used to estimate chlorophyll content  of crops because 
of it is highly efficient, non-destructive, and non-
polluting (KORUS, 2013). 

At present, chlorophyll content has been 
estimated in leaves of large grain crops, but studies 
on the estimation of chlorophyll in small grain crops 
such as millet are rare. Previous studies mostly 
used single type spectral variables to estimate crop 
nutrition. ZHENG et al.  (2018) established a model 
to estimate chlorophyll content in potato leaves based 
on red edge position, and the determination coefficient 
of the model was evaluated to be 0.8682 (ZHENG et 
al., 2018). GITELSON & SOLOVCHENKO (2017) 
presented an algorithm to estimate the chlorophyll 
content in 524 leaves of 45 different species, and 
their results indicated that red edge chlorophyll index 
(CIRE) and meris terrestrial chlorophyll index (MTCI) 
were very accurate in estimating chlorophyll content 
(R2 = 0.95, RMSE = 4.5% and R2 = 0.898, RMSE = 
6.4%) (GITELSON & SOLOVCHENKO, 2017). In 
this study, we attempted to use multi-characteristic 
parameter fusion data to predict the chlorophyll 
content of millet leaves. Classical machine learning 
methods have been widely used in crop nutrition 
detection. YU et al. (2014) proposed the ratio of 
reflectance difference index (RRDI) for estimating 
chlorophyll content and compared the results with 
optimum multiple band regression (OMBR), partial 
least squares regression (PLSR), and support vector 
machines for regression (SVR). Results indicated that 
RRDI can efficiently eliminate the effects of various 
canopy structures on the estimation of leaf chlorophyll 
(R2 = 0.76, RMSE = 1141.5) (YU et al., 2014). JIA et 
al. (2013) used hyperspectral remote sensing to develop 
normalized difference vegetation indices (NDVI), 
spectral ratio (SR) indices, stepwise multiple linear 
regression (SMLR) and back-propagation (BP) neural 
network for estimation of nicotine content in flue-cured 
tobacco leaves under different shade conditions. Results 
indicated that BP neural network had the best accuracy 
and reproducibility (R2 = 0.968, RMSE = 0.109) (JIA et 
al., 2013). A convolutional neural network (CNN) can 
autonomously learn and deeply extract local features 
of data (SHARMA et al., 2018), and the attention 
mechanism can effectively highlight important features. 
In this study, we adopted an attention-convolutional 
neural network (attention-CNN) model to monitor the 
chemical content during crop growth.

The millets studied in this research were 
obtained from the Agricultural Station of Shanxi 
Agricultural University. Leaves were collected at 
different growth stages, and the average spectral of 

the leaves was obtained by intelligently extracting 
the region of interest (ROI). The original spectral 
and image information were denoised by multi-
scatter correction (MSC). Furthermore, we used 
the correlation coefficient-successive projections 
algorithm (CC-SPA) for data reduction and to extract 
the characteristic parameters based on spectral and 
image information. The single characteristic and 
multi-characteristic parameter fusions were used 
to build the PLSR model and search for optimal 
characteristic parameters. Furthermore, an attention-
CNN model was established using the multi-
characteristic parameter fusion and was compared 
with conventional PLSR and least squares support 
vector machine (LS-SVM) algorithms to establish a 
method for chlorophyll estimation in millet leaves.

MATERIALS   AND   METHODS

Experimental procedure 
The study was conducted at the Agricultural 

Station of Shanxi Agricultural University in June–
October, 2018. A quadratic orthogonal rotation 
design and three factors—nitrogen, phosphorus, and 
potassium—were adopted in the experiment. Each 
factor had five different levels, and 23 test treatment 
combinations were available, in which each test 
was conducted in triplicate. A total of 69 plots were 
established (4 m × 4 m), which were arranged in random 
groups of blocks and planted with a row spacing of 40 
cm. Phosphorus and potassium fertilizers were utilized 
as the base fertilizers and applied once, and the nitrogen 
fertilizer was applied thrice: 40% as the base fertilizer, 
30% at the jointing stage, and 30% at the booting stage. 
During the experiment, field management was unified to 
prevent lodging and bird damage.

Determination of leaf spectral data
In the jointing, booting, and filling stages 

of millet, three representative and healthy growing 
leaves were collected from each plot. The leaves 
were stored in ice packs, numbered, and immediately 
brought to the laboratory for hyperspectral information 
acquisition and chemical determination of chlorophyll 
content. We used a Starter Kit indoor mobile scanning 
platform (Headwall Photonics, USA) to obtain visible 
near-infrared (NIR) hyperspectral images. The spectral 
range was 380–1000 nm, and the distance from the lens 
to the surface of the leaf was 25 cm. Three leaves from 
each plot were laid on a black-light-absorbing cloth 
with an exposure time of 39.84 ms and a platform 
moving speed of 2.721 mm/s.

To reduce the interference of noise caused 
by uneven distribution of light source and dark 
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current noise (AMBROSE et al., 2016), the system 
was calibrated before the experiment. The correction 
formula is as follows:

                                                      (1)
where I represents the corrected hyperspectral image, 
I0 denotes the original hyperspectral image, W 
represents the white background image captured by 
the scanning standard white correction board, and B is 
the dark background image captured by covering the 
lens. The Spectral View software was used to extract 
the required data from the hyperspectral image files 
obtained after black and white correction.

Measurement of chlorophyll content 
The chlorophyll content of each leaf 

was determined by spectrophotometry. The whole 
leaf was selected, and after removing the veins, the 
millet leaves were cut into silk; 0.1 g of each leaf 
was weighed; and subsequently, treated with 80% 
acetone for 24 h. The absorbance at 646 nm and 663 
nm was measured using a spectrophotometer and the 
following formula (CHEN et al., 2018):

                                           (2)
where A646 and A663 denote the absorbance at 
wavelengths of 646 nm and 663 nm, respectively, 
Ca and Cb represent the chlorophyll contents a and b, 
respectively, and CT represents the total chlorophyll 

content. Results of chlorophyll measurement are 
shown in figure 1, the observed range of chlorophyll 
content was 4.358–15.272 mg/L in the jointing 
stage, 19.970–34.598 mg/L in the booting stage, and 
13.194–27.613 mg/L in the filling stage.

Selection of sample sets 
Two thirds of the data of the three 

millet growth stages (jointing stage, booting stage, 
and filling stage) were randomly selected as the 
calibration set (46 samples per growth period and 
138 samples for the whole growth period). The 
remaining one third (23 samples per growing season 
and 69 samples in the whole growth period) was used 
as the validation set. Samples from the three growing 
stages comprised a full-length sample. Statistical 
results of chlorophyll content in millet leaves are 
provided in table 1. The mean, standard deviation, 
and coefficient of variation of the chlorophyll content 
of the calibration set and the validation set are similar 
to those of the whole sample, i.e., the calibration set 
and the validation set effectively reflect the statistical 
characteristics of the samples.

Extraction and pretreatment of hyperspectral data 
Because the conventional method of 

extracting ROI is not only time- and energy-
consuming but also inefficient, a method of 
intelligently extracting the ROI was employed in this 
study. Figure 2 is a single-point spectral curve that 
reflects the differences in spectral curves in different 

Figure 1 - Measure values of chlorophyll content during the whole growth period.
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regions of millet leaves. This clearly shows that the 
reflectance curves in the background region and the 
shadow region are relatively stable, and the reflectance 
is low in the NIR (780–900 nm) band; furthermore, 
the reflectance of the stem area is significantly higher 
than that of the object area in the red light (630–680 
nm) band, and the hole region is characterized by low 
reflectance in the NIR (780–900 nm) band. Threshold 
segmentation was then performed using the NIR band 
reflectance (cull shadows, holes, and background 
areas) and the NDVI (cull stem area) based on this 
spectral change trend to intelligently select the ROI. 
Equation 3 shows the calculation formula of NDVI, 
where the range of NIR was 0.350–0.525 and the 
range of NDVI was 0.760–0.783 in the jointing stage, 

0.790–0.814 in the booting stage, and 0.728–0.755 
in the filling stage. Finally, the ROI regions without 
background, shadow, holes, and part of the stem can 
be obtained.

                                 (3)
To reduce noise interference, spectral data 

of a large number of points were extracted from the 
ROI, and then, the average spectral curve of samples 
was obtained via the arithmetic average, as shown in 
figure 3. Because the spectral reflectance was disturbed 
by equipment noise at both sides of the range (380 nm 
and 1000 nm), the bands at both sides were removed; 
thus, the spectral range 412.368–972.004 nm was 
used for the following analysis. We employed MSC 

Figure 2 - The spectral characteristics of object, hole, stem, shadow and background.

 

Table 1 - Basic statistics of chlorophyll content in millet leaves for the entire growth stage. 
 

Type of sample Observations Chlorophyll content (mg/L) 
Standard 
deviation 
(mg/L) 

Coefficient of 
variation (CV) 

  Maximum value Minimum value Mean value   
Whole set 207 34.598 4.358 19.359 7.544 38.970 % 
Calibration set 138 34.598 4.358 19.277 7.567 39.219 % 
Validation set 69 33.611 5.228 19.524 7.565 38.745 % 
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to denoise the original spectral data. First, the average 
spectral of the sample set was calculated as the standard 
spectral based on equation 4. Then, a unitary linear 
regression calculation was performed for the spectral 
and the average spectral information of each sample 
using equation 5. The linear translation (bi) and tilt offset 
(mi) of each spectrum relative to the average spectrum 
were obtained; finally, the spectral curve of the sample 
after MSC correction was calculated using equation 6.

                                                          (4)

                                                        (5)

                                                  (6)
where A denotes an n × p dimensional spectral data 
matrix, n represents the sampling number, p denotes 
the spectral dimension, A  denotes the average spectral 
vector of all samples, iA  represents the average 
spectrum of the ith sample, and mi and bi represent the 
slope and intercept of thelinear regression relationship 
between iA  and A , respectively.

Selection of feature parameters 
In this study, four different methods were 

used to extract the feature parameters as follows:

(1) Twenty-six vegetation indexes from the 
original spectral curve that are sensitive to green plant 
chlorophyll content were extracted, including NDVI, 
ratio vegetation index (RVI), difference vegetation 
index (DVI), CIRE, and leaf chlorophyll index (LCI) 
(GITELSON & MERZLYAK, 1994).

(2) Twenty-one trilateral parameters of the 
leaf from the first-order differential spectrum were 
extracted, including the trilateral position, amplitude, 
area, kurtosis, and skewness. Then, twenty-five peak-
valley parameters were constructed by utilizing the 
rising or falling rates of the characteristic sideband 
regions in the reflected spectral curve and the angle 
between the two sides of the peak-to-valley curve, 
which included the green edge (kg), red edge (kr), NIR 
(knir) rate of change, green peak to red valley bottom rate 
(kgprv), angle between the reflected green peaks (GPA1), 
absorption angle between red valleys (RVA), red edge 
and NIR angle (GPA2), and their combination (XU et 
al., 2011).

(3) The ENVI software was used to 
segment the image of the millet leaf to remove the 
background, excluding only the main part of the 
blade (without veins). The mean and variance of the 
red, green, and blue components of the blade image 
were calculated using the RGB color system, and 27 
color features were obtained using the combination of 
R, G, and B (CHENG et al., 2017).

Figure 3 - Original spectral reflectance.
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(4) Seven common texture features 
were extracted using the gray level co-occurrence 
matrix (GLCM), including the energy, entropy, 
moment of inertia, correlation, mean, standard 
deviation, and smoothness.

Method of analysis
Selection of characteristic wavelength 

Because the dimensions of the hyperspectral 
data were large, the sensitive bands that play a key 
role in the model had to be screened to reduce the 
interference from insignificant wavelengths on the 
accuracy of the model. The correlation between the 
spectral data vector and the chlorophyll content was 
calculated using the correlation coefficient method 
(CC), and the sensitive band with greater correlation 
was selected. We employed the successive projections 
algorithm (SPA) to extract the characteristic 
wavelengths in the sensitive band because this model 
can improve the prediction accuracy and stability 
based on the reduced model (HONG et al., 2010).

Chemometrics methods 
In this study, a millet-leaf chlorophyll 

prediction model based on the characteristic 
wavelength and multi-characteristic parameter fusion 
was established using the attention-CNN model; in 
addition, the PLSR and LS-SVM models were used 
for comparative analysis to determine the better model.

CNN (SAIKIA et al., 2019) is a 
conventional model that is widely used in deep 
learning, which extracts the effective features of 
the data of each layer via multi-layer convolution 
and pooling operation. Moreover, the convergence 
speed of this model is high, and it provides good 
prediction results; however, this model is weak in 
highlighting the important convolution features, 
which is not sufficiently intuitive, and is poorly 
interpretable. Attention mechanism is a commonly 
used model, which has a long-term memory 
mechanism, in the field of natural language 
processing; this mechanism directly showed the 
contribution of each feature to the results. Thus, 
we used the attention mechanism to establish an 
attention-CNN model, as shown in figure 4.

The attention-CNN model mainly comprises 
an input layer, convolution layer, attention layer, pooling 
layer, fully connected layer, and output layer.

The input layer is an pn×  grain leaf 
feature fusion data matrix X, where n denotes the 
number of samples and p denotes the data dimension.

The convolution layer acts as the sample 
feature extraction layer. The input sample matrix X 

is convoluted by a convolution kernel of size dm×  
to obtain the characteristic value ig , where ig is given 
by,

                                               (7) 
where f denotes the activation function, b denotes 
the bias item, and 1: −+hiiX  represents the feature 
extracted from line i to i+h-1 of X and is expressed as

],...,,[ 21 ngggG =
We introduced the attention mechanism 

(ZHU et al., 2018) to explain the importance of 
each sample feature better. In this model, each local 
convolution feature was assigned an attention weight 

(BHUNIA et al., 2019) (and satisfies 1
1

=∑
=

n

i
ia ), where 

the importance of the influence of the feature on 
chlorophyll content prediction of millet leaf increases 
with the weight. The attention weight matrix and the 
local convolution feature are dotted with each other 
to complete the weighting and obtain the final feature 
vector K, which is expressed as ],...,,[ 21 nkkkK = , 
and is given as follows:

                                                            (8)
Then, the attention-weighted feature K 

is input to the pooling layer. After performing the 
maximum pooling operation, the computational 
complexity was simplified to retain the essential 
features, and the over-fitting phenomenon is alleviated.

Finally, the feature map output from the 
pooling layer was rasterized and fully connected 
with the multi-layer perceptron (MLP), and the 
back-propagation algorithm was used to update the 
model parameters.

RESULTS   AND   DISCUSSION

Analysis of the effect of MSC on the average spectral 
curve

As shown in figure 3, characteristics of the 
original spectral curve were consistent with those of 
typical green plants. Furthermore, absorption valleys 
were found in the range of 390–450 nm of violet light, 
reflection peaks in the green light range of 500–580 
nm, absorption valleys in the red-light range of 630–
770 nm, and a sharp rise in reflectivity in the range of 
680–750 nm. In addition, the curve rises and forms a 
remarkable high reflection platform in the NIR band 
of 750–900 nm.

As shown in figure 3, the millet spectral 
curves greatly overlap in the visible light band, and the 
spectral reflectance varies greatly in the NIR band. To 
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address these problems, the original spectral curve was 
pretreated with MSC. As shown in figure 5 , the shift in 
the spectral curve baseline was effectively eliminated. 
Then, the correlation between the spectral information of 
the millet leaves and the chlorophyll content before and 
after MSC pretreatment was analyzed; the correlation 
coefficient curve is shown in figure 6.

Figure 6 indicates that higher correlation 
between the original spectrum and the chlorophyll 
content of the millet leaf is observed at 526–574 
nm and 703–727 nm, which is 0.50–0.73 in value; 
however, after MSC treatment, leaf spectroscopy and 
chlorophyll content correlated well at the wavelengths 
of 647–690 nm and 700–743 nm, which is 0.70–0.90 

Figure 4 - Schematic diagram of the attention-CNN model.

Figure 5- Multiple scattering correction spectra. 



8

Ciência Rural, v.50, n.3, 2020.

Xiaoyan et al.

in value. Thus, the correlation between spectroscopic 
results and chlorophyll content was clearly improved 
after MSC pretreatment.

Selection and modeling analysis of the sensitive band 
The CC method was used to analyze the 

spectral data of millet leaves for the whole growth 
period, and the wavelengths 647–690 nm and 
700–743 nm were selected as the sensitive bands. 
When the characteristic wavelength was extracted 
using SPA in the wavelength ranges of 647–690 
nm and 700–743 nm, three (686 nm, 652 nm, and 
690 nm) and four characteristic wavelengths (737 
nm, 701 nm, 725 nm, and 707 nm) were selected 
when the root-mean-square errors were 2.104 and 
1.977, respectively. These extracted characteristic 
wavelengths belong to the red-light range, which 
is consistent with the spectral sensitivity band of 
green-plant-leaf chlorophyll content. An analytical 
model to establish the chlorophyll content of millet 
leaves based on PLSR is shown in table 2, where 
Rc

2 and Rv
2 denoted the determination coefficients 

of the calibration set and the validation set, 
respectively, and RMSEc and RMSEv represented 
the root-mean-square errors of the calibration and 
validation sets, respectively.

Table 2 clearly indicates that chlorophyll 
estimation based on the full-band model was 

better than the characteristic wavelength model; 
furthermore, Rc

2 was 0.748, which was 1.7 % higher 
than that of the characteristic wavelength model. 
The Rv

2 of the characteristic wavelength model was 
0.725, which is 0.9 % higher than that of the full-
band model. These results indicated that the CC-
SPA method can accurately extract the sensitive 
band of chlorophyll, effectively reduce the number 
of wavelength variables, and accurately predicted 
chlorophyll content in millet leaves based on the 
simplified model.

Analysis of the influence of different characteristic 
parameters on PLSR modeling 

A correlation analysis was then performed 
between the extracted characteristic parameters and 
the chlorophyll content. The selected characteristic 
parameters are provided in table 3, where the 
correlation coefficient of NDVI is the largest at 0.831. 
The accuracy of chlorophyll estimation by NDVI is 
illustrated in figure 7, where it is seen that the R2 and 
RMSE values for 207 leaves were 0.690 and 4.188, 
respectively. The characteristic parameters were 
fused to establish a prediction model to improve 
the prediction accuracy, whose results are provided 
in table 4.

As seen in the table, the prediction 
results were obtained for five different characteristic 

Figure 6 - Correlation curves of the spectral information and chlorophyll content of millet leaves 
before and after MSC pretreatment.
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parameters (Rv
2 = 0.421–0.767, RMSEv = 1.726–

2.858), among which the trilateral parameter model 
exhibited better prediction. More importantly, the 
best prediction of chlorophyll content was achieved 
by the multi-characteristic parameter fusion model 
(Rv

2 = 0813, RMSEv = 1.766). 
Previous studies have mostly chosen a 

single type of vegetation index, trilateral parameters, 
and peak-valley parameters for crop nutrition 
detection (JAY et al., 2017; XU et al., 2011), ignoring 
the characteristic information of the image itself. 
However, in this study, a “spectral-image” fusion index 
was constructed, and the chlorophyll content of millet 
leaves was estimated based on multi-characteristic 
parameter fusion data, which provided a new method 
for quantitative estimation of chlorophyll. 

Attention-CNN model with multi-characteristic 
parameters 

The attention-CNN chlorophyll inversion 
model was established by multi-characteristic 
parameter fusion. The specific parameters of the 
model were established with two convolution layers. 
The first layer contained five convolution kernels 
of size 5 × 5, and the second layer contained 10 
convolution kernels of the same size. Different 
convolution kernels were used to convolute all the 
feature maps in the former layer, following which 
the corresponding elements were accumulated and 
biased, and each output feature map was activated 

using the ReLu function. The size of the pooling layer 
was 2 × 2, and the feature vector dimension of the 
attention layer was 100. The loss function used the 
Mahalanobis distance, which is given by

                                           (9) 
where py  is the predicted value and ty  is the 
measured value of chlorophyll content. 

Furthermore, the mini-batch gradient 
descent method was used in the model. The network 
learning rate was 0.5, batch was 23, and the maximum 
number of iterations was set to 1300. The loss function 
curve and the accuracy value were used as the basis 
of convergence.

The common PLSR and LS-SVM models 
were selected for comparative analysis. The LS-SVM 
model used a radial basis function, and the optimal 
parameters were determined by cross-validation. The 
gam and sig2 of the calibration were set at 2.355 and 
111.100, respectively, in this study. The chlorophyll 
prediction results of millet obtained using different 
models are listed in table 5.

Table 5 shows that the Rc
2 and RMSEc 

values for the calibration set using the PLSR model 
were 0.848 and 1.447, respectively, and those using the 
LS-SVM model were 0.837 and 1.445, respectively. 
The results of the calibration set indicated that the 
modeling accuracy and the stability were effectively 
improved by the attention-CNN method (Rc

2 = 0.865, 
RMSEc = 1.290). In the verification set, compared 

 

Table 2 - Chlorophyll-content prediction results of millet leaves based on characteristic wavelengths using PLSR. 
 

Wavelength Number of variables Rc
2 RMSEc Rv

2 RMSEv 

686 nm, 652 nm, 690 nm, 737 nm, 
701 nm, 725 nm, 707 nm 7 0.731 1.942 0.725 2.858 

Entire band (412-972 nm) 771 0.748 1.887 0.716 3.100 
 

 

Table 3 - Correlation analysis results of the spectral characteristic parameters and chlorophyll content. 
 

Index r value Characteristic parameter 

Vegetation index >0.8 NDVI, SAVI, OSAVI, RVI, DVI, RDVI, MSR, MSAVI, MTCI, TCARI, CCRI, PBRI, R-M, 
CIRE, LCI, TVI, PSSR, PSNDb, SR713 

Trilateral parameters >0.7 Red edge position, red edge kurtosis, yellow edge amplitude, yellow edge area, blue edge 
amplitude 

Peak-valley parameters >0.7 Kg, Kgprv, GPA1, Kr/Kg, Kr/Kgprv, GPA1/RVA, GPA1/GPA2 
Texture features >0.5 standard deviation, smoothness 
Color features >0.5 R(variance), R-B(variance), R-G(variance) 
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with the PLSR model (Rv
2 = 0.813, RMSEv = 1.766, 

RPD = 2.167) and the LS-SVM model (Rv
2 = 0.806, 

RMSEv = 1.576, RPD = 2.061), the attention-CNN 
model achieved the best prediction results (Rv

2 

= 0.839, RMSEv = 1.451, RPD = 2.355), and the 
difference between the modeling accuracy and the 
actual prediction ability was the lowest at 0.026.

Traditional machine learning algorithms 
have been mainly used for data analysis. For example, 
FÉRET et al. (2011) used spectral indices and PLSR to 
develop statistical relationships between reflectance 
spectral and leaf chemical properties (FÉRET et al., 
2011). This study represented the first application of 

attention-CNN to measure millet chlorophyll content, 
which has a higher fitting accuracy and generalization 
ability than the conventional models. As discussed 
by KARTHIK et al. (2019), CNN can automatically 
extract the infection features in tomato leaves, and the 
attention mechanism can learn significant features for 
disease detection (KARTHIK et al., 2019).

Results demonstrated that the attention-CNN 
model can deeply mine the internal features of spectral 
data and simultaneously simplify preprocessing, which 
was effective in predicting the chlorophyll content of 
millet leaves; and was therefore, a high-performance 
chlorophyll-content prediction model.

Figure 7 - Relationships between normalized difference vegetation indices (NDVI) and chlorophyll 
content. 

Table 4 - Chlorophyll content prediction results of millet leaves based on different characteristic parameters using PLSR. 
 

Index Rc
2 RMSEc Rv

2 RMSEv 

Vegetation index 0.765 1.928 0.754 1.857 
Trilateral parameters 0.775 1.774 0.767 1.726 
Peak-valley parameters 0.685 2.233 0.654 2.199 
Image features 0.458 2.635 0.421 2.847 
Characteristic wavelength 0.731 1.942 0.725 2.858 
Multi-characteristic parameters fusion 0.848 1.447 0.813 1.766 

 
Note: Image features include texture features and color features. Multi-characteristic parameters refer to the fusion of characteristic 
wavelength, vegetation index, trilateral parameters, peak-valley parameters, texture features, and color features according to the 
correlation coefficient grade. 
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CONCLUSION

In this study, hyperspectral imaging 
technology was used to obtain the spectral and image 
information of millet leaves at different growth 
stages, and the average spectra of the millet leaves 
were extracted by intelligently extracting the ROI. 
The original spectral data were preprocessed by 
MSC and were subsequently analyzed to study the 
effect and correlation of pretreatment. We used the 
CC-SPA model for data reduction and extracted the 
characteristic parameters based on the spectral and 
image information. Furthermore, single characteristic 
and multi-characteristic parameter fusion were used 
to build the PLSR model. The multi-characteristic 
parameter fusion achieved accurate prediction results 
(Rv

2 = 0.813, RMSEv = 1.766) and exhibited better 
prediction accuracy than the single characteristic 
parameter model. Based on the multi-characteristic 
parameter fusion model, the attention-CNN model 
yielded more accurate results (Rv

2, RMSEv, and 
RPD were 0.839, 1.451, and 2.355, respectively) 
than the PLSR model (Rv

2, RMSEv, and RPD were 
0.813, 1.766, and 2.167, respectively) and the LS-
SVM model (Rv

2, RMSEv, and RPD were 0.806, 
1.576, and 2.061, respectively). In addition, the 
difference between the modeling accuracy and the 
actual prediction ability of the attention-CNN model 
was the smallest (0.026). These results demonstrated 
that the attention-CNN model has a higher prediction 
accuracy and regression fit than the conventional 
models and exhibits better adaptability to the sample 
data. Therefore, the attention-CNN model is a 
highly advantageous novel method for non-invasive 
measurement of chlorophyll content in millet plants.
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