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INTRODUCTION

China is the largest producer of lettuce, 
accounting for approximately 50% of the world’s output. 
Although, lettuce requires abundant water, its demand 
for water varies with growth stages (TOSIN et al., 
2017). Thus, supplying appropriate amounts of water at 
different growth stages, as well as rapidly and accurately 
detecting water stress, is essential for maximizing the 
yield, quality, and taste of lettuce (WANG et al., 2016). 

Crop canopy temperature is an indicator 
of crop water stress. Infrared thermal imaging is a 

well-studied technique that has been widely used 
to monitor crop water stress because it permits the 
water status of crops to be determined rapidly and 
in a non-destructive manner (O’SHAUGHNESSY 
et al., 2011). A previous study using thermal 
imaging to explore the relationship between water 
stress in papaya and three physiological indexes 
(stomatal conductance, transpiration rate, and net 
photosynthesis) under different irrigation conditions 
demonstrated that thermal imaging is a promising 
technology for monitoring the physiological state of 
papaya under drought conditions (LIMA et al., 1999). 
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ABSTRACT: For non-destructive detection of water stress in lettuce, terahertz time-domain spectroscopy (THz-TDS) was used to 
quantitatively analyze water content in lettuce. Four gradient lettuce water contents were used . Spectral data of lettuce were collected by a 
THz-TDS system, and denoised using the S-G derivative, Savitzky-Golay (S-G) smoothing and normalization filtering. The fitting effect of the 
pretreatment method was better than that of regression fitting, and the S-G derivative fitting effect was obtained. Then a calibration set and a 
verification set were divided by the Kennan-Stone algorithm, sample set partitioning based on joint X-Y distance (SPXY) algorithm, and the 
random sampling (RS) algorithm, and the parameters of RS were optimized by regression fitting. The stability competitive adaptive reweighted 
sampling, iteratively retained information variables and interval combination optimization were used to select characteristic wavelengths, and 
then continuous projection was used on basis of the three algorithms above. After the successive projection algorithm was re-screened, partial 
least squares regression was used into modeling. The regression coefficients Rc

2 and RMSEC reach 0.8962 and 412.5% respectively, and Rp
2 

and RMSEP of the verification set are 0.8757 and 528.9% respectively.
Key words: water stress, successive projection algorithm algorithm, partial least square regression, terahertz time-domain spectroscopy.

RESUMO: Para a detecção não destrutiva de estresse hídrico da alface, espectroscopia no domínio do tempo em terahertz (THz-TDS) foi 
usada para analisar quantitativamente o conteúdo de água na alface. Quatro gradientes de conteúdo de água de alface foram usados. Os 
dados espectrais da alface foram coletados por um sistema THz-TDS e denoised usando o derivado S-G, Savitzky-Golay (S-G) suavização e 
filtragem de normalização. O efeito de ajuste do método de pré-tratamento foi melhor do que o do ajuste de regressão, e o efeito de ajuste da 
derivada S-G foi obtido. Em seguida, um conjunto de calibração e um conjunto de verificação foram divididos pelo algoritmo Kennan-Stone, 
particionamento do conjunto de amostra com base no algoritmo de distância X-Y conjunta (SPXY) e o algoritmo de amostragem aleatória 
(RS), e os parâmetros de RS foram otimizados por ajuste de regressão. A amostragem adaptativa de estabilidade competitiva reponderada, 
variáveis de informação retidas iterativamente e otimização de combinação de intervalo foram usadas para selecionar comprimentos de onda 
característicos e, em seguida, a projeção contínua foi usada com base nos três algoritmos acima. Depois que o algoritmo de projeção sucessivo 
foi reprojetado, a regressão de mínimos quadrados parcial foi usada na modelagem. Os coeficientes de regressão R2 e erro quadrático médio 
(RMSEP) atingem 0,8962 e 412,50%, respectivamente, e R2 e RMSEP do conjunto de verificação são 0,8757 e 528,93%, respectivamente.
Palavras-chave: alface, teor de umidade, THz-TDS, algoritmo SPA, regressão parcial de mínimos quadrados.
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S.A. et al. conducted thermal infrared monitoring in 
a soybean field and reported a negative correlation 
between leaf water potential and an index of water 
stress (R2 = 0.93). 

Although, the crop canopy temperature 
obtained by infrared thermal imaging is strongly 
correlated with water stress, canopy temperature, 
which is determined by complex energy exchanges of 
the farmland ecosystem, is affected by several other 
environmental variables, such as soil evaporation 
(OSCO et al., 2018). Thus, assessing the water stress 
status of crops based on the canopy temperature can 
be misleading (BELEN et al., 2018). 

The detection of plant water surplus 
and deficiency based on hyperspectral technology 
has been a major focus of research. The use of 
hyperspectra for detecting plant water status detection 
has been extensively explored (GALVÃO et al., 
2015). A hyperspectral response model of lettuce 
established using an artificial neural network was 
able to distinguish water-stressed lettuce from non-
stressed lettuce with an accuracy of 93% (AUSTON 
et al., 2015), which represented a major improvement 
in the non-contact estimation of water stress. 

A previous study showed that spectral 
information at approximately 1450 nm can best predict 
water potential of vegetable leaves based on spectral 
reflectance obtained using a radiation spectrometer 
for 350–2500 nm and a prediction model of leaf water 
potential using partial least squares (PLS) (ZHOU et 
al., 2016). The leaf water potential of grape before 
dawn was determined using hyperspectral data 
obtained via a hand-held spectroradiometer (400–1010 
nm) (WANG et al., 2017), and the extracted vegetation 
index and structural variables were used as predictors 
in a water stress model. The prediction accuracy R2 of 
the estimated model obtained from the verification set 
was 0.73, and that of the severe water stress plants was 
0.79. The accuracy and operability of the prediction 
model indicated that it could be used to monitor the 
water status of grape and aid irrigation management.

Previous research has shown that moisture 
detection methods based on visible and near-infrared 
hyperspectra can be used to determine the water 
status of plants rapidly (MATHANKER et al., 2015) 
and in a convenient and non-destructive manner. 
However, hyperspectral technology is greatly affected 
by environmental factors such as background and 
light intensity changes; in addition, environmental 
variables must be strictly controlled during the early 
cultivation of samples. When moisture is the only 
variable being monitored, the concentrations of 
nutrient elements need to remain constant and the 

moisture gradient needs to be precisely controlled. 
Furthermore, point source sampling is the most 
common sampling approach, but this method cannot 
fully describe the physical changes of leaves and 
the physiological and biochemical characteristics of 
internal tissues under water stress; as a result, the 
measurement accuracy of this approach is suboptimal 
(PARASOGLOU et al., 2010). 

Terahertz time-domain spectroscopy 
(THz-TDS) radiation comprises electromagnetic 
waves between far infrared light and microwaves, with 
frequencies from 0.1 to 10 THz (wavelengths of 0.03–
3.00 mm) (YANG et al., 2014). This region is referred 
to as the “THz Gap” because it is the last spectral 
region to be explored by humans. Terahertz radiation 
is penetrating, coherent, and highly sensitive to 
organisms and polar liquids, such as water molecules. 
Terahertz technology is effective for biomass detection 
(GENTE et al., 2013), non-destructive food testing, 
agricultural product analysis, and quality control and 
has become one of the most cutting-edge fields of 
scientific research (PARK et al., 2018). 

THz-TDS shows high potential for the 
rapid, convenient, and non-destructive detection 
of crop water stress and has been used for moisture 
detection (LONG et al., 2013). For example, previous 
studies have established regression models based on 
the average values of the leaf time-domain amplitude, 
leaf frequency-domain amplitude, and leaf water 
content, which suggested that terahertz technology 
could be used to detect the water content of plant 
leaves (SONG et al., 2017). Qualitative analysis of 
THz-TDS changes under different levels of drought 
stress revealed that the peak time-domain spectrum 
decreases to the level below the blank reference 
peak and shows an obvious time delay after water 
stress decreases (ZHAO et al., 2015). The absorption 
coefficient and refractive index both decreased 
gradually as the degree of drought stress increased, 
indicating that THz spectroscopy provides a feasible 
approach for characterizing the water content of 
soybean canopy leaves (ZAHID et al., 2016). 

Extraction of the frequency, time, and time-
frequency multi-domain THz features, coupled with 
fused support vector machine, k-nearest neighbor, 
and decision tree algorithms, for the accurate 
determination of leaf moisture content provides a 
rich set of tools for growers to monitor plant health 
(PAGANO et al., 2016). A previous study examined 
the feasibility of using an advanced THz-QCL 
instrument to measure the absolute water content of 
purple coral leaves. In the graph of the tau L-A as 
M-w function in this study, the best-fitting regression 
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line R2 was consistently greater than 0.85, indicating 
that this method could be combined with plant water 
stress indicators to improve leaf water management. 
Infrared and THz spectra of water molecules have been 
suggested to be useful for monitoring the water content 
and leaf characteristics of plants, and the calculated 
dielectric constant indicated that the leaves become 
increasingly transparent under the action of THz waves 
with time. The results of this study indicated that the 
timely monitoring of leaf water stress could improve 
plant health monitoring; these findings have important 
implications for precision agriculture. 

In a study of the relationship between THz 
spectra and the leaf water content of winter wheat, 
the prediction correlation coefficient and root mean 
square error of the best model established by linear 
regression were 0.812 and 0.044, respectively, under 
a 0.3 THz frequency domain amplitude (LI et al., 
2013). These results suggested that THz spectra 
perform well in predicting the leaf water content and 
could be useful for detecting the water content in 
winter wheat leaves (NIE et al., 2014). Another study 
obtained the transmission and absorption spectra 
of rape leaves by THz-TDS and used the average 
transmittance and absorption coefficients to analyze 
changes in water content. The results of this study 
showed that THz spectra combined with statistical 
modeling are effective for obtaining physiological 
information from plants (BALDACCI et al., 2017).

 Measurements of the transmittance of six 
grapes using a THz quantum cascade laser revealed that 
the leaf moisture content is linearly related to the product 
of absorbance and the projected area. This method is 
robust to heterogeneity among varieties and permits the 
leaf moisture status to be determined quickly, simply, and 
non-invasively (TORRES et al., 2013). The water status 
of vines was measured using the THz reflectivity of the 
trunk, and the results of this method were consistent with 
measurements taken from tree measuring instruments 
and humidity probes. Current research suggested that 
THz-TDS data are strongly correlated with crop water 
stress (CASTRO et al., 2018). Many molecules have 
strong fingerprint characteristics in the terahertz band, 
including rich physical and chemical information. Thus, 
THz-TDS has been used to detect the moisture in field 
crops and fruits such as wheat, soybeans, canola, and 
grapes (KENNARD et al., 2016). However, currently 
used methods have low detection accuracy and are 
unable to effectively screen irrelevant variables. There 
is thus much room for improvement of currently used 
detection methods. 

The water content of lettuce leaves is an 
important indicator of water stress status. In this 

study, lettuce samples were exposed to different 
levels of water stress, 

and other irrelevant variables are 
controlled. THz-TDS was used to predict the water 
contents of lettuce, establishing a high-precision 
lettuce leaf moisture content prediction model can 
understand crop drought conditions, provide a 
reference for efficient monitoring of lettuce water 
demand characteristics and scientific irrigation, 
and is of great significance for exploring precision 
agriculture models.

MATERIALS   AND   METHODS

Experiments were conducted in a Venlo-
type experimental greenhouse in the Key Laboratory 
of Modern Agricultural Equipment and Technology 
of the Ministry of Education, Jiangsu University. 
Italian year-round tolerant lettuce was cultivated 
using potted perlite. 

Lettuce was planted on August 19, 2018, 
and seeds with full grains and uniform size were 
selected. A 30 cm×60 cm rectangular black plastic 
plug tray was used for cultivation. The cultivation 
substrate consisted of peat, perlite, and vermiculite. 
After the seeds were soaked in cold water for 30 min, 
the water was drained, and the seeds were sown in 
the nursery during the day. When lettuce plants had 
five leaves and one heart on September 18, 2018, 
lettuce plants of the same size were transplanted to 
15-cm flowerpots; perlite was used as the substrate, 
and Yamazaki nutrient solution formula was provided 
to all plants to ensure that they had access to similar 
quantities of nutrients. To minimize environmental 
interference, artificial ventilation and other measures 
were used to ensure that the temperature and humidity 
in the greenhouse were appropriate. 

The seedling samples were treated with 
four levels of water stress starting on October 8, 
2018, and there were a total of 80 samples (20 plants 
at each level). The experiment lasted 45 days. The 
water provided to plants was reduced while ensuring 
that all plants received normal supplies of nutrients. 
Group 1 (W1) was provided with a sufficient water 
supply for the entire 45-day period, and plastic pipes 
were used to deliver water to the roots of crops for 
irrigation through a dripper on a capillary with a 
diameter of approximately 10 mm. Group 2 (W2) 
plants received 100 ml of water once every two days; 
group 3 (W3) plants received 100 ml of water once 
every four days; and group 4 (W4) plants received 
100 ml of water once every six days. All plants were 
watered from 8 am to 9 am. The main purpose of the 
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samples subjected to extreme stress was to explore a 
greater range of stress conditions and thus improve 
the accuracy of sample feature recognition.

Acquisition of THz-TDS data
First, the fresh weight of lettuce leaves was 

determined. After 30 days of growth, one leaf was 
cut in the upper, middle, and lower layers from each 
pot (total of 240 leaves). Care was taken to ensure 
that the blade size, thickness, and shape were not 
affected during the cutting process. After cutting, the 
surface dust was removed by wiping the surface of 
the leaves with alcohol and air-drying them in a dry 
and ventilated place. The leaves were weighed with 
an electronic balance (Shanghai Jinghai Instrument 
Co., Ltd., model FA2004N); three measurements 
were taken, and the average value was used. Leaves 
were then placed in separate sealed bags and labeled.

A THz-TDS system (TS7400, Advantest 
Co., Japan) was used to obtain THz spectra. This 
system is specially designed for the collection of 

agricultural biological information. Compared with 
traditional THz-TDS systems, this system has higher 
precision and can detect samples ranging in size from 
3 to 225 cm². The measurement range is 0–4 THz. 
The sampling interval in the 0–4 THz spectral region 
was 0.038 THz, and the resolution was 5 GHz. The 
maximum sample area was 150×150 mm2.

Figure 1 shows the structure and working 
principle of the measurement system. The THz 
measuring unit and the THz detector of the THz 
transmitter are both fiber-optic docked without 
adjusting the external optical path. The THz 
transmitter emits laser pulses, which are divided by 
a beam splitter into two mutually perpendicular laser 
beams, including a strong pump light and a weak 
probe light. The pump light is incident on the emitting 
crystal, which generates THz pulses that pass through 
the sample stage via the mirror. These pulses are 
then transmitted to the terahertz detector through the 
detection crystal collinear with the probe light and 
are reflected many times. The detector transmits the 

Figure 1 - Structure and working principle of the TS7400 equipment. (1) Control computer, 
(2) Ethernet, (3) Optical fiber, (4) Analysis unit, (5) Measurement unit, (6) Terahertz 
transmitter, (7) THz detector, (8) Sample sets, (9) Low temperature and constant 
temperature transmission module, (10) Movable support.
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difference between the two laser beams to the control 
computer. After receiving the signal, the control 
computer can directly calculate the refractive index, 
absorption coefficient, dielectric constant, and 
other parameters of the sample through the analysis 
unit, in addition to the THz-TDS spectrum and its 
distribution information.

Before data acquisition, the measurement 
area needs to be calibrated. The size of the sample 
area was calculated, and the acquisition area was 
located. Before each measurement, the background 
was calibrated, the blank reference was saved, 
and THz-TDS spectra of lettuce samples were 
collected. Clear differences in the THz-TDS spectra 
corresponding to differences in water content could 
be observed (Figure 2).

Determination of the dry-basis moisture content
After collecting terahertz information, 

the collected leaves were placed in an envelope into 
an oven for 15 min of enzyme deactivation at 108 
ºC. After drying at 80 ºC for 8 h, the primary dry 
weight was taken. After drying was continued for a 
period of time, the secondary dry weight was taken. 
The primary dry weight was then compared with 

the secondary dry weight. If the difference did not 
exceed 1% of the final measured mass, the secondary 
dry weight can be used as the final dry weight m2. To 
ensure optimal sample separation, the dry-basis water 
content was calculated using the following formula:

%100
2

21 ×
−

=
m

mmw
                                                       (1)

where w is the dry-basis moisture content of the 
sample; m1 is the fresh mass of the sample, g; and m2 
is the dry mass of the sample, g.

Figure 3 shows the scatter diagram of the 
dry-basis moisture content of four lettuce samples with 
different levels of water applied, arranged from low to 
high moisture content. The dry-basis moisture content 
significantly varied among the four treatments.

RESULTS   AND   DISCUSSION

The acquisition of THz-TDS data was 
affected by system noise. To prevent noise from 
affecting subsequent data processing and reducing 
modeling accuracy, we used Savitzky-Golay (S-
G) smoothing combined with the S-G derivative 
algorithm and normalization to preprocess the data 
and select the optimal noise reduction method.

Figure 2 - Terahertz time-domain spectroscopy absorption spectrum mean value 
of samples with different water content levels. W1: average absorption 
spectrum of samples irrigated with sufficient water every day, W2: 
average absorption spectrum of samples irrigated with 100ml water 
every two days, W3: absorption spectrum of samples irrigated with 
100ml water every four days, W4: absorption spectrum of samples 
irrigated with 100ml water every six days.
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When S-G smoothing is used to preprocess 
data, the window width and polynomial order are 
particularly important because different values of these 
parameters directly affect the filtering performance. 
In this study, the window widths were either 5, 7, 
or 9 points, and the optimal window width was 
selected by comparing the determination coefficient 
Rc

2 obtained from PLS linear fitting with root mean 
square errors of calibration (RMSEC). Figure 4 (a) 
to (d) shows the spectrograms of the original data, as 
well as 5, 7, and 9 points for smoothing. There was 
obvious spectral jitter in the original data. When the 
window width was set to 5 points/time, the spectral 
shape was significantly smoothed. When it was set to 
7 points/time and 9 points/time, a smooth transition 
was observed, which was accompanied by the loss of 
information. Calculations of the fitting accuracy are 
shown in table 1. The fitting effect of 5 points was 
consistently the highest, and Rc

2 and RMSEC were 
0.9476 and 2.523%, respectively.

Division of the samples sets into the calibration set 
and verification set

To obtain improved modeling results, 
we used the Kennan-Stone algorithm, the sample 

set partitioning based on the joint X-Y distance 
algorithm, and the random sampling (RS) algorithm 
to divide the sample sets into a sample calibration 
set and a verification set. The best sample division 
algorithm was selected based on the correlation 
and root mean square error of full-band regression 
fitting. Detailed introductions into the algorithms 
are provided in previous studies. Results of the three 
algorithms are shown in table 2. The RS algorithm 
was the best (correction set: Rc

2 = 0.9307 and RMSEC 
= 285.1%; verification set: Rp

2 = 0.9253 and RMSEP 
= 425.7%). Hence, the RS algorithm was used to 
divide the sample sets.

Extraction of characteristic frequency bands 
To accurately characterize the THz spectra 

of lettuce moisture content, we used three algorithms—
stability competitive adaptive reweighted sampling 
(SCARS), iterative retained information variables 
(IRIV), and interval combination optimization 
(ICO)—to extract and compare the characteristic THz 
frequency bands; reduce the variables, redundancy, 
and collinearity; and improve the operational 
efficiency of the model. 

Figure 3 - Scatter diagram of groups with different gradient dry basis moisture contents. 
W1: dry basis moisture content of samples irrigated with sufficient water 
every day, W2: dry basis moisture content of samples irrigated with 100ml 
water every two days, W3: dry basis moisture content of samples irrigated 
with 100ml water every four days, W4: dry basis moisture content of samples 
irrigated with 100ml water every six days.
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Screening of the characteristic frequency bands 
based on SCARS 

The principle of SCARS is to use the 
stability of variables as an index, wherein higher 
stability indicates a greater probability that the selected 
variables are larger. The frequency band points with 
high absolute values of the regression coefficient in 
the PLS model were selected based on adaptive re-

weighted sampling and the exponential decay function 
(EDF). Frequency band points with small weights 
were removed. The subset with the lowest RMSECV 
was selected by cross-validation, which can identify 
the optimal combination of variables.

The total water content of the lettuce 
samples was 80, and the initial number of runs of 
SCARS was 30, 40 and 50. Figure 5 shows the results 

Figure 4 - Terahertz spectrogram smoothed with different window widths. (a) is the original 
data spectrogram, (b) is the spectrogram when the window width is set to 5, (c) 
is the spectrogram when the window width is set to 7, and (d) is the spectrogram 
when the window width is set to 9.

 

Table 1 - Fitting regression coefficient R2 and mean square error RMSEC. 

 

Serial number Pretreatment method R2 RMSEC 

1 5 points for time smoothing 0.9476 2.523% 
2 7 points for time smoothing 0.9378 2.751% 
3 9 points for time smoothing 0.9237 3.047% 
4 Normalize on a smooth basis 0.9594 2.219% 
5 First derivative on a smooth basis 0.9752 1.737% 
6 Second derivative on a smooth basis 0.9145 3.224% 

 
On the basis of S-G smoothing, the filtering process was further combined with S-G derivative and normalization. Comparative analysis 
shows that the determination coefficient Rc

2 and RMSEC of S-G derivative fitting are the best, reaching 0.9752 and 1.737% respectively. 
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when the number of runs was 50. After 30 runs, the 
number of samples basically stabilized. Therefore, 
50 runs achieved the most stable running results, 
and this setting was used to characterize subsequent 
patterns. As the number of runs increased, the number 
of retained variables decreased; under the action of 
the EDF, the number of retained variables decreased 
sharply in the first 10 sampling runs, and then the 
decrease became less sharp, which reflects the 
primary selection and selection of the algorithm runs. 
The relationship between the number of reserved 
characteristic frequency bands and the number of 
runs indicates that the RMSECV of the interactive 
verification model was at least 2.520% when the 

algorithm was run 27 times. The error gradually 
increased, indicating that the algorithm began to 
eliminate the characteristic variables affecting the 
accuracy of the algorithm. Therefore, the subset of 
characteristic variables obtained in the 27th run was 
selected as the optimal subset, and the initial 38 
terahertz characteristic bands significantly related to 
the lettuce water content were selected.

Screening of the characteristic frequency bands 
based on IRIV

IRIV is a feature variable selection 
algorithm based on a binary matrix rearrangement 
filter that divides all variables into four categories: 

Table 2 - Fitting regression results of the three algorithms.  
 

Methods Calibration set sample size Validation set sample size Rc
2 RMSEC% Rp

2 RMSEP% 

KS 60 20 0.9821 144.5 0.6934 780.1 
SPXY 60 20 0.9441 237.1 0.8848 495.6 
RS 60 20 0.9307 285.1 0.9253 425.7 

 
 

Figure 5 - Running result diagram of stability competitive adaptive reweighted 
sampling (SCARS). It shows the relationship between the number of 
running times and the number of characteristic frequency bands when 
the number of running times is set to 50.
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strong, weak, non-interfering, and interfering 
information variables. IRIV requires many iterations, 
and in each iteration, the strong and weak information 
variables are kept, other variables are eliminated, 
and the optimal variable set is obtained by reverse 
elimination. IRIV was used to select the characteristic 
frequency bands of THz spectra filtered by the S-G 
derivative algorithm, and 36 THz-TDS bands were 
obtained by primary screening.

Screening of the characteristic frequency bands 
based on ICO

ICO divides the THz spectrum of each 
sample into N equal parts with roughly the same 
width, and each part is a band interval. The RMSECV 
corresponding to each interval combination subset 
is calculated by replacing the frequency points in 
the frequency band interval, which can eliminate 
accidental errors in the samples. If the inclusion of an 
adjacent frequency point causes the RMSECV of the 
model to decrease, the frequency characteristic variable 
is selected; otherwise, it is eliminated. The optimized 
interval is searched locally and repeatedly until no 
new variables affect the RMSECV of the model. The 
optimized interval is the band interval finally selected 
by ICO. Four frequency bands were selected by ICO, 
including 168 characteristic frequency bands.

Optimization of the feature band extraction algorithm
Table 3 shows the numbers of characteristic 

frequency bands obtained after the THz characteristic 
screening of lettuce water content by the three 
algorithms as well as the accuracy of modeling by 
PLS. When the number of characteristic frequency 
bands was approximately the same, the calibration 
set model Rc

2 of IRIV was 0.9648, and RMSEC 
was 204.9%. The verification set Rp

2 was 0.8990, 
and RMSEP was 439.1%. The model accuracy was 
higher compared with that of SCARS. However, 
ICO returned too many frequency bands, and model 
accuracy was lower compared with that of IRIV, 

indicating there is more redundant information. 
Therefore, we used IRIV for feature screening. 

The above findings showed that the 
correlation coefficient and model accuracy are higher 
for IRIV, but up to 29 characteristic frequency bands 
were obtained. This suggested that this model has 
some redundancy and multicollinearity; an excessive 
number of variables is not conducive to practical 
applications of the model. Therefore, the characteristic 
variables need to be optimized again based on the 
initial screening of the characteristic frequency 
bands. Principal component analysis (PCA) and the 
successive projection algorithm (SPA) were used 
to optimize the primary features twice. The fitting 
accuracy was also used as the evaluation standard for 
algorithm optimization and optimal method selection. 

Optimization of the characteristic variables based on PCA
PCA is commonly used for reducing the 

dimensionality of data sets. A correlation between 
two variables can be interpreted as overlap or 
collinearity of the characteristic information reflected 
by these two variables. The purpose of PCA is to 
remove the redundancy of the original characteristic 
variables and establish a new dataset with as few 
variables as possible that contains most of the original 
information. The 29 feature variables screened by 
IRIV were subjected to PCA. The first seven principal 
components of the water content explained 96.44% 
of the variation in the data (Figure. 6), indicating 
that most of the information in the original data set 
was contained in the transformed data set. When 
these 7 principal components were used to establish 
a PLS model, the Rc

2 was 0.9028, and RMSEC was 
531.5%. Although, the accuracy was slightly reduced 
compared with that of the original dataset, the 
prediction model was significantly simplified.

Characteristic variable optimization based on the SPA
SPA can be used to identify the variable 

group with the minimum amount of redundant 

 

Table 3 - Model parameters for three algorithms. 
 

Algorithm Number of features Rc
2 RMSEC% Rp

2 RMSEP% 

SCARS 38 0.9393 280.1 0.8605 448.3 
IRIV 29 0.9648 204.9 0.899 439.1 
ICO 168 0.9646 205.0 0.8461 489.4 
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spectral information, which minimizes the collinearity 
between variables, greatly reduces the number of 
variables used in modeling, and improves the speed 
and efficiency of modeling.

The absorptance of 29 characteristic 
frequency bands of the water content obtained by 
IRIV was used as the independent variable X, and 
the minimum and maximum values of filter results 
were set to 1 and 29, respectively. The reason why 
the maximum value was 29 instead of the expected 
interval was because of the existence of a correlation 
among these 29 variables. To reduce the collinearity 
among variables, the variable interval was set to 
the maximum value, and step-by-step screening 
was performed. The dimension reduction effect 
was superior using this approach compared with 
that of directly setting the parameters to a smaller 
expected characteristic interval. The six characteristic 
frequency bands of the lettuce water content obtained 
by SPA were 1.667, 0.061, 3.105, 0.366, 3.380, and 
3.883 THz (Figure. 7). Figure 8 shows the locations 
of the selected bands. The six THz-TDS water 

content characteristic frequency bands were mostly 
distributed in the peaks, valleys, or inflection points.   

Based on the band variables selected 
by SPA, a calibration set and a verification set 
were established using PLS regression. The Rc

2 
and RMSEC of the calibration set fitted by PLS 
regression were 0.8962 and 412.5% respectively, 
suggesting that the fitting accuracy of SPA was 
higher compared with PCA. 

The THz detection model of lettuce 
moisture content was established by PLS regression 
with SPA-optimized characteristic variables, and the 
verification set was substituted into the calibration 
set model. The Rp

2 and RMSEP of the verification set 
model were 0.8757 and 528.9%, respectively. 

Figure 9 shows a correlation model 
between the predicted and true water content of 
lettuce. The predicted sample points of the data set 
were distributed on both sides of the fitting line and 
were highly correlated, indicating that the prediction 
model can be used to predict the water content in 
lettuce leaves. 

Figure 6 - Results of principal component analysis. The data in the picture shows the contribution 
ratio of the top 7 principal components.
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CONCLUSION

Through comparative analysis, 
when optimizing spectral features and reducing 
dimensionality, it is concluded that the IRIV 
algorithm combined with SPA algorithm for feature 
extraction of lettuce water stress can reduce the 

number of variables and overcome multicollinearity 
while ensuring the accuracy of fitting.

A THz-TDS prediction model for lettuce 
leaf water stress was established. The Rc

2 and RMSEC 
of the calibration set of the model were 0.8962 and 
412.5%, respectively, and the Rp

2 and RMSEP of the 
validation set were 0.8757 and 528.9%, respectively.

Figure 7 - Selection of successive projection algorithm frequency band for 
water content of lettuce. 

Figure 8 - Characteristic frequency band distribution. At the peak and 
inflection point, six characteristic bands of lettuce water content 
were obtained, which were 1.667, 0.061, 3.105, 0.366, 3.380 
and 3.883THz, respectively.
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