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ABSTRACT: Several biological phenomena have a behavior over time mathematically character-
ized by a strong increasing function in the early stages of development, then by a less pro-
nounced growth, sometimes showing stability. The separation between these phases is very
important to the researcher, since the maintenance of a less productive phase results in un-
economical activity. In this report we present methods of determining critical points in logistic
functions that separate the early stages of growth from the asymptotic phase, with the aim of
establishing a stopping critical point in the growth and on this basis determine differences in
treatments. The logistic growth model is fitted to experimental data of imbibition of arariba seeds
(Centrolobium tomentosum). To determine stopping critical points the following methods were
used: i) accelerating growth function, ii) tangent at the inflection point, iii) segmented regression;
iv) modified segmented regression; v) non-significant difference; and vi) non-significant difference
by simulation. The analysis of variance of the abscissas and ordinates of the breakpoints was
performed with the objective of comparing treatments and methods used to determine the criti-
cal points. The methods of segmented regression and of the tangent at the inflection point lead
to early stopping points, in comparison with other methods, with proportions ordinate/asymp-
tote lower than 0.90. The non-significant difference method by simulation had higher values of
abscissas for stopping point, with an average proportion ordinate/asymptote equal to 0.986. An
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Introduction

Biological phenomena can have a mathematically
characterized behavior as a function of time with a strong
increasing function in early development stages, followed
by a less pronounced growth, sometimes showing stabil-
ity. The separation between these phases is of great im-
portance since, in many processes, the maintenance of a
less productive phase results in an uneconomical activity.
Sometimes the growth phases have different biological
meanings and it is important to separate them.

Several methods have the aim to determine criti-
cal points that separate growth phases, as in Cate Jr. and
Nelson (1965) to determine critical level of nutrients in
plants and Portz et al. (2000) that use the segmented
regression in a fish study. The segmented regression
method is also used in Cate Jr. and Nelson (1971) and
discussed in Rayment (2005) which named it “Linear Re-
sponse and Plateau Model”.

Empirical methods separate growth stages with
basis in yield percentages, generally using the levels of
90 to 95 % of maximum yield as an upper limit, as in
Korndérfer et al. (2001) working with rice (Oryza sativa),
Evans et al. (2008) with a ornamental bush (Euonymus
fortunei), and Santos et al. (2004) with alfalfa (Medicago
sativa). Other statistical and mathematical methods are
employed with the same aim to determine critical points
in logistic curves (Carvalho and Pinho, 1996 and Mis-
chan et al., 2011) fitted to data of seed imbibition and
weight of cattle, respectively.

The aim of this paper is to determine new meth-
ods to obtain critical points in logistic growth curves and
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intermediate proportion of 0.908 was observed for the acceleration function method.
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compare them with some already available in the litera-
ture, in order to offer alternatives for decisions on the
best time to stop the process. We also indicate the pos-
sibility of comparing treatments through the analysis of
variance of the critical points.

Materials and Methods

The statistical model of growth used is the logistic
one:

Yj = [1 + exp('B"YXj)]il + ejl (1)

with parameters a, p and y, o > 0 and y > 0, where Y, is
the observed measure at time x,, and g is the random er-
ror, with normal distribution (0, 6%). The estimated func-
tion is represented by

y = a[l + exp(-b-cx)]™, (2)

with a, b and ¢ the estimates of the parameters o, B
and v, respectively. To determine the stopping critical
points in the logistic model six methods are used as
described below.

M, - Acceleration function method with point P, (x,; v,

The method, described in Mischan et al. (2011),
works with the acceleration function of the logistic
model of growth, represented by its second deriva-
tive

y'= ay® exp(-B-yx) [exp(-B-vx) - 1] [1+ exp(-B-yx)]®, (3
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which has two extreme points, a maximum and a mini-
mum, and three inflection points. After the last point
of inflection, called asymptotic deceleration point (P,
the deceleration of growth is very slow and approaches
to zero when x tends to infinity. The point coordinates
are obtained by equating the derivative of order 4 to
zero: P, [-(1n(5-2\/€) +b)/c;al3 + 6)/ 6] or, approxi-
mately, P, [(2.29 - b)/c ; 0.908a].

M, - Tangent at the inflection point method with
point P, (x,; v,)

In the asymptotic growth function estimated, with
an inflection point P, (x;; y,), we call y', be the value of
the first derivative of the function at its inflection point.
If we consider a tangent to the curve at this point as
a linear approximation to the growth phase before the
asymptote, its intersection with the asymptote of the
function y = a can be interpreted as an indication of
maximum growth and therefore a stopping point. The
equation of this tangent line is

Y-y =Y, [x-x), (4)
and in its intersection with the asymptote (y = a) is
a-y, =Y [x-x) (5)
where x, is the abscissa of the P, point. Therefore,

X, = (a-y)ly', + x (6)
The logistic function has P, (-b/c; a/2) and y’, = ac/4, hence P,

[(2-b)/c; al(1+exp(-2))] or, approximately, P, [(2-b)/c; 0.881a].
See Figure 1.

M, - Segmented regression method with point
P, (%47 ¥,)

For n pairs (x; y,) from the observed data the seg-
mented regression model can be represented by two
lines, one parallel to the x-axis and one inclined,

Y, = o, + Bl(p—xj) +e, j=12..n,n+1, .., n, (7)

y

P2 (x2; y2)

=i YA =il e x=x2 A IP m P2 y est

Figure 1 — Representation of the adjusted logistic function, the
asymptote y = a, the tangent to the curve at the inflection point IP
and the stopping point P2,

with the restriction (p-xj) = Oforj>n +1, wheren =
number of observations before the intersection point of
straight lines, o, = intersection of line with the verti-
cal axis y, B, = slope, p = abscissa of the intersection
point and e, = experimental error. The estimates of pa-
rameters o, B, and p are represented by a,, b, and r,
respectively. The estimate r is the abscissa of the sought
critical point, r = x,.

M, - Modified segmented regression method with
point P, (x,; y,)

When determining the intersection point in the
segmented regression method, this point is the begin-
ning of the asymptotic phase of growth and is therefore
a point of early occurrence. Naming the horizontal line
determined in the former method y = a,, we see that
the fitted curve does not reach the asymptote y = a,
but intersects the line y = a,, a, < a at some point P,,
occurring later in time as compared to P,. Based on this
information, the estimate a, = intersection of horizontal
line with the y-axis, obtained at the segmented regres-
sion method M,, is used as the ordinate of the sought
critical point. Observe that y = a, is the least squares
straight line fitted to the data that are distributed in a
nearly horizontal manner, parallel to the x-axis. These
data are placed after a point P, (x,, y,), where y, = a,
and x, is determined by the function fitted to the data in
the logistic curve,

a, = a [l + exp(-b-cx,)]", (8)

where

x, = L[Infa /(a-a,)) - b]. (9)
C

See Figure 2.

yest ———-y=al+bix - y=a2 —-—- y=a A P ®m P3 ¢ P4

Figure 2 - Representation of the adjusted logistic function,
its asymptote y = a, the straight lines fitted by the method of
segmented regression, y = a, + b;x and y = a,, and the points P,
and P, determined by the methods of segmented regression and
modified segmented regression, respectively.
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M, - Non-significant difference method with point
P, (x5 y5)

The method for determining the point of non-sig-
nificant difference is described in Carvalho and Pinho
(1996). We consider the difference y* = a-y, between
the estimated function and its asymptote, and we verify
from which point we can consider it non-significant by a
Student t-test. The abscissa x, of the critical point deter-
mined by this method is the solution of the equation

T =y xg I {IV (y)xs 15 (10)

for a value of T =t where t, is the unilateral t-test at
significance level o, with f = number of degrees of free-
dom associated with the estimate of error variance. The
resolution is made with the parameter estimates, their
variances and covariances, and the estimated variance
of y* for x = x_. The values of the abscissas of the points
are generally beyond the range of observation data,
which suggests that this method is quite strict in order to
determine a stopping critical point to the observations of
the experiment. This rigor can be mitigated considering
a difference y* not between y and its asymptote, but be-
tween y and a percentage, p, of this. In this case we have:
y* = pa - y. In this paper we adopted p = 0.90, which is
considered in several articles in the literature on critical
points, for example in Korndérfer et al. (2001), Evans et
al. (2008) and Santos et al. (2004). This p value is very
close to that determined in method M,, 0.908.

M, - Non-significant difference method by simula-
tion with point P, (x; vy,

The proposed method for determining the critical
point of stopping by simulation is based on the technique
of Monte Carlo simulation (Shapiro and Gross, 1981).
They also appear in literature applications of this tech-
nique in studies of sampling distribution of estimators
in nonlinear regression models (Bates and Watts, 1988).

In this method, after adjusting the asymptotic growth
function to data, new observations of the response vari-
able are generated and repeated 1,000 times, based on
the values of the dependent variable, the estimated pa-
rameters and sample variance. Then the nonlinear re-
gression model is fitted again to the replicates obtained
by simulation. From the inflection point of each of the
simulated curves, the difference D between the ordinate
of the considered point and the estimated asymptote
is determined. This process is repeated at a step k to
a maximum allotted time for the independent variable.
The empirical sampling distribution of the random vari-
able D and the percentiles p,, and p,,, are determined
for each empirical distributions obtained previously. The
stopping point P, (x,; y,) for the value of the dependent
variable is the first value of p, < 0.

The model is fitted to data of accumulated weight
gain of fruits of arariba (Centrolobium tomentosum), in per-
centage, during soaking for 84 h in distilled water, sub-
jected to treatment with sulfuric acid during the times
{0, 10, 15, 20 min.} represented by TO, T10, T15 and T20
as described in Carvalho and Pinho (1996). The experi-
ment had 25 repetitions. The parameter estimates, their
standard errors, confidence intervals and coefficients of
asymmetry of Hougaard (1985) were determined.

In the analysis of variance of the abscissas and
ordinates were considered the factors 'treatments’ and
‘'methods of determining breakpoints’ and the interac-
tion between them. The data used in these tests is ob-
tained by fitting the logistic function and posterior deter-
mination of breakpoints for each of the 25 replicates for
four treatments.

Results and Discussion
Table 1 and Figure 3 present the results of the logis-

tic function fit to the data of weight gain of fruits arariba
for each of the four treatments, using all the replicates in

Table 1 — Parameter estimates of the logistic function, their approximate standard errors, approximate 95 % confidence limits and asymmetry
coefficients of Hougaard, for four treatments followed, in brackets, by the residual variance (s?) and the degrees of freedom (df).

Parameters estimates Approximate standard errors

Approximate confidence limits of 95 %

Asymmetry coefficients

Treatment O (s? = 14.4710; df = 319)

a 74.2706 0.3907
b -1.2765 0.0446
c 0.0836 0.00248
Treatment 10 (s? = 12.9719; df = 333)

a 57.803 0.8553
b -1.2648 0.0398
c 0.0496 0.00206
Treatment 15 (s? = 12.0849; df = 333)

a 59.8092 0.6489
b -1.4526 0.0411
c 0.0573 0.00196
Treatment 20 (s? = 9.5192; df = 333)

a 57.5378 0.5195
b -1.5147 0.0395
c 0.0609 0.00184

73.5019 75.0392 0.0525
-1.3641 -1.1888 -0.0488
0.0787 0.0885 0.071
56.1204 59.4856 0.231
-1.3431 -1.1864 -0.0713
0.0455 0.0536 0.0542
58.5328 61.0857 0.157
-1.5335 -1.3717 -0.0679
0.0534 0.0611 0.0555
56.5159 58.5596 0.1252
-1.5925 -1.437 -0.0615
0.0573 0.0646 0.0535
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each time. Table 1 shows the parameter estimates, their
standard errors and approximate confidence intervals
limits at 95 % and the coefficients of asymmetry of Hou-
gaard. All parameter estimates present values of t = esti-
mate / standard error of estimate with p-values < 0.0001.
The parameters estimates of 3 and y present coefficients
of asymmetry less than 0.1 which, by the classification of
Ratkowsky (1989), suggest how the estimators are quite
close to linear. For the parameter o, the greater asym-
metry coefficient was 0.231 in the treatment T10, which
makes the estimator reasonably close to linear (coefficient
between 0.1 and 0.25). The Durbin-Watson test to check
for autocorrelation and the Breusch-Pagan for homogene-
ity of variances showed that the model of independent
errors and constant variance can be employed.

Table 2 and Figure 4 show the stopping critical
points (x;, y,) determined by methods M, to M, for each
treatment, as well as the inflection point.

The analysis of variance of estimated abscissas
showed significant interaction (p < 0.001) among the fac-
tors ‘treatment’ and 'methods for determining the stopping
points'. The M, (tangent at the inflection point method) and
M, (the segmented regression method) did not differ in any
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--------- est0 ——-est10 ———-est15 est20
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Figure 3 - Logistic function adjusted to data on weight gain of fruits
arariba, subject to four treatments. Observed values: TO, T10,

T15 and T20 (average of 25 replicates) and estimated est O, est
10, est 15 and est 20.
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Figure 4 — Logistic function fitted to the four treatments and location
of inflection (IP) and stopping points: asymptotic decelerating (P,),
tangent to the curve at the inflection (P,), segmented regression
(P,), modified segmented regression (P,), non-significant difference
(P,) and non-significant difference by simulation (P,).

Table 2 — Critical points (x, y) and proportions (y,/a) of the ordinate at the point relative to the asymptote, a, according to the treatments.

Methods

Treatments IP i 2 V3 w2 V5 V6

T0 X, 15.3 42.7 39.2 40.8 55.9 48.3 72.3
Y, 37.135 67.456 65.417 66.396 71.872 69.846 73.643
y/a 0.500 0.908 0.881 0.894 0.968 0.940 0.992

T10 X 25.5 71.7 65.8 64.9 75.4 78.4 103.5
Y, 28.902 52.499 50.913 50.624 53.309 53.892 56.619
y/a 0.500 0.908 0.881 0.876 0.922 0.932 0.980

T15 X, 25.4 65.4 60.3 59.4 70.6 72.3 97.4
Y, 29.905 54.322 52.680 52.356 55.630 56.010 58.857
y/a 0.500 0.908 0.881 0.875 0.930 0.936 0.984

T20 X; 24.9 62.5 57.7 58.4 70.5 69.6 94.9
Y, 28.769 52.259 50.679 50.931 54.186 53.998 56.741
y/a 0.500 0.908 0.881 0.885 0.942 0.938 0.986
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treatment and had the lowest values of abscissas (Tukey, p
< 0.05). Both methods assume a straight line representing
the initial growth that intersects with a horizontal line rep-
resenting the asymptotic growth - the asymptote (a) in the
M, method and the least squares line of y = a, fitted to fi-
nal growth in method M,. The method M, (non-significant
difference between the function and its asymptote, deter-
mined by simulation) shows breakpoints with the highest
values of abscissas, x,, differing from other methods in all
treatments. Abscissa values determined by the method M,
(modified segmented regression) are larger than those de-
termined by the method M,. So, the modified segmented
regression method is an efficient alternative to the method
of segmented regression M,, when we want a stop point
occurring later. The M, method (accelerating growth func-
tion) leads the points with abscissas intermediate in com-
parison with other methods.

The comparison between treatments showed that
T10 differs from other treatments having the highest ab-
scissa of breakpoints. T15 and T20 did not differ and
TO leads to lower values. All the treated seeds, there-
fore, showed a reduced growth rate compared with the
control TO, what is already evident in the parameter es-
timates presented in Table 1, where ¢ (T0) = 0.071, a
value higher than the others. A high value for ¢ shows
that the estimated growth rate is high, which implies a
smaller value for the abscissa of the breakpoint.

Analyzing the ordinate values of the breakpoints,
significant main effects were found for the factors ‘treat-
ment’ and ‘'methods’ and no significant interactions. In
general the differences between methods are similar to
those seen in the analysis of abscissas: the smallest ordi-
nates are obtained by methods M, and M,, not showing
difference among them. The method M, has the highest
ordinate value, differing from other methods; M, is in
the middle. If the ordinate criterion is used to compare
treatments, TO also differs from other treatments pre-
senting, unlike the comparisons of abscissas, the highest
average value; this is probably due to the high growth
rate of TO compared to the treated seeds.

The determination of a stopping point in the ad-
justed logistic growth curve to data from soaked seeds of
araribd can be made by different methods, mathematical
or statistical methods, which can be considered different
regarding the values of their coordinates. The segmented
regression and the tangent at the inflection point methods
lead to the decision of a significant slowdown in growth
from lower values of abscissa; they lead to early stopping
points, in comparison with other methods, with propor-
tions ordinate/asymptote a little lower than 0.90. The
non-significant difference method by simulation deter-
mines higher values of abscissas for stopping points, with
an average proportion ordinate/asymptote 0.986, a value
that shows an ordinate excessively near to the asymptote.
An intermediate proportion of 0.908 is obtained by the
acceleration function method. The segmented regression
method (M3), the acceleration function method (M1) and
the modified segmented regression method (M4) are quite
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simple in application and cover a wide range of variation
in the amounts ordinate/asymptote, on average 0.883,
0.908 and 0.941, respectively, which is very useful in
practice. The method M1 depends only on a mathemati-
cal formula that uses the parameters of the fitted model,
M3 is a method already widely used in literature and M4
is a simple modification of M3. On the other hand, the
method of the tangent at the inflection point (M2) shows
very similar results to those obtained by the method M3,
segmented regression, but the points are difficult to ob-
tain; the non-significant difference methods (M5 and M6)
are not simple to apply and M6 leads to excessively high
values of abscissas with ordinates very close to the asymp-
tote. The breakpoints can also be used as a criterion for
comparing treatments in experiments where the growth
functions are adjusted.
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