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ABSTRACT: To date, the quantitative genetics theory for genomic selection has focused mainly 
on the relationship between marker and additive variances assuming one marker and one quanti-
tative trait locus (QTL). This study extends the quantitative genetics theory to genomic selection 
in order to prove that prediction of breeding values based on thousands of single nucleotide poly-
morphisms (SNPs) depends on linkage disequilibrium (LD) between markers and QTLs, assum-
ing dominance. We also assessed the efficiency of genomic selection in relation to phenotypic 
selection, assuming mass selection in an open-pollinated population, all QTLs of lower effect, 
and reduced sample size, based on simulated data. We show that the average effect of a SNP 
substitution is proportional to LD measure and to average effect of a gene substitution for each 
QTL that is in LD with the marker. Weighted (by SNP frequencies) and unweighted breeding value 
predictors have the same accuracy. Efficiency of genomic selection in relation to phenotypic 
selection is inversely proportional to heritability. Accuracy of breeding value prediction is not 
affected by the dominance degree and the method of analysis, however, it is influenced by LD 
extent and magnitude of additive variance. The increase in the number of markers asymptotically 
improved accuracy of breeding value prediction. The decrease in the sample size from 500 to 
200 did not reduce considerably accuracy of breeding value prediction.
Keywords: genome-wide selection, additive value prediction, prediction accuracy
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Introduction

Genomic selection is the process of identifying su-
perior individuals based on breeding values predicted 
from the analysis of thousands of molecular marker loci 
and a limited number of phenotypic records (Meuwissen 
et al., 2001). Because the statistical analysis involves a 
very large number of markers and relatively few obser-
vations, marker effects that comprise the genomic value 
cannot be simultaneously predicted by the least squares 
regression (Goddard and Hayes, 2007). Several regular-
ized whole-genome regression and prediction methods 
are reviewed by Campos et al. (2013), who emphasized 
that Bayesian LASSO (least absolute shrinkage and selec-
tion operator) performs well across traits and GBLUP 
(genome best linear unbiased prediction) performs well 
for most traits.

Relevant theoretical and applied studies have 
shown the efficiency of genomic selection (Daetwyler et 
al., 2013). Meuwissen et al. (2001) showed that Bayes-
ian methods were the most accurate to predict breeding 
values and identified quantitative trait loci (QTLs) with 
higher effects. The decrease in the number of phenotypic 
values and in marker density reduced accuracy. Predic-
tion accuracy in future generations decreased, neverthe-
less, magnitude ensured efficient selection. Comparable 
results were obtained by Goddard (2009) and Grattapa-
glia and Resende (2011). Jannink et al. (2010) considered 
that the paradigm of lower efficiency of marker-assisted 
selection in relation to phenotypic selection for quantita-
tive traits can change with the establishment of genomic 
selection. Goddard (2009), however, observed higher ef-

ficiency of genomic selection in relation to phenotypic 
selection only for the short term. Grattapaglia and Re-
sende (2011) stated that genomic selection in forestry 
breeding could be superior to pedigree-based BLUP se-
lection when the cycle length for the first strategy was at 
least 75 % less than the cycle length by pedigree-based 
BLUP selection.

Until now, the quantitative genetics theory for ge-
nomic selection has focused mainly on the relationship 
between marker and additive variances assuming one 
marker and one quantitative trait locus (QTL). This study 
extends the quantitative genetics theory for genomic se-
lection to prove that prediction of breeding value based 
on thousands of single nucleotide polymorphisms (SNPs) 
depends on linkage disequilibrium (LD) between mark-
ers and QTLs, assuming dominance. We also assessed 
efficiency of genomic selection toward phenotypic selec-
tion, assuming mass selection in an open-pollinated pop-
ulation, all QTLs of lower effect, and reduced sample 
size, based on simulated data.

Materials and Methods

Theory
Expressing a marker effect, the variance of a mark-

er effect and the predictor of a genetic value (genomic 
value) as a function of marker allelic frequencies, QTL 
effects and frequencies and LD values between QTLs 
and markers, assuming s markers and k QTLs, is an un-
wieldy task. However, general functions could be derived 
assuming one marker and one QTL, one marker and two 
QTLs, and two markers and one QTL. These expressions 

prediction in open-pollinated populations
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are useful to derive and assess predictors of breeding 
value, identify parameters predicted by a whole-genome 
analysis and their interpretation and compute maximum 
accuracy of breeding value prediction with genotyping 
and phenotyping in the same individual.

Relationship between marker and QTL additive 
and dominance effects 

Assume a Hardy-Weinberg equilibrium population 
(generation −1). Further, assume that B and b are alleles 
of a QTL and that C and c are alleles of a SNP (single 
nucleotide polymorphism) locus. B and b are alleles that 
increase and decrease the trait expression, respectively. 
Assuming linkage, probabilities of gametes BC, Bc, bC, 
and bc in the gametic pool of the population are, respec-
tively,

P p pBC b c bc
( ) ( )− −= + ∆1 1

P p qBc b c bc
( ) ( )− −= − ∆1 1

P q pbC b c bc
( ) ( )− −= − ∆1 1

P q qbc b c bc
( ) ( )− −= + ∆1 1

where p is the frequency of the major allele 
(B or C),  q = 1 – p is the frequency of the minor allele (b 
or c), and ∆ = −− − − − −

bc BC bc Bc bCP P P P( ) ( ) ( ) ( ) ( )1 1 1 1 1  is the measure of LD 
(Kempthorne, 1957). The genotypic values of individuals 
BB, Bb, and bb are

G M q q d M A DBB b b b b BB BB= + + −( ) = + +2 2 2α

G M q p p q d M A DBb b b b b b b Bb Bb= + −( ) + = + +α 2

G M p p d M A Dbb b b b b bb bb= + −( ) + −( ) = + +2 2 2α

where M is the population mean,  ab=ab + (qb – pb)db is 
the average effect of a gene substitution, db is the domi-
nance deviation (deviation between the genotypic value 
of heterozygotes and the mean of genotypic values of 
homozygotes (mb)), and A and D are QTL additive and 
dominance genetic values, respectively. Parameter ab is 
the deviation between the genotypic value of the homo-
zygote of higher expression and mb. 

Genotype probabilities in generation 0 are (for 
simplicity, superscript (0) – for generation 0 – was omit-
ted in all parameters that depend on LD measure of gen-
eration −1)

f p p p pb c b c bc bc22
2 2 1 1 2

2= + ∆ + ∆ 
− −( ) ( )

f p p q p q pb c c b c c bc bc21
2 1 1 2

2 2 2= + −( )∆ − ∆ 
− −( ) ( )

f p q p qb c b c bc bc20
2 2 1 1 2

2= − ∆ + ∆ 
− −( ) ( )

f p q p q p pb b c b b c bc bc12
2 1 1 2

2 2 2= + −( ) ∆ − ∆ 
− −( ) ( )

f f f p q p q q p q pg n b b c c b b c c bc bc11 11 11
1 14 2 4= + = + −( ) −( )∆ + ∆ − −( ) ( )


2

f p q q q p qb b c b b c bc bc10
2 1 1 2

2 2 2= − −( ) ∆ − ∆ 
− −( ) ( )

f q p q pb c b c bc bc02
2 2 1 1 2

2= − ∆ + ∆ 
− −( ) ( )

f q p q q q pb c c b c c bc bc01
2 1 1 2

2 2 2= − −( )∆ − ∆ 
− −( ) ( )

f q q q qb c b c bc bc00
2 2 1 1 2

2= + ∆ + ∆ 
− −( ) ( )

where fij is the probability of the individual with i and j 
copies of allele B of QTL and allele C of the SNP (i, j = 
2, 1, or 0). Indices g and n identify double heterozygotes 
in coupling and repulsion phases.

The average genotypic values of individuals CC, 
Cc, and cc are

G
p

f G f G f G

M q q

CC
c

BBCC BbCC bbCC

c bc b c

= + +( )

= + + −

1

2 2

2 22 12 02

2     κ α κκ αbc b C CC CC CCd M D M A D2 2( ) = + + = + +

G
p q

f G f G f G

M q p

Cc
c c

BBCc BbCc bbCc

c c bc b

= + +( )

= + −( ) +

1
2 21 11 01

    κ α 22 2p q d M D M A Dc c bc b C c Cc Cc Ccκ α α= + +( ) + = + +

G
q

f G f G f G

M p p

cc
c

BBcc Bbcc bbcc

c bc b

= + +( )

= + −( ) + −

1

2 2

2 20 10 00

    κ α cc bc b c cc cc ccd M D M A D2 2 2κ α( ) = + + = + +

where κbc
bc

c cp q
= ∆









−( )1

, 

aC = qcκbcab and ac = –pcκbcab are the average effects of 
SNP alleles, and A and D are additive and dominance 
values in relation to the SNP locus. The average effect of 
substituting allele C for c is aSNP=aC – ac=κbcab. Domi-
nance deviation for the SNP is d dbc bSNP = κ2 . SNP additive 
effects (consequently, average effect of a SNP substitu-
tion and SNP additive value) are proportional to the LD 
value and the average effect of a QTL substitution. Fur-
thermore, SNP dominance deviation (consequently, SNP 
dominance value) is proportional to squared LD value 
and QTL dominance deviation. The expectation of both 
SNP additive and dominance values equals zero. LD 
measure can also be expressed as ∆ =− −

bc bc b b c cr p q p q( ) ( )1 1 , 
where rbc

( )−1  is the correlation between values of alleles in 
both loci (one for B and C, and zero for b and c) in the ga-
metic pool of generation −1 (Hill and Robertson, 1968).

Relationship between SNP additive value and QTL 
additive value 

If there is LD between a SNP and a QTL, additive 
and dominance values in relation to the SNP are propor-
tional to additive and dominance values regarding QTL, 
respectively. The SNP additive values are

A q q A q q p A q p ACC c b bc BB c b b bc Bb c b bc bb= ( ) = −( )  = −( )/ / /κ κ κ2

A q p q A q p q p ACc c c b bc BB c c b b bc Bb= −( )  = −( ) −( ) 
= −

/ /2 κ κ

     qq p p Ac c b bc bb−( ) / 2 κ
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A p q A p q p A

p p A

cc c b bc BB c b b bc Bb

c b bc b

= −( ) = − −( ) 
= ( )

/ /

/

κ κ

κ

2

    bb

Thus, a predictor of the QTL additive value is the 
SNP additive value, that is, A AQTL SNP SNP

1
1= = µ α , where 

m1=2qc for SNP genotype CC, m1=qc – pc for Cc, or m1=–
2pc for cc. This predictor has been used in most whole-
genome analysis. However, in some analysis, predictor
AQTL SNP

2
2= µ α has been used, where µ2 = 2  for SNP genotype 

CC, µ2 = 1 for Cc, or µ2 = 0 for cc. It shows that E AQTL
1 0( ) = ,

E A pc


QTL SNP
2 2( ) = α  and Var AQTL

1( )  = ( )Var AQTL
2

= ( )Cov A AQTL QTL,  1 = ( )Cov A AQTL QTL,  2 = 2 2p qc cαSNP = σA( )SNP
2

where σA SNP( )
2 is the SNP additive variance. Thus, both 

predictors have the same accuracy (correlation between 
the additive value for QTL and the value predicted by 
the SNP), given by

ρ ρ
σ
σA A A A

A

A
QTL QTL QTL QTL

SNP

QTL
, ,

( )

( )
 

1 2

2

2= =

where σ αA b b bp q( )QTL
2 22= is the QTL additive variance.

The SNP additive variance can be expressed as
∆ { }−

bc b b c c Ap q p q( )
( )/1 2 2σ QTL

. The previous expression is a gen-
eralization of the results provided by Gianola et al. (2009) 
and Goddard (2009). However, assuming dominance, SNP 
variance is σ σA D( ) ( )SNP SNP

2 2+ , where σD c cp q d( )SNP SNP
2 2 2 24=  

is SNP dominance variance. SNP dominance vari-
ance can be expressed as ∆ { }−

bc b b Dp q( )
( )/1

2
2σ QTL

, where 
σD b b bp q d( )QTL

2 2 2 24=  is QTL dominance variance.

Parametric values of regression coefficients in a 
whole-genome analysis 

Parametric values of regression coefficients in a 
whole-genome analysis are derived by a regression anal-
ysis that relates the genotypic value (G) to the number 
of copies of one allele of each SNP. Assuming one SNP 
in LD with one QTL, the additive-dominance model is 
G = β0 + β1x + β2x

2 + ε (x = 2, 1, or 0). The model can 
be expressed as y (9 × 1) = X (9 × 3). b (3 × 1) + error 
vector (9 × 1), where y is the vector of QTL genotypic 
values, conditional to SNP genotype, X is the incidence 
matrix, and b is the parameter vector. Assuming a bial-
lelic QTL, there are 3 × 3 = 9 genotypes for QTL and 
marker (for example, BBCc). Because the genotypes have 
different probabilities, we defined the matrix of geno-
type probabilities as P (9 × 9) = diagonal{fij}. Thus, for 
the complete or reduced model, β = (X'PX)–1 (X'Py) and 
R(.) = β'(X'Py), where R(.) is the reduction in the total 
sum of squares due to fitting the model. Finally, fitting 
three regression models – the complete model G = β0 + 
β1x + β2x

2 + ε   and reduced models G = β0 + β1x + ε  
(no dominance) and G = β0 + ε (no QTL in LD with the 
marker) – shows that

β0 = M (fitting model G = β0 + ε)

β1 = αSNP (fitting model G = β0 + β1x + ε)

β2 = –dSNP (fitting model G = β0 + β1x + β2x
2 + ε)

R R R Aβ β β β β σ1 0 0 1 0
2( ) = ( ) − ( ) =, ( )SNP

R R R Dβ β β β β β β β σ2 0 1 0 1 2 0 1
2, , , , ( )( ) = ( ) − ( ) = SNP

where R(..) is a difference between two nested R(.) terms 
with the additional effect stated before the vertical bar and the 
effect(s) common to both models after the bar.

Thus, the intercept of the model G = β0 + ε  is the 
population mean, the regression coefficient of the simple 
linear model (G = β0 + β1x + ε) is the average effect of 
substitution for the SNP locus, and coefficient β2 in the 
complete model is the negative of SNP dominance de-
viation. The additive and dominance variances relative 
to SNP are the sum of squares of linear and quadratic 
effects. Thus, a whole-genome analysis provides average 
effects of SNP substitution and SNP dominance devia-
tions.

The alternative model is G = β0 + β1x1 + β2x2 + 
ε, where x1 = 1, 0, or −1 if the individual is CC, Cc, or 
cc, and x2 = 0 or 1 if the individual is homozygous or 
heterozygous, respectively. Using the same procedure, 
we observed that the only difference in relation to the 
previous model is that β2 = dSNP (fitting model G = β0 + 
β1x1 + β2x2 + ε). Most studies on genomic selection have 
fitted this model in which SNP genotypic values are de-
fined as GCC = mc + ac, GCc = mc + dc, and Gcc = mc – ac. 
SNP parameters are

mc = M + (qc – pc)αSNP – (1 –2pcqc)dSNP

ac = αSNP – (qc – pc)dSNP

dc = dSNP

Accuracy of breeding value prediction
 To derive a general function for breeding value 

prediction accuracy, we further considered one QTL 
(B/b) and two SNPs (C/c and E/e) in LD and two QTLs 
and one SNP in LD. Regarding predictors of the additive 
value for QTL based on two SNPs, we have E AQTL

1 0( ) = ,  
E A p pc e


QTL SNP(C) SNP(E)
2 2( ) = α α+2 , Var AQTL

1( ) = ( )Var AQTL
2

= + + ∆ =−σ σ α α σA C A E ce C E A( ( )) ( ( ))
( )

( ) ( ) ( )SNP SNP SNP SNP SNP
2 2 1 24 , and 

Cov A AQTL QTL,  1( ) = ( )Cov A AQTL QTL,  2 = +σ σA A A C( ) ( )SNP( ) SNP( )
2 2 , 

where σA( )SNP
2 is the variance of the additive value pre-

dictor (additive genomic value variance). Thus, both pre-
dictors have the same accuracy, given by

ρ ρ
σ σ

σ σA A A A

A C A E

A
QTL QTL QTL QTL

SNP SNP

QTL
, ,

( ( )) ( ( ))

( )

 

1 2

2 2

2
= =

+

AA( )SNP
2

 

The additive-dominance model is 
G x x x x= + + + + +β β β β β ε0 1 1 2 2 3 1

2
4 2

2 , where indices 1 and 
2 refer to SNPs. Using QTL genotypic values and prob-
abilities of 27 genotypes for QTL and two SNPs, we have 
(fitting five regression models)



246

Viana et al. Theory and efficiency of genomic selection

Sci. Agric. v.73, n.3, p.243-251, May/June 2016

β0 = M (fitting model G = β0 + ε)

β1 = κbcαb = αSNP(C) (fitting model G = β0 + β1x1+ ε)

β2 = κbeαb = αSNP(E) (fitting model G = β0 + β2x2+ ε)

β κ3
2= − = −d dC bc bSNP( )  (fitting model G x x= + + +β β β ε0 1 1 3 1

2 )

β κ4
2= − = −d dE be bSNP( )  (fitting model G x x= + + +β β β ε0 2 2 4 2

2 )

R p qc c C Cβ β α σ1 0
2 22( ) = =SNP A(SNP(( ) ))

R p qe e Eβ β α σ2 0
2 22( ) = =SNP A(SNP(( ) ))E

R p q dc c C D Cβ β β σ3 0 1
2 2 2 24, ( ) ))( ) = =SNP (SNP(

R p q de e E Dβ β β σ4 0 2
2 2 2 24, ( ) ))( ) = =SNP (SNP(E

where κbc
bc

c cp q
= ∆









−( )1

 and κbe
be

e ep q
= ∆









−( )1

Assuming now a SNP (C/c) in LD with two QTLs 
(B/b and E/e) and defining E and e as alleles for the sec-
ond QTL, where E and e are the alleles that increase and 
decrease trait expression,

β0 = M 

β1 = κbcαb + κceαe = αSNP

β κ κ2
2 2= − +( ) = −bc b ce ed d dSNP

R p qc c Aβ β α σ1 0
2 22( ) = =SNP (SNP)

R p q dc c Dβ β β σ2 0 1
2 2 2 24,( ) = =SNP (SNP)

where κce
ce

c cp q
= ∆









−( )1

. 

Thus, correlation between the additive value for QTLs 
and the value predicted by the SNP is

ρ ρ
σ
σA A A A

A

A
, ,

( )

( )
 

1 2

2

2= = SNP

QTL

where σ α α α αA b b b e e e be b ep q p q( )
( )

QTL
2 2 2 12 2 4= + + ∆ − (Viana, 2004).

Generalizing, the additive genetic value relative to 
k QTLs predicted by s SNPs is 

A r
r

s

r
1

1
1

=
=

∑µ α( ) ( )SNP  or A r
r

s

r
2

2
1

=
=

∑µ α( ) ( )SNP .

Both predictors have the same accuracy, given by

ρ ρ σ σ σ
A A A A A r

r

s

A A, , ( ( )) ( )/
 

1 2
2

1

2 2= =
=

∑ SNP SNP

where σ αA r r r rp q( ( )) ( )SNP SNP
2 22=  is the additive variance for 

SNP r, 

α α κ αSNP( )

( )

r
ri

r ri

k

i ri i
i

k

p q
= ∆







 =

−

=

′

=

′

∑ ∑
1

1 1
 

is the SNP average effect of allele substitution (k' is the 
number of QTLs in LD with the SNP r),

σ α α αA i i
i

k

i ij i j
j

k

i

k

p q2

1

2 1

21

1

2 4= + ∆
=

−

== <

−

∑ ∑∑ ( )  (Viana, 2004) is the ad-

ditive variance, and

σ α α αA r r
r

s

r rt r
t

s

r

p q( )
( )

SNP SNP( ) SNP( ) SNP(t)
2

1

2 1

21

2 4= + ∆
=

−

==
∑ ∑

<<

−

∑
s 1

 

(Viana, 2004) is variance of the additive value predictor 
(additive genomic value variance).

Due to shrinkage, the sum of SNP variances has low 
magnitude and provides a very low estimate of breeding 
value accuracy. For population 1, generation 0, simula-
tion 1, expansion volume, heritability of 0.7, sample size 
500, and average SNP density of 0.1, the sum of the SNP 
variances is 0.037924 (covariance between the estimated 
breeding value and the true breeding value is 1.770058). 
A less biased estimator of the breeding value accuracy 
is  σ σA A( ) /SNP

2 2 . For the described scenario, phenotypic 
variance is 4.937459 and variance of predicted breeding 
values is 1.641861. Assuming a narrow sense heritability 
estimate of 0.6 (parametric value), accuracy is 0.7445. 
The correct estimate is 0.8068.

Simulation
The simulation program – REALbreeding (avail-

able on request) – is under development by the first 
author, using the software REALbasic. Firstly, 5000 
SNPs and 100 QTLs were randomly distributed across 
ten chromosomes (500 SNPs and 10 QTLs per chromo-
some). The average distance between adjacent SNPs was 
0.1 cM. QTLs were distributed in the regions covered by 
SNPs. Then, a Hardy-Weinberg equilibrium population 
with LD was generated - a composite of two populations 
(population 1). The composite was generated crossing 
two populations in linkage equilibrium followed by a 
generation of random crosses. Finally, the software com-
puted all genetic parameters based on user input, which 
includes minimum and maximum genotypic values for 
homozygotes (Gmin and Gmax), degree of dominance 
(d/a), direction of dominance, and broad sense herita-
bility. True additive and dominance genetic values and 
variances were computed from the population gene fre-
quencies (random values), LD values (see parametric LD 
in a composite in the following subsection), average ef-
fects of a gene substitution (α) and dominance deviations 
(d). Because Gmin = km – (nq.π + nm)a and Gmax = km 
+ (nq.π + nm)a, where m is the average genotypic value 
of homozygotes, k is the number of genes, nq is the num-
ber of QTLs, and nm is the number of minor genes, we 
have m = (Gmin + Gmax)/2k, a = (Gmax – km)/(nq.π + 
nm) and di = (d/a)i.a (i = 1, 2, .., k). The user also defines 
a value (π) for the proportion between parameter a for 
a QTL (higher effect) and parameter a for a minor gene 
(QTL of lower effect). We defined this proportion as 1, 
however, QTL effects are not a constant since allelic ef-
fects are qα and -pα, that is, since allelic frequencies and 
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dominance deviations are random values. Phenotypic 
values are computed from the true population mean, 
additive and dominance values and from error effects 
sampled from a normal distribution. Error variance is 
computed from broad sense heritability.

We considered three popcorn traits, three SNP 
densities, two heritabilities, two sample sizes, and two 
related populations with LD, totaling 72 scenarios. For 
each scenario, 50 simulations were carried out. Mini-
mum and maximum genotypic values of homozygotes 
for grain yield, expansion volume and days to maturity 
were 20 and 200 g per plant, 5 and 50 mL g−1, and 100 
and 160 days, respectively. Positive unidirectional domi-
nance (0 < (d/a)i ≤ 1.2) was assumed for grain yield. Bi-
directional dominance (-1.2 ≤ (d/a)i ≤ 1.2) was assumed 
for expansion volume. Absence of dominance ((d/a)i = 
0) was assumed for days to maturity. Other SNP den-
sities, one marker every cM and one marker every 10 
cM on average, were obtained by random choices of 51 
and 6 SNPs per chromosome, respectively, also using the 
REALbreeding software. Broad sense  heritabilities were 
0.3 and 0.7. Thus, accuracies of phenotypic values were 
0.548 and 0.837, respectively. The sample size was 500 
or 200 individuals genotyped and phenotyped. The ef-
fective population sizes were 1000 and 400.

Other four populations were simulated. To assess 
influence of the LD level on breeding value prediction 
accuracy, we recombined population 1 (generation 0) for 
five generations of random mating, assuming absence 
of selection and mutation, and keeping the sample size 
500 (population 1, generation 5). Regarding SNPs, aver-
ages of absolute LD values (difference between gametic 
frequencies observed and expected under linkage equi-
librium) in LD blocks in population 1, generation 0, were 
0.0978, 0.1073, and 0.1413 for densities 10, 1, and 0.1 cM, 
respectively. Values for population 1, generation 5, were 
0.0581, 0.0565, and 0.0901, respectively. LD blocks were 
defined based on an LOD (logarithm [base 10] of odds) 
score 3 (to declare LD for two linked SNPs), also using the 
REALbreeding software. The corresponding r2 (square of 
the correlation coefficient between alleles of two loci) val-
ues were 0.1785, 0.2089, and 0.4079 for generation 0 and 
0.0843, 0.0829, and 0.2420 for generation 5. We also sim-
ulated a population with lower average LD and similar 
additive variance (population 2), relative to the population 
1, generation 0. The average of absolute LD values in LD 
blocks in population 2, generation 0, were 0.0475, 0.0560, 
and 0.0557 for densities 10, 1, and 0.1 cM, respectively. 
Values relative to generation 5 were 0.0432, 0.0316, and 
0.0311, respectively. The corresponding r2 values were 
0.0543, 0.0714, and 0.0703 for generation 0, and 0.0469, 
0.0314, and 0.0309 for generation 5.

To assess influence of genetic variability on breed-
ing value prediction accuracy, we simulated a popula-
tion with similar average LD and greater additive vari-
ance (population 3), relative to population 1, generation 
0. Additive variance in population 3 was 49 % higher 
than in population 1, generation 0. The fourth simulated 

population (population 4) was obtained assuming genet-
ic control by four QTLs of higher effect and 96 QTLs 
of lower effect. QTLs of higher effect explained 23 % 
of phenotypic variance under low heritability. All data 
used in this study are accessible on request.

Linkage disequilibrium in composites
Composites of N populations and synthetics of I 

inbred lines (N, I ≥ 2) obtained by random mating or 
from a diallel followed by a generation of random mat-
ing (generation 0) are populations in Hardy-Weinberg 
equilibrium that show LD. One striking difference be-
tween these populations with LD is that in a compos-
ite, there is no LD between independent QTLs and/or 
molecular markers, which occurs in a synthetic. In a 
composite, LD values are a function of frequency of re-
combinant gametes (θ). Thus, with linkage, LD depends 
on the physical distance between the two DNA frag-
ments. In the case of a composite of two populations in 
linkage equilibrium, 

∆ = −





−( ) −( )−
ab

ab
a a b bp p p p( )1 1 2 1 21 2

4
θ

, 

where indices 1 and 2 refer to frequencies (p) in parental 
populations. Therefore, LD also depends on allelic fre-
quencies. If parental populations have the same allelic 
frequencies, ∆ −

ab
( )1 =0  regardless of the distance between 

the DNA fragments. When gene or marker frequency 
differences are maximized (1 or -1), as in a F2 generation 
derived from crossing two inbred lines (synthetic of two 
inbred lines), | ∆ −

ab
( )1 | = 0.25 assuming  qab = 0, which is 

the maximum LD. The value is positive in case of cou-
pling and negative in case of repulsion.

Statistical analysis of the simulated data
The methods used for genomic selection were 

RR-BLUP (ridge regression best linear unbiased predic-
tion) and Bayesian LASSO (BL) (Park and Casella, 2008). 
For the analyses, we used packages rrBLUP (Endelman, 
2011) and BLR (Bayesian linear regression) (Pérez et al., 
2010). BL was implemented using 28,000 MCMC iter-
ations, a burn-in period of 8,000 and thinning of two 
iterations. Accuracy of breeding value prediction was 
obtained by the correlation between the true breeding 
values computed by REALbreeding software and the 
breeding values predicted by RR-BLUP or BL, assuming 
additive and additive-dominance models.

Results

Theoretical results
The average effect of a SNP substitution is pro-

portional to the LD value and to the average effect of 
a gene substitution for each QTL that is in LD with the 
marker. SNP dominance deviation is proportional to the 
square of the LD value and to the dominance value for 
each QTL that is in LD with the marker. In most whole-
genome analyses, breeding value prediction was made 



248

Viana et al. Theory and efficiency of genomic selection

Sci. Agric. v.73, n.3, p.243-251, May/June 2016

weighting the SNP average effect of substitution by the 
SNP allele frequencies. In the other analyses, breeders 
have used the number of copies of a SNP allele as a 
weight. Weighted (by the SNP frequency) and unweight-
ed breeding value predictors have the same accuracy. 
In a whole-genome analysis, SNP linear and quadratic 
effects are the average effect of an allele substitution and 
the negative of dominance deviation at the marker locus, 
respectively. The corresponding sums of squares are the 
SNP additive and dominance variances.

Simulation results
Accuracies of breeding value prediction by the RR-

BLUP and BL methods were comparable, regardless of 
the degree of dominance, heritability, sample size and 
generation (Table 1). Except for density of one SNP every 

10 cM in generation 5, accuracies of the breeding value 
prediction based on SNPs surpassed the prediction ac-
curacy of phenotypic values, in the case of heritability of 
0.3 (Table 1). With heritability of 0.7 and assuming dom-
inance, accuracies of breeding value prediction based on 
markers were lower than accuracy of phenotypic values. 
However, except for lower density of SNPs, differences 
were always smaller than 20 %.

For a given heritability, regardless of generation, 
sample size and density of SNPs, there was no differ-
ence in the breeding value prediction accuracy based on 
SNPs for expansion volume (bidirectional dominance), 
grain yield (positive dominance) and days to maturity 
(no dominance) (Table 1). Accuracy was raised with the 
increase of heritability from 0.3 to 0.7, regardless of the 
other factors. The average increase in accuracy was 15 

Table 1 − Prediction accuracy of breeding value and its standard deviation, for expansion volume, grain yield and days to maturity in populations 
1 to 4, regarding two accuracies of the phenotypic value, three SNP densities, two sample sizes and two generations, based on the BLUP 
and Bayesian methods

Pop. Method Gen. Sample SNP dens. 
(cM)

Accuracy of the phenotypic value
0.548 0.837

Expansion volume Grain yield Days to maturity Expansion volume Grain yield Days to maturity
1 RR-BLUP 0 200 10 0.576 ± 0.06 0.567 ± 0.06 0.596 ± 0.06 0.690 ± 0.04 0.668 ± 0.04 0.705 ± 0.03

1 0.663 ± 0.05 0.659 ± 0.06 0.696 ± 0.05 0.795 ± 0.03 0.778 ± 0.03 0.834 ± 0.02
0.1 0.678 ± 0.05 0.672 ± 0.06 0.709 ± 0.05 0.818 ± 0.02 0.794 ± 0.03 0.863 ± 0.02

500 10 0.606 ± 0.03 0.596 ± 0.04 0.617 ± 0.03 0.667 ± 0.02 0.663 ± 0.03 0.679 ± 0.02
1 0.696 ± 0.03 0.698 ± 0.04 0.723 ± 0.02 0.776 ± 0.02 0.778 ± 0.02 0.807 ± 0.02

0.1 0.716 ± 0.03 0.715 ± 0.04 0.745 ± 0.02 0.818 ± 0.02 0.813 ± 0.02 0.857 ± 0.01
0.1a 0.714 ± 0.03 0.699 ± 0.04 - 0.818 ± 0.02 0.793 ± 0.02 -

5 200 10 0.424 ± 0.09 0.428 ± 0.09 0.470 ± 0.07 0.569 ± 0.06 0.597 ± 0.07 0.617 ± 0.05
1 0.564 ± 0.08 0.567 ± 0.08 0.626 ± 0.06 0.749 ± 0.04 0.757 ± 0.05 0.823 ± 0.04

0.1 0.578 ± 0.07 0.583 ± 0.08 0.647 ± 0.06 0.770 ± 0.04 0.779 ± 0.04 0.853 ± 0.03
500 10 0.444 ± 0.04 0.488 ± 0.06 0.482 ± 0.05 0.542 ± 0.04 0.593 ± 0.04 0.575 ± 0.03

1 0.613 ± 0.03 0.636 ± 0.04 0.663 ± 0.04 0.752 ± 0.03 0.773 ± 0.02 0.811 ± 0.02
0.1 0.640 ± 0.03 0.668 ± 0.04 0.697 ± 0.04 0.802 ± 0.02 0.814 ± 0.02 0.867 ± 0.02

0.1a 0.640 ± 0.03 0.667 ± 0.04 - 0.801 ± 0.02 0.812 ± 0.02 -
BL 0 200 0.1 0.713 ± 0.03 0.713 ± 0.04 0.744 ± 0.03 0.820 ± 0.02 0.810 ± 0.02 0.857 ± 0.02

500 0.1 0.715 ± 0.03 0.711 ± 0.04 0.742 ± 0.03 0.819 ± 0.02 0.811 ± 0.02 0.859 ± 0.01
0.1a 0.699 ± 0.04 0.688 ± 0.04 - 0.823 ± 0.02 0.791 ± 0.02 -

5 200 0.1 0.640 ± 0.03 0.666 ± 0.04 0.697 ± 0.04 0.801 ± 0.02 0.813 ± 0.02 0.866 ± 0.02
500 0.1 0.639 ± 0.03 0.665 ± 0.04 0.697 ± 0.04 0.801 ± 0.02 0.813 ± 0.02 0.867 ± 0.03

0.1a 0.640 ± 0.03 0.666 ± 0.04 - 0.802 ± 0.02 0.806 ± 0.02 -
2 RR-BLUP 0 500 10 -b - 0.509 ± 0.04 - - -

1 - - 0.670 ± 0.03 - - -
0.1 - - 0.702 ± 0.03 - - -

RR-BLUP 5 10 - - 0.403 ± 0.05 - - -
1 - - 0.636 ± 0.04 - - -

0.1 - - 0.689 ± 0.03 - - -
3 RR-BLUP 0 500 0.1 - - 0.816 ± 0.02 - - 0.899 ± 0.01

5 0.1 - - 0.740 ± 0.02 - - 0.877 ± 0.01
4 RR-BLUP 0 500 0.1 0.730 ± 0.04 - - 0.828 ± 0.03 - -

5 0.1 0.662 ± 0.05 - - 0.813 ± 0.06 - -
BL 0 500 0.1 0.729 ± 0.04 - - 0.834 ± 0.02 - -

5 0.1 0.659 ± 0.05 - - 0.826 ± 0.02 - -
aAdditive-dominance model; bnon-simulated; SNP = single nucleotide polymorphisms; RR-BLUP = ridge regression best linear unbiased prediction; BL = Bayesian 
LASSO.
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and 26 % for generations 0 and 5, respectively, com-
pared to an increase of 53 % in accuracy of the pheno-
typic value. The decrease in LD due to five generations 
of random mating caused, as theoretically expected, a 
decrease in accuracy that was inversely proportional to 
SNP density, heritability and sample size. Regardless of 
the trait, with heritability of 0.3, the average decreases 
in accuracy were 23 and 9 % for lower and higher densi-
ties, respectively. The corresponding values were 14 and 
1 % with high heritability.

Accuracy decreased by less than 10 % with the 
decrease in the number of genotyped and phenotyped 
individuals (Table 1). Regardless of trait, heritability, 
generation, and sample size, the results showed that the 
approach to maximum accuracy is asymptotic. Increas-
ing density from one SNP every 10 cM to one SNP every 
cM caused an increase in accuracy between 15 and 19 % 
for generation 0, and between 27 and 41 % for genera-
tion 5. However, the increase from one SNP every cM to 
one SNP every 0.1 cM led to an increase between 2 and 
7 %, regardless of the generation.

The additive and additive-dominance models pro-
vided the same breeding value prediction accuracy, re-
gardless of trait, heritability, and generation (Table 1). 
Under the same experimental condition, accuracies in 
similar populations regarding LD and genetic variability 
tend to be equivalent, regardless of trait, generation, and 
density of SNPs (data not shown). However, accuracies 
in populations with contrasting genetic variability (1 and 
3) or LD (1 and 2) tend to be different under a low den-
sity of SNPs (Table 1). Because additive variance is 49 % 
higher in population 3 (generation 0), compared to popu-
lation 1, accuracy is greater, although the increase was 
only 10 % due to high density of SNPs. Because LD is 
lower in population 2 compared to population 1, breed-
ing value prediction accuracies in generations 0 and 5 
are 17 % and 16 % lower in lower density of SNPs, re-
spectively. In higher SNP densities, the maximum differ-
ence was 7 % in generation 0. Finally, we found that the 
RR-BLUP and BL methods are also comparable when 
there are few QTLs of higher effect (Table 1).

Discussion

Even taking into account that populations under-
going recurrent selection cannot have the average LD 
and magnitude of genetic variability of the composites 
used in this study, when heritability is 0.3, genomic se-
lection tends to be up to 25 % more efficient than pheno-
typic selection depending on LD and additive variance, 
assuming at least 500 individuals genotyped and density 
of one SNP every cM. The relative efficiency should be 
greater with heritability lower than 0.3. When heritabil-
ity is 0.7 and assuming the same conditions, the genomic 
selection may be up to 10 % less efficient than phenotyp-
ic selection, also depending on LD and additive variance. 
Inferiority should be greater for heritability greater than 
0.7. Therefore, efficiency of genomic selection in relation 

to phenotypic selection is inversely proportional to heri-
tability. For Muir (2007), genomic selection works very 
well for traits with low heritability, whereas for a highly 
heritable trait, accuracy of the breeding value prediction 
cannot exceed accuracy of phenotypic values. Moser et 
al. (2009) showed that accuracies of dairy bull breeding 
values predicted from 7,372 SNPs were approximately 
1.3 times larger than accuracy of phenotypic selection 
based on progeny testing. Simulated and empirical stud-
ies have systematically shown higher prediction accura-
cy of genomic selection relative to phenotypic selection 
(Campos et al., 2013).

Because accuracy of genomic selection is affected 
by genetic variability in the population, efficiency of 
genomic selection, as phenotypic selection, is also pro-
portional to additive variance in the population. Assum-
ing an infinitesimal model with equal or unequal QTL 
variance, Bastiaansen et al. (2012) observed a greater de-
crease in accuracy of breeding value prediction in gen-
erations 1 to 10 under selection, based on marker effects 
predicted in the reference population (generation 0). 
This was true regardless of the method for prediction of 
marker effects. For the authors, the decrease in accuracy 
was largely due to reduction in genetic variance. Any 
change in LD patterns may have played a minor role. 
Regarding the influence of LD on accuracy of breeding 
value prediction, with low heritability, even after five 
generations of random mating without selection, muta-
tion, and migration (with LD decreases of 47 and 36 % 
in cases of one SNP every 1 and 0.1 cM, respectively), 
accuracy of genomic selection is equivalent to that of 
phenotypic selection, regardless of trait and sample size, 
especially with a density of at least one SNP every cM. 
Solberg et al. (2009) showed that a density of eight mark-
ers every cM seems sufficient for the estimated marker 
effects to persist over five generations with minimum 
bias and only a small reduction in genomic selection ac-
curacy.

Since we used the same set of markers and QTLs, 
changing only the dominance degree (same allelic fre-
quencies and LD values), the analyses provided the 
same accuracy of breeding value prediction irrespec-
tive of the dominance degree for the same heritability. 
Based on the analysis of a simulated population and four 
empirical data sets from maize, barley and wheat popu-
lations, Combs and Bernardo (2013) observed distinct 
breeding value prediction accuracies for different traits, 
even when population size, heritability and number of 
markers were keep constant. Yield traits exhibited lower 
prediction accuracy. Regardless of trait, prediction ac-
curacy is proportional to heritability, but the increase of 
prediction accuracy with heritability is not linear, as ob-
served by Grattapaglia and Resende (2011) and Combs 
and Bernardo (2013). Regarding the sample size, genom-
ic selection based on 200 individuals genotyped for 5000 
SNPs provides the same accuracy of genomic selection 
based on 500 individuals and, under low heritability, ge-
nomic selection tends to be at least as efficient as phe-
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notypic selection. Combs and Bernardo (2013) observed 
that greater sample size increased prediction accuracy, 
however, increases were lower than 20 %. Based on a 
deterministic approach, Grattapaglia and Resende (2011) 
concluded that sample size has a relatively minor impact 
on genomic selection accuracy. Using 1000 individuals 
for genotyping and phenotyping, the expected accuracy 
would range from 0.7 to 0.9 at high marker densities (20 
markers every cM).

The approach to maximum genomic selection ac-
curacy is asymptotic in relation to marker density as 
observed by Meuwissen et al. (2001), Grattapaglia and 
Resende (2011) and Combs and Bernardo (2013). Con-
sidering that 100 QTLs were controlling the traits, effi-
ciency of genomic selection compared to phenotypic se-
lection with low density of SNPs (one SNP every 10 cM, 
on average) is rather surprising. This outstanding result 
is due solely to the fact that the population had high LD 
and should not be understood to imply an appropriate 
density for every population. Because LD declines fast 
along the genome, there is no doubt that genomic selec-
tion should be made based on high SNP density. High 
SNP density is available for humans and some impor-
tant animal and plant species such as cattle and maize 
and will soon be available for all species because with 
modern high-throughput genotyping and sequencing 
technologies, breeders can easily reach a high number 
of SNPs (for example, using genotyping by sequencing 
(Elshire et al., 2011)). Because increases in prediction ac-
curacy based on density of one SNP every 0.1 cM rela-
tive to accuracy of prediction with density of one SNP 
every cM were less than 10 % in populations with high 
LD, genomic selection can be efficiently applied assum-
ing density of one SNP every cM in populations with 
high LD.

In non-inbred open-pollinated populations, predic-
tions of breeding values based on additive and additive-
dominance models are equivalent, especially in the RR-
BLUP method. Regarding dominance effects, Toro and 
Varona (2010) showed an increase in the expected re-
sponse to selection and in accuracy of breeding value 
prediction. Accuracy increases ranged from 2 to 12 % 
and were proportional to the degree of dominance and 
heritability. Wellmann and Bennewitz (2012) observed 
an increase of only 2 % in accuracy of breeding value 
prediction. Furthermore, dominance slowed down the 
decrease of accuracies in subsequent generations.

Based on our results, the RR-BLUP and BL meth-
ods can be considered equivalent even if the model is not 
infinitesimal, that is, when there are QTLs of higher ef-
fect, although the BL method is more suitable for smaller 
sample sizes. Campos et al. (2009) concluded that BL is 
adequate for performing regressions on markers, at least 
under an additive model. In the study of Crossa et al. 
(2010), RR-BLUP predictions of wheat lines and maize 
inbreds were outperformed by BL predictions. Bayesian 
LASSO with different variances showed the highest ac-
curacies and the lowest biases for the predicted breeding 

values in the study of Legarra et al. (2011). Heslot et al. 
(2012) recommended the RR-BLUP and BL methods for 
genomic selection in plant breeding. Both methods pro-
vided the same accuracy of predicting breeding values 
regardless of species, population structure, and marker 
type.

Based on the huge amount of theoretical and em-
pirical evidence that genomic selection is an efficient 
selection process irrespective of trait heritability (Dae-
twyler et al., 2013) and that genomic selection has ap-
plication in all breeding procedures, such as prediction 
of hybrid performance (Massman et al., 2013), and con-
sidering that modern high-throughput genotyping and 
sequencing technologies will be available to an ever de-
creasing cost (Campos et al., 2013), genomic selection is 
expected to be applied by plant breeders in almost every 
practical scenario.

Finally, we highlight our main theoretical and 
applied results on genomic selection. After 15 years 
since the advent of genomic selection, our theory is 
the most comprehensive approach on genetic funda-
ments of this quantitative genetics methodology. This 
study shows parametric values of the average effect of 
SNP substitution, SNP dominance deviation and SNP 
additive and dominance variances, for any number of 
QTLs in LD with each SNP. We proved that weighted 
and unweighted (by SNP frequencies) estimators of the 
breeding value have the same accuracy. In a further 
study, we will present a theoretical approach for addi-
tive-dominance with epistasis model, focusing on dom-
inance, epistatic and genotypic values prediction. Our 
results applied to cross-pollinated species breeding evi-
denced that RR-BLUP and BL are equivalent for breed-
ing value prediction, genomic selection tends to be up 
to 10 % less efficient than phenotypic selection, under 
high heritability, and up to 25 % more efficient under 
low heritability and that breeding value prediction ac-
curacy is not influenced by the dominance degree and 
is proportional to heritability, SNP density and sample 
size, and inversely proportional to the LD degree. Since 
these results have been observed in the context of for-
estry and animal breeding, we emphasize that genomic 
selection can be efficiently applied in a recurrent selec-
tion program by phenotyping and genotyping the same 
individuals, using as few as 200 parents and density of 
one SNP by cM.
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