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ABSTRACT: In eucalyptus plantations, the presence of understory increases the risk of fires, 
acts as an obstacle to forest operations, and leads to yield losses due to competition. The 
objective of this study was to develop an approach to discriminate the presence or absence 
of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal 
canopy height profile was modeled by two Weibull density functions: one to model the canopy, 
and other to model the understory. The parameters used as predictor in the logistic model 
successfully discriminated the presence or absence of understory. The logistic model composed 
by gcanopy, gunderstory, and gunderstory showed higher values of accuracy (0.96) and kappa (0.92), which 
means an adequate classification of presence of understory and absence of understory. Weibull 
parameters could be used as input in the logistic regression to effectively identify the presence 
and absence of understory in eucalyptus plantation.
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Introduction

Forest plantations provide edaphic and micro-
climatic conditions that benefit the development of 
weeds in the understory (Vasic et al., 2012). Competition 
for site resources (water, light, and nutrients) resulting 
from the presence of understory in early stages of the 
forest, causes forest productivity loss (Carrero et al., 
2018; Rubilar et al., 2018). In late stages, the understory 
presence results in problems for silviculture treatments, 
monitoring activities (i.e. inventory), harvesting 
operations, and risks of fires (Souza et al., 2007). 

Understory control is usually applied during the 
early stages of the forest to improve the establishment 
of trees, ensuring full access to growth factors (Kogan 
et al., 2002; Liechty and Fristoe, 2013; Vargas et al., 
2018; Zhou et al., 2018). The most common practices 
to control understory development in forest plantations 
are hoeing and herbicides application (Silva et al., 2012; 
Toledo et al., 2000).

Assessment of understory intensity in forest 
plantations is commonly based on visual and empirical 
monitoring. Recent studies have investigated the 
capability of remote sensing (RS) for monitoring (Hamraz 
et al., 2017a, b; Martinuzzi et al., 2009; Sumnall et al., 
2016) and classification of understory (Hung et al., 2014). 
Several approaches have been used to estimate forest 
physical characteristics (i.e. volume, biomass, stand 
density) from LiDAR point cloud, such as the regression 
model (Sumnall et al., 2016), probability density function 
modeling (Coops et al., 2007), and machine learning 
(Singh et al., 2015). Discrete-return light detection and 
ranging (LiDAR) is capable to characterize vertical forest 
structure, including understory layers (Hamraz et al., 
2017a, b; Sumnall et al., 2016). The canopy height profile 
(CHP) describes the vertical structure by the return 

frequency distribution within the canopy profile, from 
the ground to the maximum height. This study aims to 
develop a machine learning based on logistic regression 
to classify the occurrence or absence of understory based 
on the CHP extracted from airborne laser scanning data.

Materials and Methods

Four forest plantation sites in the Rio Doce basin, 
Minas Gerais State, Brazil (Figure 1) were considered 
in this study. The sites belong to a private company 
that produces cellulose from eucalyptus fiber, and 
comprise legal reserves, areas of permanent protection, 
and eucalyptus plantation. Legal reserves and areas of 
permanent protection are regions of native vegetation 
protected by law (Machado and Anderson, 2016). This 
study focuses on plantation areas.

The municipalities of Marliéria, Dionísio, and 
Açucena have a tropical climate with dry winters 
(Köppen - Aw). The municipality of Antônio Dias has 
a humid subtropical climate with dry winters and 
temperate summers (Cwb). The climate of Nova Era and 
Bela Vista of Minas is characterized by hot summers 
and dry winters (Cwa). All sites have annual rainfall 
ranging from 1361 mm to 1520 mm and mean annual 
temperatures ranging from 19.8 ºC to 21.8 ºC (Alvares 
et al., 2013).

Area I comprised 96 ha of 23-year-old eucalyptus 
stands. Area II consisted of 21-year-old eucalyptus stands, 
covering 47 ha. Area III was composed by 17-year-old 
eucalyptus stands planted in 222 ha. Finally, Area IV 
comprised 242 ha of 5-year-old eucalyptus stands. The 
highest values for tree height and diameter at breast 
height (DBH) were found in the older stands (areas I and 
II). The younger stands are in Area IV, resulting in lower 
heights and DBH values (Table 1).
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In the GIS environment, we sampled randomly 50 
circular plots of 16.93 m radius (900 m²) in each site, 
resulting in 200 plots. None of the plots overlapped. 
The sites were visited and the presence or absence 
of understory was visually determined by walking 
through the stands, following the company standards. 
During regular company operations (e.g. ant control, 
fertilization, or forest inventory), workers visually 
identify understory presence and report it to the 
responsible sector. The company assigns a specialized 

group to the area in order to assess understory intensity 
and species community. Due to limitations of LiDAR 
technology further discussed, this study did not aim to 
evaluate the species community of the understory.

The airborne laser scanning (ALS) campaign was 
conducted in 2014, in the same period of field inspection. 
The ALS clouds presented an average return density of 
13.51 pts m–2, 9.26 pts m–2, 9.23 pts m–2, 7.87 pts m–2, for 
Areas I, II, III, IV, respectively.

We applied an outlier filter in the original ALS 
clouds to remove the returns outside the range of four 
standard-deviation (McGaughey, 2015). The ground 
returns were classified by Kraus and Pfeifer (1998; 
2001) algorithm considering an 8-meter window size 
(Andrade et al., 2018) and parameters recommended 
by McGaughey (2015). Digital terrain models (DTM) 
with 1-meter resolution was created by averaging the 
ground points within each pixel. The ALS clouds were 
normalized by subtracting each return elevation by the 
corresponding DTM pixel (Popescu and Wynne, 2004).

From the normalized clouds, we clipped the same 
200 plots inspected in the field and computed the return 
distribution along with the canopy height (CHP). To 

Table 1 – Descriptive summary of the eucalyptus plantation sites, 
located in the Doce River Basin, Minas Gerais State. DBH = 
diameter at breast height.

Area I Area II Area III Area IV
Elevation (m above sea level) 531-803 534-723 530-784 911-1212
Maximum tree height (m) 47.82 47.65 37.24 23.94
Minimum tree height (m) 26.53 24.84 20.97 18.12
Average tree height (m) 37.44 34.95 29.56 22.55
Maximum DBH (cm) 45.77 37.90 34.44 18.66
Minimum DBH (cm) 13.75 11.10 11.32 10.23
Average DBH (cm) 26.81 22.89 21.42 15.94
Number of trees per hectare 535 942 825 1037

Figure 1 – Municipalities where the four sites are located. Panels show land use for each study area.
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reduce the influence of the growth stage (young stands 
with smaller trees and old stands with taller trees) in 
the logistic modeling, we rescaled the CHP to the range 
between zero (ground) and one (maximum height). 
By processing the data, we visually detected that the 
normalized CHP showed a common division in the 
half of the normalized height, producing consistently 
bimodal profiles (Figure 2). Due to this behavior, we 
established the value 0.5 as a breaking point to split 
the CHP into two parts: canopy and understory. One 
Weibull model fitted the canopy (returns above 0.5) and 
other the understory (return below 0.5) (Figure 2).

The Weibull function of two parameters (Equation 
1) is commonly used to model the CHP due to its 
flexibility in the representation of different distribution 
shapes (Coops et al., 2007; Silva et al., 2015).
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where: the Weibull probability density function is a 
function of the lidar-plots heights (x), shape (g) and scale 
(b) parameters.

The Weibull coefficients (gcanopy, bcanopy, gunderstory, and 
bunderstory) was used as predictor variables in the logistic 
modeling, and the understory classified in the field 
(presence or absence) as the predicted variable (Equation 
2). To validate the model, we used the stratified ten-fold 
cross-validation method (Singh et al., 2015).
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where: logit(P) is the odds ratio, P is the probability of 
understory occurrence, gcanopy, bcanopy, gunderstory, and bunderstory 

obtained from the Weibull distribution modeling are the 
predictor variables, and a’s are the logistic regression 
parameters.

Logistic regression is a machine-learning algorithm 
that estimates the probability of an event occurring 
(Dangeti, 2017). The logistic regression is based on 
classical statistics assumptions (Singh et al., 2015) and 
returns a statistical report that makes interpretation 
easier (Cutler et al., 2007). The logistic regression 
parameters were statistically analyzed using a z-test to 
confirm their ability to classify the occurrence of the 
understory in the eucalyptus stands. The non-significant 
predictors were removed and the logistic regression 
parameters were estimated again. The significance of 
the logistic regression parameters indicates the capacity 
of predictors to distinguish the presence or absence 
of understory (Smart et al., 2012). The modeling was 
evaluated through Akaike Information Criterion (AIC), 
analysis of variance, accuracy, and the kappa agreement 
index.

We used FUSION (version 3.60; McGaughey, 
2015) and R (version 3.4.3) to process the data. The code 
is available at https://github.com/Gorgens/precisionFor/
tree/master/chp.

Results

The CHM from plots with dense understory 
showed a bell-shaped curve for both canopy and 
understory. For plots with no understory, the canopy 
revealed a bell-shaped curve, whereas the understory 
showed a negative exponential curve (Figure 3).

The logistic coefficient associated with the βcanopy 
variable in model 1 (Table 2) was not significant (p > 
0.05). After removing the non-significant variable, the 
logistic model 2 (Table 2) was significant (p < 0.01) to 
discriminate the presence or absence of understory. 
Each variable was significantly important (p < 0.001) to 
reduce deviance compared to the model with only the 
intercept. Additionally, the lower AIC of model 2 (79.22) 
reinforces its better fit in comparison to model 1 (80.06). 

The coefficients of model 2 showed that the 
probability of understory occurrence decreased as 

Figure 2 – Processing steps to model the canopy height profile. From left to right: three-dimensional plot; two-dimension plot; canopy height 
profile; two Weibull probability density functions fitted: one for the canopy and another for the understory.
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βunderstory and gcanopy increased. Differently, increasing 
gunderstory contributed to increase the probability of 
understory presence (Table 2).

Model 2 showed higher values of accuracy (0.96) 
and kappa (0.92), which means an improvement in the 
discrimination power (Table 2). Model 2 can be used 
to adequately classify as presence (specificity = 0.95) 
and absence (sensitivity = 0.95) of understory. The 
confusion matrix showed 95 plots correctly classified 
with understory presence, and 97 were correctly 
classified with understory absence. Five plots resulted 
in false positives and three in true positives, based on 
model 2.

Discussion

The return density of lidar point clouds (ranging 
from 7.8 to 13.5 pts m–2) captured the bimodal distribution 
that usually characterizes a forest CHP (Mund et al., 
2015). The CHP differentiated the presence and absence 
of understory mainly by the shape of the lower part of 
CHP (scaled height < 0.5 in Figure 2). 

A multi-layered forest blocks the laser energy 
pathway to the ground. In eucalyptus plantations 
with no understory, a multimodal distribution can be 
observed (Coops et al., 2007; Görgens et al., 2016). One 
mode is associated to the canopy (a bell-shaped curve) 

and another to the ground (negative exponential curve) 
(Görgens et al., 2016). When understory is present in 
forest plantations, the lower mode generally moves up, 
changing the shape of the distribution curve into a bell-
shaped curve (Figure 2).

Despite the importance of understory in the 
ecosystem ecology and biomass storage (Hamraz et al., 
2017b), the CHP is an important descriptor to predict 
fire behavior (Andersen et al., 2005), determine leaf 
area index (Lefsky et al., 1999; Jensen et al., 2008), 
characterize forest types (Lovell et al., 2003; Maltamo 
et al., 2004; Coops et al., 2007; Dean et al., 2009), and 
monitor forest plantations competition.

The Weibull parameters successfully identified 
the presence or absence of understory, showing 96 % 
of accuracy. Weibull models have been an important 
descriptor for the forest structure, reducing the CHP 
into values that could be quickly interpreted (Coops et 
al., 2007; Jaskierniak et al., 2011).

The b coefficient is related to the 63rd distribution 
percentile (Bailey and Dell, 1973). The bunderstory 
coefficients presented higher values in presence 
of understory, which means that laser beams were 
intercepted by obstacles above ground. The gunderstory 
coefficients revealed lower values (close to one) in the 
absence of understory, indicating that the distribution 
curve approaches an exponential format (Bailey and 
Dell, 1973).

Wing et al. (2012) found an accuracy of 22 % 
using ALS-derived metric and a logistic regression 
model to predict understory in pine forest. In another 
study, random forest algorithm based on ALS-derived 
metrics predicted the presence or absence of understory, 
reaching an accuracy of 83 % in a coniferous forest 
(Martinuzzi et al., 2009). Singh et al. (2015) found a kappa 
of 0.648 using a random forest to detect plant invasion 
in the understory of urban forests. Our accuracy and 
kappa were superior to previous studies. We attribute 
part of the improvement to modeling the CHP into two 
parts: canopy and understory, and to the use of Weibull 
parameters as regressors.

Table 2 – Logistic model with the estimated coefficients, where 
logit (P) means the odds ratio, P is the probability of understory 
occurrence, gcanopy, bcanopy, gunderstory, and bunderstory are the explanatory 
variables obtained from the Weibull distribution modeling, AIC is 
the Akaike information criterion, A is the model accuracy, and K is 
the kappa index.

Model Logistic regression coefficients AIC A K

1
logit (P) = 7.54 – 21.74βunderstory

+ 14.52gunderstory  –  12.87βcanopy
– 1.12gcanopy

80.06 0.945 0.90

2 logit (P) = –1.51 – 22.39βunderstory
+ 14.44gunderstory  – 1.27gcanopy

79.22 0.96 0.92

Figure 3 – Two examples of vertical profiles. a) plot with dense understory and b) plot with no understory. Each panel presents 2D representation, 
canopy height profile, and Weibull probability density function for canopy and understory.



5

Melo et al. Understory in eucalyptus plantation

Sci. Agric. v.78, n.1, e20190134, 2021

Currently, it is common in classification studies 
to apply modern machine learning as random forest 
and support vector machine. However, as suggested 
by Singh et al. (2015), the logistic regression is based 
on classical statistical assumptions and has very 
direct interpretation. The high values obtained for the 
accuracy and kappa index reinforce suitability of the 
logistic regression. The kappa index confirmed a good 
agreement between the logistic regression classification 
and the field truth (Silván-Cárdenas and Wang, 2006).

Identification of the understory species is 
important to define the proper control approach (Silva 
et al., 2012). However, monochromatic remote sensing, 
such as airborne laser scanning, is not ideal for species 
differentiation. Hyperspectral images have been 
studied to fill this gap when surveyed together with 
ALS (Broadbent et al., 2014; Dalponte et al., 2019).

Correct mapping of the understory is essential 
to avoid competition for growth factors by planning 
silviculture actions. The logistic regression using 
the Weibull parameters as input performed well and 
the final model seems appropriated to discriminate 
presence or absence of understory in eucalyptus 
plantation. We recommend further investigation to 
explore the influence of different silvicultural regimes 
(e.g. higher density of trees) and discriminate species 
using complementary remote sensing techniques (e.g. 
hyperspectral).
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