
DOI: http://dx.doi.org/10.1590/1678-992X-2019-0081

Sci. Agric. v.78, n.2, e20190081, 2021

ISSN 1678-992X

ABSTRACT: Multicollinearity is a very common problem in studies that employ path analysis 
in agronomic crops, which generates unrealistic results and erroneous interpretations. This 
study was aimed at assessing the path analysis in data obtained from guava tree full-sib 
based on modelling multiple regressions applying latent variables to neutralize the effects of 
multicollinearity. Seven explanatory variables were measured – fruit mass (FM), fruit length (FL), 
fruit diameter (FD), mesocarp thickness (MT), peel thickness (PT), pulp mass (PM), total number 
of fruits (NTF) –, plus the main dependent variable, total yield per plant (YIELD). In accordance 
with the multicollinearity scenario, eleven values were tested with the addition of the constant 
K to the diagonal of the correlation matrix X’X. Path analysis was applied in two models: all the 
explanatory variables with direct effect on the dependent one and another model with multiple 
regression with more than one chain and the presence of latent variables. The path analysis in 
the multivariate methodology of structural equation modelling (SEM), which uses latent variable 
prediction, provided better results than the traditional and ridge path analyses.
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Introduction

One of the biggest challenges in the cultivation 
of fruit trees is the high level of investment required 
and the ability to model associations between traits. 
The correlation between traits can turn the selection 
of superior materials into a costly and time-consuming 
activity. It includes certain steps that, apart from 
requiring good planning, and financial and manpower 
resources, mainly require time to obtain the genotypes in 
the reproductive phase (Grattapaglia and Resende, 2011). 

One way is the indirect selection of variables using 
ridge path analysis. A number of research studies were 
conducted on fruit trees to identify the real relationships 
of cause and effect that apply to the ridge path analysis 
(Kherwar and Usha, 2016; Patel et al., 2015). Many effects 
close to zero can be observed in the results, which does not 
mean a lack of relationships between the variables. This is 
mainly due to multicollinearity which is the existence of 
a strong relationship between the explanatory variables, 
and makes an interpretation of the results difficult or 
non-variable (Farrar and Glauber, 1967; Hair et al., 1995). 
Multicollinearity can be easily detected by observing the 
eigenvalues of the matrix (X’X). The ratio between the 
absolute values of the highest and the lowest eigenvalues 
gives an idea of the collinearity, as well as the diagonal 
elements of the matrix (X’X)–1 (Montgomery et al., 2012).

In addition to these considerations, the 
implementation of combined techniques, in which the 
associations require multivariate statistical procedures of 
structural equation modelling (SEM) by means of clusters 
using multiple regressions (Mueller and Hancock, 2018), 
produces more reliable results for biological phenomena, 
by manipulating missing data (Enders and Mansolf, 2018) 

and estimating latent variables (not observed) (Hair et 
al., 2014). This equation modelling has been successfully 
applied in plants, mainly in ecology and evolutionary 
biology studies (Lefcheck, 2016; Pugesek et al., 2003). 

Using the latent variables approach allows us to 
leave the plastered model of the common path, and group 
variables with similar characteristics. This grouping, 
formulated using a variable created mathematically in 
the model (not observed, known as “latent”), depends 
on knowledge of the studied biological phenomenon in 
order for it to make sense. As such, the purpose of this 
study was to apply path analysis in data from guava full-
sibs by means of multiple regression modelling using 
latent variables aimed at neutralizing the effects of 
multicollinearity.

Material and Methods

Experimental procedures and genetic material
The data applied here were from experiments 

performed at Campos dos Goytacazes, in the state of 
Rio de Janeiro State, Brazil (21º08’02’’ S, 41º40’47’’ W,  
altitude of 18 m). Seventeen full-sib families of guava 
tree were assessed from  controlled crosses between 
parents.

The experiment was conducted using a randomized 
block design with two replicates and 24 individuals for 
each family. Cultural traits recommended for guava 
culture were respected (Quintal et al., 2017).

Data collection
Seven explanatory variables were measured for 

each individual – fruit mass (FM) and pulp mass (PM) 
with the help of a semi analytical balance expressed 
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in gr; fruit length (FL), fruit diameter (FD), mesocarp 
thickness (MT), peel thickness (PT) and pulp thickness 
(PT) and the aid of a pachymeter with the data expressed 
in mm; total number of fruits (NTF) were counted in the 
harvest period, counting all fruits harvested from each 
plant (identifying which fruits were viable or not), plus 
the main variable, total yield per plant (YIELD). This 
was carried out during the harvest period, when all the 
fruits harvested in each plant were weighed in semi-
analytical bullet and expressed in g. Five observations 
of all variables were made except for NTF and YIELD, 
for which just one observation per individual was made.

Statistical analyses
Pearson linear correlation coefficients (phenotypic 

correlations) were calculated for the eight variables and 
measured in the two following ways: (i) using only the 
number of paired observations in all variables whereby 
the yield and total number of fruits were measured once 
per plant per harvest while the other variables were 
measured five times in each plant, which generated 
numbers for different observations for the variables, 
which resulted in 408 observations limited by the 
variables YIELD and NTF), and (ii) applying all available 
observations specific to each variable (408 ≤ 1.569). 
Subsequently, a matrix X’X of n order was generated (in 
which: n = number of explanatory variables) with the 
correlation coefficients and another matrix X’Y  of n × 
1 dimension (correlation coefficients of the explanatory 
variables with the dependent variable, YIELD).

A multicollinearity diagnosis was made to obtain 
the diagonal of the matrix X’X–1. It was considered that 
severe multicollinearity had been reached when the 
values of the variance inflation factor (VIF) were greater 
than 10 (Hair et al., 1995). Where there was collinearity, a 
new diagnosis was made, testing 11 values in the addition 
of a constant K to the diagonal of the correlation matrix 
X’X (K = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 
0.09, and 0.1) to try to reduce the variance associated 
with the least squares estimator in the path analysis and 
stabilize the coefficients. These values were chosen by  
using a wide range of values, hoping that one of them 
could decrease multicollinearity.

Next, the path analyses were plotted for all 
situations (paired data, all observations, and admitting 
values for K), using the system of normal equations 
′ = ′X X X Yβ̂  to estimate the direct and indirect effects of 

the explanatory variables on the dependent variable. The 
following model was applied:

YIELD FM FL FD MT PT PM= + + + + + +

+

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ
β β β β β β

β
1 2 3 4 5 6

             77NTF e+

	 

	  (1)

in which: ˆ
...β1 7 were the estimators of the direct effects 

of the variables FM, FL, FD, MT, PT, PM, and NTF, 
respectively, on the dependent variable YIELD, acting 
indirectly through their effects on the other explanatory 
variables, and e the residual term of model. The equation 

determination coefficient ( ( ( ) / ))R Y Y ei
n

i i
2

1
21= − ∑ −=  and 
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n
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path analysis were calculated for all situations. Next, we 
proceeded to define a latent variable model, whereby 
a latent variable grouped trait that we believe to have 
similar characteristics, was coincident with the biological 
phenomenon. The analysis was conducted again by 
adjusting the model for the latent variables as follows:
 					   
YIELD NTF FM= +ˆ ˆβ β1 2 	  	  (2)
 					   
FM L L= +ˆ ˆβ β3 41 2 		   (3)
 							     
L PM MT1 5 6= +ˆ ˆβ β 	  			   (4)
 							     
L FL FD PT2 7 8 9= + +ˆ ˆ ˆβ β β 				    (5)

in which: β̂1   and β̂2  were the direct effects of the 
variables NTF and FM on the main dependent variable 
YIELD; β̂3 and β̂4 the direct effects of the latent variables 
L1 and L2 on FM; β̂5  and β̂6  the effects of the variables 
PM and MT on the latent variable L1; β̂7, β̂8, β̂9 and  
were the direct effects of the variables FL, FD, and PT 
on the latent variable L2.As regards the modeling latent 
variables, the same assumptions are required for path 
analysis, as well as the distribution of errors NID( , )0 2σ . 
The illustrative causal diagram of the models can be seen 
in Figure 1.

All analyses were carried out by means of the R 
software (R, version 3.5.0), using the following packages: 
biotools 3.1 (Silva et al., 2017), semPlot 1.1 (Epskamp, 
2015), and lavaan 0.6 (Rosseel, 2012).

Results and Discussion

Pearson linear correlation was estimated for 
the eight variables, applying only the paired data and 
all available observations for the variables (Table 
1). Afterwards, the correlation between those two 
matrices, using pairwise data and a different number 
of observations (r = 0.69**) was obtained and the 
Mantel test (0.27434++) was conducted. There was no 
statistical differentiation at 1 % level of probability 
for the correlation estimates either for the t test or the 
critical level of Mantel. Furthermore, the use of different 
observations resulted in a significant difference (30%), 
which does not produce a true biological differential 
effect, considering that the progenies are descended 
from the same ancestral population.

For most estimates, the magnitudes and senses of 
the correlations were maintained. Nevertheless, it was 
noted that, in these matrices, a number of correlations 
were altered, such as that between the variables FL and 
FD, in which it was possible to identify an increase 
in correlation (r = –0.0062 for 0.6581) when applying 
more observations. Other examples were found for the 
variables FM and FD (r = 0.0253; 0.9012); FM and PM 
(0.2371; 0.9534); FD and FL (–0.0062; 0.6581), in which 
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high positive correlations were expected, but they did 
not materialize when reduced quantum of observations 
were used.

The analysis continued with the multicollinearity 
report on the basis of the variance inflation factor (VIF) 
from the diagonal of the correlation matrix X’X–1 using 
the complete data, in which collinearity was considered 
for the variables that showed values higher than 10. In 
the results, collinearity problems in the variables can be 
seen, in which the variables FM and PM showed VIF 
higher than the limit (16.47 and 15.30, respectively). 
The multicollinearity was confirmed, and a constant was 
added to the diagonal of the matrix X’X to obtain the 
lowest possible value of that constant, which stabilizes 
the path coefficients.

Because of the effects of the constant value on the 
variables (Figure 2), with the increase in the constant K, 
the residue effect also increased. This effect is inversely 
proportional to the value of the regression equation 
determination coefficient (R2), as with the increase in the 
values given to K, the values of R2 decreased (Figure 2). 
The first value of R2 was 0.0, which takes into account 
the path analysis without the addition of the constant. 
The initial value for R2 in that scenario was 0.35, and 
the residue effect, of 0.802. The lowest value for the 
constant K that stabilized the variances (VIF < 10) was 
0.03, in which the variables that displayed problems 
of variance inflation increased to the values of 9.56 
and 9.11 for FM and PM, respectively, resolving the 
multicollinearity problem. However, the value of the 

Figure 1 – (A) – Causal diagram with the direct effects (unidirectional continuous lines) of the following explanatory variables Fruit Mass (FM), Fruit 
Length (FL), Fruit Diameter (FD), Mesocarp Thickness (MT), Peel Thickness (PT), Pulp Mass (PM), Number of Total Fruit (NTF) on the dependent 
variable Total Yield per Plant (YIELD) and indirect effects (bidirectional dashed lines) of the explanatory variables on the dependent variable for 
the adjustment of the ordinary path model. (B) – Causal diagram showing the direct (unidirectional arrows) and indirect effects (bidirectional 
arrows) among the observed variables (squares) of the model using the adjustment of models with latent variables expressed by circles: latent 
variable 1 (L1) and latent variable 2 (L2). This is the effect of the residue variable on the dependent variable YIELD.

Table 1 – Coefficients of Pearson linear correlation among eight variables of guava tree. In the upper diagonal, correlations obtained from all 
available observations for each variable. In the lower diagonal, correlations obtained from 408 pairs of observations. Fruit Mass (FM – 1.569 
observations), Fruit Length (FL – 1.569 observations), Fruit Diameter (FD – 1.569 observations), Mesocarp Thickness (MT – 1.569 observations), 
Pulp Thickness (PT – 1.569 observations), Pulp Mass (PM – 1.569 observations), Total Yield per Plant (YIELD – 408 observations), and Number 
of Total Fruits (NTF – 408 observations).

FM FL FD MT PT PM YIELD NTF
FM --- 0.7847 0.9012 0.5803 0.1362 0.9534 -0.2839 -0.1934
FL 0.7690 --- 0.6581 0.4119 0.1090 0.7704 -0.2362 -0.1697
FD 0.0253 -0.0062 --- 0.5938 0.0525 0.8878 -0.3471 -0.2142
MT 0.6184 0.4388 0.0187 --- 0.0833 0.6630 -0.2117 -0.1076
PT 0.1430 0.1336 -0.0112 0.0866 --- 0.1383 0.1700 0.0579
PM 0.2371 0.2025 0.0039 0.1940 0.0224 --- -0.2788 -0.1812
YIELD -0.2839 -0.2362 -0.3471 -0.2117 0.1700 -0.2788 --- 0.4861
NTF -0.1934 -0.1697 -0.2142 -0.1076 0.0579 -0.1812 0.5231 ---
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equation determination coefficient decreased (R2 = 0.34), 
and consequently. the model now explains less of the 
data. An increase in the residue effect on the dependent 
variable (0.808) was also observed.

In this study, in which the implementation of a 
value to correct the matrix X’X generated cause and effect 
relationships much closer to zero corroborates previously 
published results such as those found in studies of 
multicollinearity in maize (Olivoto et al., 2017). This has 
also been seen in studies where many variables have 
been applied which study traits of commercial interest in 
guava trees (Kherwar and Usha, 2017).

On the basis of the ridge path analysis, using the 
value of 0.03 for the constant K (Table 2), it was noted 
that, generally, there were values close to zero both for 
the direct and the indirect effects; this can be seen in the 
estimates of the indirect influences of the variables FL, 
MT, PT, and PM, on the variable NTF, together with its 
effects on the YIELD, with values of 0.009; 0.006; 0.009; 
and -0.009, respectively. The greatest direct effect was 
for the variable NTF on YIELD (0.409), followed by the 
most pronounced direct influences of PT and FD on the 
YIELD, with corresponding values of 0.152 and -0.290.

It is worth noting that, between the cause and effect 
relations, the most significant estimates were given by the 
variable FD for the variables FM and PM (–0.261 and 
–0.257). With this result, the association of these estimates 
with biological effects becomes unfeasible, as the increase 
in fruit diameter – measured by a longitudinal cut in the 
fruit – was able to generate fruits with smaller mass and 
smaller pulp mass. However, this would not be reliable, 
since all fruits have a spherical or pear shape; thus, larger 
diameters necessarily imply larger mass.

As for trees, the great majority had values close 
to zero for both the direct and indirect effects in the 
case of variables associated with the plant growth, and 

Table 2 – Ridge path analysis (K = 0.03) for the following variables: 
Fruit Mass (FM), Fruit Length (FL), Fruit Diameter (FD), Mesocarp 
Thickness (MT), Peel Thickness (PT), Pulp Mass (PM), Number of 
Total Fruit (NTF) seen in guava trees with their indirect effects on 
the dependent variable Total Yield per Plant (YIELD). Direct effects 
are shown in the main diagonal.

* FM FL FD MT PT PM NTF
FM 0.058 -0.043 -0.261 -0.030 0.021 0.049 -0.079
FL 0.046 -0.055 -0.191 -0.021 0.017 0.039 -0.069
FD 0.052 -0.036 -0.290 -0.031 0.008 0.045 -0.088
MT 0.034 -0.023 -0.172 -0.052 0.013 0.034 -0.044
PT 0.008 -0.006 -0.015 -0.004 0.152 0.007 0.024
PM 0.055 -0.042 -0.257 -0.034 0.021 0.051 -0.074
NTF -0.011 0.009 0.062 0.006 0.009 -0.009 0.409
*The effect of the residue variable e = 0.81; the model determination 
coefficient R2 = 0.34.

Figure 2 – Values of the regression equation determination coefficient (R2) and values for the variable residue effect on YIELD (they follow the 
scale noted to the left – 0.3 > 0.9 – and the lower x-axis). The other lines are the variance inflation values for the following variables: Fruit 
Mass (FM), Fruit Length (FL), Fruit Diameter (FD), Mesocarp Thickness (MT), Peel Thickness (PT), Pulp Mass (PM), Number of Total Fruits (NTF), 
depending on the values of constant K (following the scale to the right – 0 > 18 – and the upper x-axis).

for variables assessed in the flowers and yield variables 
(Patel et al., 2015). Clearly it has had inappropriate results 
with the biological phenomena, confirming the need to 
improve the technique.

Another answer provided regarding the limitation 
of ordinary path analysis is that, when no data treatment 
is undertaken (correction factor in the matrix X’X, data 
transformation, standardization, and so forth) and data 
has been given with collinear variables, the incidence 
of coefficients that exceed the expected limit is common 
(–1 < 1), such as was seen in the study results of Santos 
et al. (2017), who researched the cause and effect relation 
between variables of plant growth and yield.

By applying the path analysis methodology 
using latent variables, multiple regression models were 
implemented, arranging the path in more than one 
chain (Figure 3). The latent variables were set in a chain 
level and suffered the influence of the variables during 
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With great similarity, these authors reported the same 
problems found in this study regarding the guava tree; 
they obtained satisfactory results after the appropriate 
arrangement tests of the effects on the variables.

In the models developed herein, the variables PM 
and MT exert a direct effect on the latent variable L1, 
in which there is a strong influence of the variable PM 
(0.95)  together with the effect of the variable MT (0.58), 
both with strong positive effects that, combined, produce 
an influence (0.71) greater than the latent variable L2 on 
the FM. These results confirm what was expected for 
relationships in which fruits with greater mass and pulp 
thickness (mesocarp) clearly need to be larger, resulting 
in a greater fruit mass.

The value of 1.07 between latent traits L1 and L2 
indicates multicollinearity because the value exceeds the 
unit (parametric space for correlation and path analysis). 
This had already been expected because there are many 
traits that control the two latent variables, and the 
theoretical relationship between the two would be very 
strong, which would also serve as a buffer effect in the 
model. However, since these variables are not studied in 
their relationships, and only serve to connect the model, 
there is no problem with the multicollinearity between 
them.

The variables FL, FD, and PT influence the latent 
variable L2. The greatest effect is seen in the variable 
FD (0.87) followed by the variable FL (0.76) and the low 
influence of the variable peel thickness (0.13). All these 
variables together result in the effect that L2 expresses 
on the fruit mass (0.27). This effect on the mass fruit is 
smaller than the one observed in the variable L1 (0.71).

No less important is the fact that these variables 
can be chosen to modify the fruit shape (varying 
between spherical and pear). The variable PT, despite 
the little influence, may be of interest for yields related 
to fruit shelf-life, in which a thicker peel can extend 
the fruit shelf-life because of its greater resistance to 
the infusion of O

2 into the fruit, which would increase 
the deterioration rate (Teixeira et al., 2016).  Negative 
correlation between PT and FD (0.13) was observed, 
which, despite being low, is perfectly acceptable from 
a biological point of view; it is still a result that should 
be closely assessed in case table fruits are desired, 
considering that the selection of genotypes that yield 
great fruit can have a thinner peel.

In general, all those variables of the third path 
chain can be indirectly controlled by cultural traits. In 
addition to providing good local control both appropriate 
pruning and maintaining the ideal number of branches 
are required to influence the number of fruits, since, in 
each crop, a branch that has a new bud results in up to 
three fruits. If an excessive number of reproductive buds 
is maintained the plant will need to distribute the photo-
assimilated ones among more fruits which would result 
in smaller fruits (Serrano et al., 2008).

This experience describes the negative indirect 
effect of the fruit mass on the number of fruits (0.05), 

Figure 3 – Causal diagram of the path analysis with latent variables 
in nine explanatory variables (FM = Fruit Mass, FL = Fruit Length, 
FD = Fruit Diameter, MT = Mesocarp Thickness, PT = Peel 
Thickness, PM = Pulp Mass, NTF = Number of Total Fruit, being 
two latent ones, L1 = latent variable 1 and L2 = latent variable 
2), and the main variable Total Yield per Plant (YIELD), in which 
e is the effect of the residue variable on the dependent variable 
YIELD, and R2 the model determination coefficient. Bidirectional 
arrows show correlation between the variables, and unidirectional 
arrows indicate a direct effect on the direction of the arrow; the 
green color evidences positive correlation and the red negative 
correlation.

the assessments of the experiments and with a better 
biological reasoning, rather than observing the effects 
of all variables correlated with each other and with the 
dependent one.

The variables PM, PT, FL, FD, and PT – obtained 
by assessing the fruits – converged their effects in the 
path on the variable FM. An expressive gain was achieved 
in the explanatory power of the model when observing 
that the determination coefficient went from R2 = 0.3464 
to 0.75, for the ridge path analysis (K=0.03) and multiple 
regression models with latent variables, respectively. 
Improvements can also be noticed in the residue effect 
on the variable YIELD, which had a reduced magnitude 
down from 0.8084 to 0.24. Expressive improvements 
in the estimates were also achieved by Dehghani et al. 
(2009) in the implementation of multiple equations for 
the path analysis in traits of economic interest in melon. 
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which, despite being small, when considering a mean 
yield between 40 and 65 t ha–1, in the end, significant 
differences can be calculated. The negative direct effect 
of the fruit mass on the yield is also related to this event, 
in which a plant that yields a few fruits produces large 
fruits with a larger mass; nevertheless, a plant that 
yields more fruits also produces smaller fruits, but the 
sum of the mass is greater, and thus the yield is higher.

Conclusions

The path analysis with the implementation of 
the SEM methodology, which uses  latent variable 
prediction, succeeded in delivering better results than 
ordinary path analysis and ridge path analysis. It is 
possible to indirectly choose the variable fruit mass 
by means of the pulp mass and fruit diameter of the 
variables. For indirect selection of the variable yield, the 
genotypes should be selected according to the number 
of fruits per variable.
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