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ABSTRACT: Lettuce (Lactuca sativa) is the main leafy vegetable produced in Brazil. Since 
its production is widespread all over the country, lettuce traceability and quality assurance is 
hampered. In this study, we propose a new method to identify the geographical origin of Brazilian 
lettuce. The method uses a powerful data mining technique called support vector machines 
(SVM) applied to elemental composition and soil properties of samples analyzed. We investigated 
lettuce produced in São Paulo and Pernambuco, two states in the southeastern and northeastern 
regions in Brazil, respectively. We investigated efficiency of the SVM model by comparing its 
results with those achieved by traditional linear discriminant analysis (LDA). The SVM models 
outperformed the LDA models in the two scenarios investigated, achieving an average of 
98 % prediction accuracy to discriminate lettuce from both states. A feature evaluation formula, 
called F–score, was used to measure the discriminative power of the variables analyzed. The 
soil exchangeable cation capacity, soil contents of low crystalized Al and Zn content in lettuce 
samples were the most relevant components for differentiation. Our results reinforce the 
potential of data mining and machine learning techniques to support traceability strategies and 
authentication of leafy vegetables.
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Introduction

Lettuce is among the most consumed vegetables 
worldwide and is considered the most produced and 
consumed leafy vegetable in Brazil. Lettuce is low 
in calories, fat, and Na, while being a good source of 
fibers, Fe, folate, vitamins and several other bioactive 
compounds that are beneficial to human health (Kim et 
al., 2016). Since the consumption per capita of fruits and 
vegetables is about 40 kg per yr–1 in Brazil, much less than 
143 kg per yr–1 consumed in a developed country, such as 
the United States (Mainville and Peterson, 2005), lettuce 
is an important source of vegetable–based nutrients for 
the Brazilian population. 

According to the most recent research conducted 
by IBGE (Brazilian Institute of Geography and Statistics) 
in 2006, the states of São Paulo (SP) and Pernambuco (PE) 
are the main lettuce producers in the southeastern and 
northeastern regions of Brazil, respectively. Growers can sell 
to a diversity of buyers, including intermediaries (purchase 
at farm gate), small supermarkets, large supermarket chains, 
wholesale markets, processors, and directly to consumers. 
This fragmented production chain makes the traceability 
and quality assurance of lettuce a difficult task. Moreover, 
most farmers neglect to use methods and techniques that 
add value to the product, such as food safety, traceability 
of inputs, improvements of handling and planting, among 
others (Carvalho et al., 2014). 

This study has the following main objectives:

i. We propose the use of support vector machines (SVM) 

and feature selection to determine the geographical origin 
of lettuce samples based on their elemental composition 
and soil properties. We discriminate lettuce samples from 
São Paulo and Pernambuco, major lettuce producers in 
Brazil (Figure 1). 
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Figure 1 – Map of administrative divisions of Brazil. Pernambuco 
and São Paulo States are highlighted in green and blue colors, 
respectively.
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ii. In order to ascertain the efficiency of the SVM model, 
we developed simple linear discriminant models for the 
same data and compared the results and performance 
measurements. 

iii. We also investigated the discriminative power of each 
variable and identified a subset of variables that mostly 
impact differentiation through the use of a feature 
selection technique, called F–score, a novel approach to 
lettuce discrimination. 

iv. We expect to show the potential of data mining and 
machine learning techniques to support traceability 
strategies and authentication of leafy vegetables. 

Materials and Methods

Lettuce and soil samples analyzed

We collected 194 lettuce samples and soil samples from 
farms in São Paulo (n = 72) and Pernambuco (n = 122), 
Brazil. Coordinates of the sampling sites are shown in 
Table 1. Soil samples were dried in the shade and then 
sieved (2 mm mesh). Lettuce leaves were washed in 
running water to remove impurities, dried (45 – 60 oC) 
and ground in a stainless–steel mill (< 1 mm).

Soil texture was obtained by the densimeter 
method (Gee and Or, 2002) and the pH was obtained by 
potentiometry using a combined electrode immersed in 
the soil: water suspension (1:2.5) and soil: 1 mol L–1 KCl 
solution (1:2.5). Potential acidity (H + Al) was obtained 
by extraction with 1 mol L–1 calcium acetate (pH 7.0) and 
titration with NaOH using phenolphthalein as indicator. 
The organic carbon (OC) content of soils was obtained 
by dry combustion in an elemental analyzer. A 1 mol 
L–1 KCl solution extracted the levels of exchangeable Ca, 
Mg and Al. Levels of available K and P were extracted 
with a double acid solution (Mehlich–1), following the 
protocol of Anderson and Ingram (1992). Based on these 
extractions, we obtained the following values: ΔpH = 
pHKCl – pHH2O; CECT (Ca2+ + Mg2+ + K+ + H+Al); CECe 

(Ca2+ + Mg2+ + K+ + Al3+); SB (Ca2+ + Mg2+ + K+); 
V % ([SB × 100]/CECT); and m % ([Al3+ × 100]/CECe). 
Levels of well–crystallized Fe and Al (Fe2O3DCB and 
Al2O3DCB) were extracted with Na dithionite–citrate–
bicarbonate (DCB) (Inda Junior and Kämpf, 2003; Mehra 
and Jackson, 1960), while amorphous Fe and Al were 
extracted with acidic ammonium oxalate (Fe2O3OXA and 
Al2O3OXA) (McKeague and Day, 1966). 

The pseudo-total concentrations of Cu, Ni, and 
Zn in the soil were extracted by acid extraction in a 
microwave oven using the EPA 3051A method (1:3 
HCl:HNO3, v/v). Plant material digestion followed 
Araújo et al. (2002), using HNO3 and H2O2 in microwave 
assisted digestion. Contents of Cu, Ni and Zn were 
determined by inductively coupled plasma / optical 
emission spectroscopy (ICP OES) using the conventional 
sample introduction system. Data quality control was 
measured using standard reference material (SRM 
2709a – San Joaquin Soil) from the National Institute of 
Standards and Technology (NIST, USA) and an analytical 
blank in triplicate. The concentrations of analytical 
blanks were below the quantification limit (0.01 mg 
L–1 for Cu and Ni; 0.05 mg L–1 for Zn). Precision (n = 
3), expressed as relative standard deviation (RSD), was 
< 10 % for all elements. More details can be found at 
Santos–Araujo and Alleoni (2016). 

Data mining for prediction of food origin

In the past decade, authenticity and traceability of 
foodstuffs became a desirable feature for consumers 
and producers worldwide (Baroni et al., 2015) and the 
search for methods that ensure authenticity of food has 
received great attention from researchers. A strategy 
that emerged in recent literature was the use of data 
mining and multivariate data analysis to discriminate the 
geographical origin of foodstuffs and vegetables based 
on their chemical components. Successful applications 
of this methodology and other similar were reported 
for rice (Maione et al., 2018), honey (Maione et al., 
2019), Italian and Turkish lemon (Potortì et al., 2018), 

Table 1 – Approximated geographical coordinates of cities where the analyzed lettuce samples were collected. Column # is the number of 
samples collected from the location.

City State # Latitude Longitude Altitude (m) City State # Latitude Longitude Altitude (m)
Piracicaba SP 4 –22.73 –47.62 1.276 Ibiúna SP 1 –23.76 –47.46 1.683
Limeira SP 3 –22.56 –47.34 1.311 São Roque SP 1 –23.68 –47.23 1.590
Nova Odessa SP 3 –22.79 –47.30 1.270 Sorocaba SP 3 –23.62 –47.18 1.542
Jundiaí SP 2 –22.92 –47.00 1.388 Embú Guaçu SP 2 –23.39 –47.56 1.232

Leme SP 3 –23.15 –46.83 1.412 São José do Rio 
Pardo SP 1 –23.86 –46.84 1.430

Mogi Mirim SP 1 –22.41 –46.96 1.296 Pombos PE 20 –21.68 –46.92 1.461
Itatiba SP 2 –22.43 –46.95 1.303 Amaraji PE 10 –8.38 –35.45 1.019
Salesópolis SP 2 –23.06 –46.83 1.451 Vitória de St Antão PE 50 –8.13 –35.30 885
Biritiba Mirim SP 1 –23.55 –45.95 1.452 Recife PE 10 –8.07 –34.94 745
Mogi das Cruzes SP 3 –23.57 –46.08 1.430 Glória de Goitá PE 49 –8.03 –35.28 896
Suzano SP 3 –23.56 –46.15 1.463 Chã Grande PE 19 –8.23 –35.46 1.195
Piedade SP 1 –23.75 –47.46 1.658
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tea (Moreda–Piñeiro et al., 2003), chocolate (Cambrai 
et al., 2010), alcoholic beverages (Alcázar et al., 2012; 
Ceballos–Magaña et al., 2012; Coetzee et al., 2005), 
coffee (Oliveira et al., 2015; Serra et al., 2005), tomato 
(Mahne Opatić et al., 2018), and others. Therefore, we 
proposed the use of data mining techniques, namely 
SVM and feature selection algorithms, to determine the 
geographical origin of lettuce samples based on their 
chemical composition.

Data mining is an efficient process to find 
hidden patterns and information in large and complex 
data sets where simple multivariate data analysis 
techniques and statistical methods are often unable 
to model efficiently, such as the principal component 
analysis and the discriminant analysis. Data mining 
techniques combine concepts and methods from 
artificial intelligence, mathematical optimization, linear 
algebra, and statistical analysis in order to perform 
either predictive or exploratory analysis on labeled or 
unlabeled data (Kotsiantis et al., 2006). Although data 
mining processes emerged from the multivariate data 
analysis and statistical techniques to handle larger and 
more complex data sets (Izenman, 2008), these processes 
can be applied to smaller data sets to extract meaningful 
information, often preferred due to their sophisticated 
algorithms that are capable of performing probabilistic 
reasoning. Furthermore, these algorithms are constantly 
evolving.

Classification models can be described as data 
mining tools that can predict information, represented 
by a categorical variable, in data samples. These 
models observe similar and previously labeled 
samples and use the information learned from this 
observation to build a function or model that is capable 
of generalizing the learned information in new and 
unknown data samples, as long as they are described 
by the same set of variables as the observed samples. 
This learning process is known as supervised learning 
in the field of artificial intelligence. Support vector 
machines, created by Cortes and Vapnik (1995), are an 
example a popular classification model in the recent 
data mining literature and are successfully employed 
to discriminate and classify data from different fields 
for various purposes. 

Our previous literature search revealed that this is 
the first attempt to discriminate the geographical origin of 
Brazilian lettuce samples based on the machine learning 
technique for data mining, such as support vector 
machines, also applied to chemical composition and soil 
parameters. In order to ascertain the efficiency of the 
SVM model, we developed simple linear discriminant 
models for the same data and compared the results and 
performance measurements. We also investigated the 
discriminative power of each variable and identified a 
subset of variables that mostly impact differentiation 
through the use of a feature selection technique called 
F–score, a novel approach to the discrimination of 
lettuce.

Support vector machines (SVM)

SVM is described as an optimization function to find the 
decision boundary with the largest margin possible to 
separate the data, minimizing the risk of overfitting and 
improving the generalization performance. The decision 
boundary is computed by the following Eq. 1:

w . x + b = 0 	  (1)

where: x is the values obtained from the variables of 
the training samples, w refers to weights whose linear 
combination computes the class label, and b is a model 
parameter, the decision boundary with the largest 
margin possible is achieved by the minimization Eq. 2:

min
w

W
2

2
	  (2)

Classification models based on SVM are widely 
used in the literature to perform the predictive analyses 
on data from several problems and fields. Only in the 
last two years, SVM has been successfully employed to 
solve problems in domains, such as geology (García–
Nieto et al., 2019; Huang et al., 2017; Jung et al., 2018; 
Kumar et al., 2017; Mahvash and Hezarkhani, 2018; 
Pu et al., 2019), hydrological sciences (Choubin et al., 
2019b, 2018; Kisi et al., 2019; Rahmati et al., 2019; 
Sajedi–Hosseini et al., 2018), climate and weather (Fan 
et al., 2018; Kundu et al., 2017; Yu et al., 2018, 2017), 
fault detection in various systems and processes (Ali 
et al., 2018; Fazai et al., 2019; Ghalyani and Mazinan, 
2019; Han et al., 2019; Liu and Zio, 2018; Manjurul 
Islam and Kim, 2019; Saari et al., 2019; Xi et al., 2019), 
health and medicine (Battineni et al., 2019; Di et al., 
2019; Liu et al., 2019; Lukmanto et al., 2019; Vougas 
et al., 2019), agriculture (Akbarzadeh et al., 2018; Feng 
et al., 2019; Fernandes et al., 2019; Griffel et al., 2018; 
Leena and Saju, 2019; Radhakrishnan and Ramanathan, 
2018; Zhou et al., 2019) power and energy systems 
(Ma et al., 2018; Wang et al., 2018; Zendehboudi et al., 
2018), urban wastes and infrastructure (Karimi et al., 
2019; Solano Meza et al., 2019; Tang et al., 2019; Xiao et 
al., 2019; Zhu et al., 2019), speech recognition (Bhavan 
et al., 2019; Braga et al., 2019; Rahmeni et al., 2019; 
Wang et al., 2019), and many others. In addition, we 
chose to work with the SVM models in this project due 
to two main advantages. First, the models are capable of 
performing kernel trick and project the data into higher 
dimensions to better classify non–linearly separable 
data such as ours. Second, because the SVM models are 
known to perform relatively better on small data sets in 
comparison to other machine learning algorithms, such 
as neural networks, which are heavily dependent on the 
amount of data available for training. 

In this study, we employed SVM with the radial 
basis (RBF) kernel function. The use of kernel functions 
allows SVM to project the original data into a new 
dimensional space and find a linear decision boundary 
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into two subsets for training and testing the model, 
respectively. When the available data set is relatively 
small, similar to that analyzed in this study, dividing the 
data set can be unfeasible, as the resulting subsets can 
be too small to effectively train a reliable classification 
model (Varma and Simon, 2006). Moreover, since only 
a single subset is used for training the model and this 
subset is commonly generated by random selection, 
meaningful information possibly contained in data 
samples assigned to the test set is not considered and 
is thus wasted. In order to tackle these issues, we used 
a training and validation method called the k–fold 
cross validation, a solution to the lack of sufficiently 
large training and testing sets (Duda et al., 2001). This 
method divides the data set into k mutually exclusive 
subsets (folds) of similar size. The classification model 
is trained and tested for k iterations. In each iteration, 
one subset, different from the subsets previously used, 
is selected to test the model while the others are used 
for training. Therefore, all the data samples available for 
analysis are eventually considered in the construction of 
the classification model. The final accuracy of the model 
is computed as the average of the accuracies obtained in 
each iteration. 

After the test phase, the tested samples can 
be categorized as true positives, true negatives, false 
positives or false negatives. True positives (TP) and 
true negatives (TN) are the number of positive and 
negative samples correctly classified, respectively. False 
positives (FP) refer to the number of negative samples 
incorrectly classified as positives and false negative (FN) 
is the number of positive samples incorrectly classified 
as negative. Performance measurements of accuracy, 
sensitivity and specificity (Tan et al., 2005) are computed 
based on these values. Accuracy refers to the overall 
probability of the model to correctly classify an arbitrary 
sample (Choubin et al., 2019a). Sensitivity refers to the 
overall probability of the model to correctly classify 
an arbitrary sample, which originally belongs to the 
positive class. Specificity is the overall probability of the 
model to correctly classify an arbitrary sample, which 
originally belongs to the negative class. Therefore, the 
three performance measurements are computed with 
Eq. 4–6:

Accuracy
TP TN

TP TN FP FN
(%) �

�
� � �

�100 	  (4)

Sensitivity
TP

TP FN
(%) �

�
�100 	  (5)

Specificity
TN

FP TN
(%) �

�
�100 	  (6)

Estimating the relevance of the parameters 
analyzed 

One of our objectives was to evaluate the discriminative 
power of the descriptive variables and try to build 

to separate the transformed samples when they cannot 
be linearly separated in the original dimensional space. 
In addition to the required parameter C, which can 
be described as the cost imposed by the SVM model 
on a misclassification, the RBF kernel also requires 
a γ parameter, namely the value used by the kernel 
to perform the kernel trick and handle non–linear 
classification. Both parameters must be chosen carefully, 
since increasing their value indiscriminately potentially 
results in overfitting, high variance, and low biases, while 
very restrictive values lead to an under-fitted model that 
cannot capture patterns in the data. We determine these 
values through a grid search on values C = {0.25, 0.5, 
1, 1,5, 2, 3} and γ = {3, 2, 1, 0.5, 0.1, 0.01, 0,02, 0.03, 
0.05, 0.06} for each SVM model developed. The model 
with the best performance was selected.

Linear discriminant analysis (LDA)

The linear discriminant analysis (LDA) is a classification 
technique to maximize the ratio of between-class 
variance to within-class variance to achieve maximal 
separability. The LDA creates a decision boundary 
called discriminant function (DF), which is a linear 
combination of the variables that describe the data and 
that best separates the classes. Considering a problem 
for classes y1 and y2, the linear DF is defined as Eq. 3 
(Duda et al., 2001):

g(x) = w’V + w0 	  (3) 

where: x is an arbitrary sample, V is the variable set 
values for sample x, w is the weight vector, and w0 is a 
bias value. We aimed to find w and w0 values for g(x) > 
0, otherwise, the class label associated to x is y1, and y2.

The LDA has been widely used recently in several 
classification problems and, despite traditional, it is still 
a well–known and popular method to discriminate food 
data, largely reported in literature reviews (Abbas et 
al., 2018; Berrueta et al., 2007; Callao and Ruisánchez, 
2018; Cavanna et al., 2018; Esteki et al., 2019, 2018a, 
2018b; Granato et al., 2018; Jiménez–Carvelo et al., 
2019; Kemsley et al., 2019; Medina et al., 2019a, 2019b; 
Oliveri, 2017; Peris and Escuder–Gilabert, 2016; Ropodi 
et al., 2016; Valdés et al., 2018; Wadood et al., 2020). 
Therefore, we expect this model to perform well in our 
data set and that its use certify the efficiency of the 
SVM model by comparing the results obtained by both 
methods.

Performance measures

The data available for analysis must be divided into a 
training set to build the classification model and as a 
test set to verify the model prediction performance, also 
called the holdout method.

The default holdout method has two main 
disadvantages. First, it requires the data set to be divided 
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denominator indicates the discrimination within each 
set. The larger the F–score, the more discriminative this 
variable.

Balancing the data set with the K–means 
clustering algorithm

Imbalanced data sets are inconvenient and present 
various challenges for data mining and the multivariate 
data analysis (Chawla, 2005; Haixiang et al., 2017; He 
and Garcia, 2009; Jo and Japkowicz, 2004; López et al., 
2013; Prati et al., 2004). Overall, classification models 
trained on imbalanced data tend to express a good 
prediction performance for samples of the majority class 
and a lower performance for samples of the minority 
class. This decrease occurs not necessarily due to the 
difference in the class proportion, but due to other 
natural factors of imbalanced data, such as the presence 
of small disjuncts, low density of data, data overlapping 
and others (He and Garcia, 2009; López et al., 2013). In 
this study, we tackled the imbalanced data issue with 
the aid of a clustering algorithm called K–means.

Clustering algorithms are considered a branch of 
unsupervised learning and are basically employed in 
exploratory data analyses, where no hypothesis about 
the data nor previously known class labels existed. 
These techniques are useful to aid the identification of 
natural groupings existing within the data based on a 
similarity (or dissimilarity) pattern. Partitional clustering 
algorithms, such as K–means, divide the data set into 
mutually exclusive clusters in a way that samples 
assigned to a same cluster must be as similar as possible 
and as different as possible from samples associated to 
other clusters. 

The K–means algorithm could be summarized in 
the following steps (Jain, 2010): (i) randomly selects k 
data samples and names their centroids. Each centroid 
is associated to a different cluster label; (ii) for each 
non–centroid sample in the data set, it find its nearest 
centroid and associates this sample to the same cluster 
as the centroid found; (iii) for each cluster formed, it 
updates the centroid to be the center of cluster mass; 
and (iv) repeats the previous steps until no new changes 
are made to the clusters, or a stopping criterion is 
reached.

The K–means algorithm is not new and is still 
highly reported in the literature due to its simplicity, low 
computational cost, and good performance (Jain, 2010). 
In this study, we used the K–means algorithm to aid data 
balancing due to under sampling. Considering that we 
want to discard m samples of a certain class from the 
data set, we divide the data labeled as this class into 
(n – m) clusters with the K–means algorithm and keep 
only the determined centroids as data samples. Because 
the centroids found for each cluster could be considered 
the most representative samples in a data partition, 
this strategy reduces the information loss that naturally 
occurs under sampling.

classification models capable of discriminating lettuce 
from two distinct locations with high performance using 
only variables considered relevant for the decision–
making of the classifier. Disregarding variables with 
low or null influence on the information mapped by 
the class label could also provide advantages, such as 
improvement of prediction accuracy, dimensionality 
reduction, reduction of time to build and run 
classification models, among others. 

Filter methods are variable selection methods 
applied to the training data prior to the learning phase of 
the models, allowing irrelevant variables to be identified 
and discarded before training occurs. Filter methods 
evaluate variables by computing the intercorrelation 
between each other and the correlation between the 
variables and the class label. The best rated variables 
are present little dependence from other variables while 
presenting the highest dependence as possible from 
the class label. Since filter methods are algorithmically 
simple and operate with low computational cost, 
a common strategy is to use them to evaluate all 
the variables individually, to set up subsets with 
combinations of the best ranked variables, to apply them 
to a classification model and to check the final prediction 
accuracy obtained to attest their discriminative power. 
There are several examples of popular filter methods 
for the multivariate data analysis, such as information 
gain, chi–square, random forest importance (Izenman, 
2008), mutual information, Correlation–based Feature 
Selection (CFS), and others (Bommert et al., 2020). 

In this study, we used a variable selection algorithm 
called F–score. This function presented by Chen and Lin 
(2006) measures the discrimination of two sets of real 
numbers. For a single descriptive variable from our data 
set, we can divide its measurements into two distinct 
sets called positive and negative sets, which hold the 
variable measurements for lettuce samples from SP and 
PE, respectively. The value produced from this function, 
when applied to a variable to measure the discrimination 
between its positive and negative sets, can be used as 
a score for measuring the variable contribution to the 
class label. Given the training samples x

k, k = {1, ..., 
m}, if the number of samples belonging to the SP and 
PE classes are nSP and nPE, respectively, the F-score value 
of the i–th variable, which reflects the discrimination 
between positive and negative samples, is calculated by 
the Eq. 7:

F i
X X X X

n
X X

n

i
SP

i i
PE

i

SP
k i
SP

i
SP

P

( )
( ) ( )

,
( ) ( )

�
�� � � �� �

�
�� � �

2 2

21
1

1

EE
k i
PE

i
PE

k

n

k

n
X XPESP

�
�� ��� �� 1

2

11 ,
( ) ( )

	  (7)

where: Xi , Xi
SP( ) , Xi

PE( ) are the average of the i–th 
variable of the whole, positive, and negative data sets, 
respectively; Xk i

SP
,

( ) is the i–th variable of the k–th positive 
sample, and Xk i

PE
,

( ) is the i–th variable of the k–th negative 
sample. The numerator indicates the discrimination 
between the positive and negative sets, and the 
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Analysis strategy

The entire statistical and predictive analysis was 
conducted on the RStudio software, version 1.1.463. 
Our analysis methodology is presented in Figure 2 and 
summarized in the following steps:

1. Data samples obtained from Pernambuco (PE) state 
are under sampled in order to match the number of 
available samples from São Paulo (SP) state. The goal 
of this step is to create a balanced data set that could 
be reliably used to develop classification models 
without biases. The K–means clustering algorithm is 
applied only to the samples obtained from PE and 36 
clusters were determined. The centroids computed for 
each cluster were retained in the data set, while the 
other samples from PE were discarded from analysis. 
Therefore, the final data set comprised all 36 originally 
samples collected in SP and 36 samples from PE retained 
as centroids from the clustering algorithm. 

2. In order to perform five–fold cross validation, the 
balanced data set is randomly divided into five mutually 
exclusive subsets (folds), properly keeping the original 
proportion of the two states (50 % – 50 %) in each set.

3. For each validation:

a. The selected validation is used as a test set while the 
remaining folds are merged and used as a training set;

b. The training and test sets are standardized to 
avoid potential biases caused by the different unit 

measurements and ranges of values of the variables. 
The variables are centered by subtracting their means 
from theirs values, and then the centered variables 
are divided by their standard deviations;

c. F–score values are computed for each variable of 
the training set. The selection threshold is set as the 
maximum F–score value obtained by the variables 
divided by 3;

d. The SVM and LDA models are developed using the 
entire training data and the training data with only 
the variables that received F–score values higher 
than the threshold, resulting in a total of four models 
developed;

e. Accuracy, sensitivity, and specificity values are 
computed for the four models.

4. The average accuracy, sensitivity, and specificity 
obtained by the models are determined and presented 
as final performance measurements.

Results and Discussion

Properties and micronutrients in lettuce and soil 
samples

Metal uptake by plants is influenced by several soil 
properties (Kumpiene et al., 2017). Therefore, we 
evaluated 25 soil variables (Table 2). We designated 
letters to represent the variables analyzed in lettuce and 
soil samples to simplify visualization in our graphics and 

Figure 2 – Methodology for construction of the SVM (support vector machines) and LDA (linear discriminant analysis) models and performance 
measure estimation.
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specific mentions throughout the rest of the paper. Soil 
samples collected from lettuce farms in SP had fairly 
higher amount of nutrients and other beneficial traits 
than soil samples obtained from PE. 

Soil samples from SP farms presented mean 
values for pseudo-total concentrations of Ni, Cu and 
Zn of 9.45, 41.34 and 72.81 mg kg–1, respectively, while 
samples from PE presented 2.95, 14.43 and 38.43 mg 
kg–1, respectively. Ni, Cu, and Zi are essential metals for 
plants. Biondi et al. (2011) demonstrated that soils from 
PE have low capacity to release Cu and Ni to plants. Their 
study also indicated a significant association of most 
metals to clayey soils. Considering that the soil samples 
from PE are mostly composed of sand (approximately 70 
%), the low clay content of these soils may help explain 
the relatively low metal concentration in the pseudototal 
fraction of soils from PE.

Amorphous and crystalline Al and Fe oxide 
minerals play a major role in stabilizing soil structure, 

and their presence in soils has a favorable effect on 
soil physical properties (Goldberg, 1989). Furthermore, 
kaolinite, Fe and Al oxides compose the dominant 
mineralogy in the clay fraction of most Brazilian soils 
(Fink et al., 2014), responsible for chemical reactions 
that control the availability of essential and non–
essential elements. 

Phytoavailable metal forms are sorbed to 
amorphous metal oxides (Rodrigues et al., 2010). Levels 
of well–crystallized Fe and Al were higher in soil samples 
from SP than for those from PE, presenting mean values 
of 22.13 g kg–1 and 10.77 g kg–1 respectively, against 7.94 
g kg–1 and 5.04 g kg–1 respectively for soils from PE. Soil 
samples from SP also showed fairly higher numbers of 
amorphous Al than soil samples from PE, with mean 
values of 14.66 mg kg–1 and 1.21 mg kg–1 for soils of both 
states, respectively. As for amorphous Fe, mean values 
were 4.82 mg kg–1 and 1.28 mg kg–1 for soils from SP and 
PE, respectively. 

Table 2 – Analyzed variables in the determination of the geographical origin of lettuce samples and their respective mean and standard deviation 
values for each state, São Paulo (SP) and Pernambuco (PE).

ID Description
Mean ± SD

ID Description
Mean ± SD

SP PE SP PE

Var1 pH determined in water 
suspension 5.84 ± 0.74 6.52 ± 0.75 Var15 Pseudototal concentration of Ni 

in soil (mg kg–1) 9.45 ± 6.52 2.95 ± 3.02

Var2 pH determined in KCl solution 5.51 ± 0.72 5.98 ± 0.7 Var16 Pseudototal concentration of Cu 
in soil (mg kg–1) 41.34 ± 41.61 14.43 ± 11.34

Var3 Potential acidity (mmolc dm–3) 24.47 ± 16.1 6670.18 ± 10955.68 Var17 Pseudototal concentration of Zn 
in soil (mg kg–1) 72.81 ± 87.01 38.43 ± 50.33

Var4 Levels of sand (g kg–1) 461.17 ± 155.72 658.06 ± 193.23 Var18 Amorphous Al extracted with acid 
ammonium oxalate (g kg–1) 14.66 ± 11.56 1.21 ± 0.84

Var5 Levels of clay (g kg–1) 366.9 ± 142 204.64 ± 164.03 Var19 Amorphous Fe extracted with 
acid ammonium oxalate (g kg–1) 4.82 ± 4.93 1.28 ± 1.04

Var6 Levels of silt (g kg–1) 171.93 ± 87.4 137.29 ± 84.47 Var20
Levels of well–crystallized iron 
extracted with sodium dithionite–
citrate–bicarbonate (g kg–1)

22.13 ± 20.2 7.94 ± 6.7

Var7 Levels of exchangeable calcium 
(mmolc dm–3) 57.65 ± 52.6 630.19 ± 910.64 Var21

Levels of well–crystallized 
aluminum extracted with sodium 
dithionite–citrate–bicarbonate 
(g kg–1)

10.77 ± 5.3 5.04 ± 3.85

Var8 Levels of exchangeable 
magnesium (mmolc dm–3) 17.1 ± 8.99 623.59 ± 1113.78 Var22 ΔpH obtained by pHKCl – pHH2O –0.33 ± 0.26 –0.54 ± 0.18

Var9 Levels of exchangeable 
aluminum (mmolc dm–3) 1.13 ± 1.97 0.61 ± 0.4 Var23 CECT obtained by Ca2+ + Mg2+ + 

K+ + (H+Al) (mmolc dm–3) 104 ± 55.79 29.17 ± 16.57

Var10
Levels of available phosphorus 
extracted with a double acid 
solution (mg kg–1)

530.82 ± 348.03 311.67 ± 239.87 Var24 CECe obtained by (Ca2+ + Mg2+ + 
K+ + Al3+) (mmolc dm–3) 80.67 ± 57.32 17.68 ± 6.12

Var11
Levels of available potassium 
extracted with a double acid 
solution (mmolc dm–3)

4.78 ± 2.76 4.5 ± 2.1 Var25 Base saturation obtained by ([SB 
x 100]/CECT) (%) 73.15 ± 18.83 68.39 ± 26.38

Var12 Concentrations of Zn in plant 
(mg kg–1) 170.18 ± 110.78 49.63 ± 23.36 Var26 Aluminum saturation obtained by 

([Al3+ x 100]/CECT) (%) 2.31 ± 5.53 3.71 ± 2.84

Var13 Concentrations of Cu in plant 
(mg kg–1) 6.79 ± 1.82 8.81 ± 3.17 Var27 Sum of bases obtained by (Ca2+ 

+ Mg2+ + K+) (mmolc dm–3) 79.53 ± 57.73 17.07 ± 6.1

Var14 Concentrations of Ni in plant 
(mg kg–1) 0.32 ± 0.19 0.29 ± 0.4 Var28 Organic carbon content in soil (%)27.04 ± 32.71 17.62 ± 12.58
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Mean levels of available P in soil samples from 
SP and PE states were 530.82 mg kg–1 and 311.67 mg 
kg–1, respectively. Although samples from PE presented 
higher levels of exchangeable Ca and Mg, the soil 
samples from SP state showed higher CEC (for both 
CECT and CECe), which depends on the levels of Ca, 
Mg, K, Al and potential acidity in the soil samples. 
Mean values of CECT were 104 mmolc dm–3 and 29.17 
mmolc dm–3 for soils from SP and PE states, respectively, 
while mean values of CECe were 80.67 mmolc dm–3 

and 17.68 mmolc dm–3 for soils from SP and PE states, 
respectively. Finally, values for the sum of bases were 
also considerably higher in soils from SP (mean 79.53 
mmolc dm–3) than in soils from PE (mean 17.07 mmolc 
dm–3). Maybe soils in SP farms are better fertilized than 
in PE.

Statistical and predictive analysis

Using the standardized measurements of all variables 
shown in Table 2 as input values, the SVM models 
reached an average value of 98.67 % for accuracy, 
97.14 % for sensitivity, and 100 % for specificity. 
The LDA models trained with the same input values 
performed fairly lower than SVM for all performance 
measurements, presenting 66 % average accuracy, 
71.43 % average sensitivity, and 60.71 % average 
specificity. Although more complex to build than linear 
discriminant models and designed to handle large and 
complex data bases, SVM models are excellent tools to 
determine the geographical origin of lettuce, even when 
trained on a relatively small amount of data.

In order to determine the individual importance 
of each component for the discrimination of the lettuce 
samples from both regions, we applied the F–score 
equation to each training set during the cross–validation 
process. The F–score values achieved by each variable 

in each iteration are presented in descending order in 
Figure 3. The variables referring to the sum of bases 
obtained by (Ca2+ + Mg2+ + K+) and soil cation 
exchangeable capability (CECT and CECe) were retained 
in all training sets with very high F–score values. Levels 
of exchangeable Ca, well–crystallized Al, amorphous 
Al, sand and pseudo-total concentration of Ni measured 
from the soil plus the Zn levels in the plant were retained 
by four of five considered training sets. Overall, we 
conclude that these eight factors were the most relevant 
variables for the discrimination of lettuce samples from 
both states according to the F–score metric. 

To ascertain the real relevance of the best rated 
components, we also built SVM and LDA models using 
only values for variables that achieved F–score values 
higher than the determined threshold (Table 3), while 
the others were discarded. The average performance 
measurements, namely accuracy, sensitivity and 
specificity, achieved by the models with and without 
variable selection are summarized in Table 4. The SVM 
model trained with only the best rated variables achieved 
95.81 % average accuracy, 94.29 % average sensitivity 
and 97.14 % average specificity, a very small decrease in 
performance in comparison to the values achieved when 
all 28 variables were used for training. On the other 
hand, the LDA model experienced a slight decrease 
in performance, presenting 86.29 % average accuracy, 
94.29 % average sensitivity, and 78.57 % average 
specificity when only the five best rated variables were 
used for training. Although the SVM and LDA models 
achieved the same average sensitivity values when 
combined with variable selection, the SVM models still 
clearly outperformed the LDA models in both scenarios 
for all other performance measures. 

The best classification model achieved was the 
SVM model trained on all variables available from the 
data set. The accuracy value achieved is approximately 

Table 3 – Variables retained by the F–score in the training set in each iteration of the cross–validation process. Variables discarded achieved 
F–score value below the computed threshold max/3.

CV iteration Variables retained by the F–score in the training set
# 1 Var1, Var22, Var7, Var27, Var23, Var24, Var20, Var21, Var18, Var4, Var15, Var13, Var12
# 2 Var7, Var27, Var23, Var24, Var21, Var18, Var5, Var4, Var15, Var12
# 3 Var27, Var23, Var24
# 4 Var1, Var7, Var27, Var23, Var24, Var20, Var21, Var19, Var18, Var5, Var4, Var15, Var13, Var12
# 5 Var1, Var22, Var7, Var27, Var23, Var24, Var21, Var18, Var5, Var4, Var15, Var12

Table 4 – Averaged performance measures computed for the SVM (support vector machines) and LDA (linear discriminant analysis) models 
trained with the whole variable set and with only the best rated variables according to the F–score.

Performance measure
SVM model LDA model

All variables Best rated variables All variables Best rated variables
----------------------------------------------------------------------------------------------------------- % -----------------------------------------------------------------------------------------------------------

Accuracy 98.67 95.81 66 86.29
Sensitivity 97.14 94.29 71.43 94.29
Specificity 100 97.14 60.71 78.57
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Figure 3 – Relative importance of each variable to determine the lettuce geographical origin, computed according to the F–score equation.
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3 %, 32 % and 12 % higher than the accuracy values 
obtained from the SVM model with feature selection, the 
LDA model without feature selection and the LDA model 
with feature selection, respectively. This slight increase in 
error for the SVM model is expected since several variables 
were discarded, the model was possibly deprived from 
meaningful information contained in them; however, the 
SVM model with variable selection still presented a high 
average accuracy value for predicting the geographical 
origin of lettuce when only approximately eight out of 28 
variables were used. This is a substantial decrease in the 
dimensionality and size of the data set, and consequently 
reduction of the required effort from researchers to 
gather and prepare the necessary data.

Mean values of the sum of bases, CECT, CECE, 
exchangeable Ca, well–crystallized Al, sand, amorphous 
Al, nickel in soil and Zn in plant for the lettuce samples 
produced in SP and PE are shown in Figure 4. Samples 

collected in SP presented relatively higher values for 
almost all of these components than the samples obtained 
from PE. França et al. (2017) studied lettuce production in 
PE, and although the Zn content in their soil samples was 
higher than those observed by Santos–Araujo and Alleoni 
(2016), the Zn content in the plant was much lower. 
Because different varieties of lettuce present different 
Zn uptakes even when cultivated under the same soils 
conditions (França et al., 2017), lettuce varieties grown in 
SP may differ from varieties cultivated in PE, resulting in 
different levels of soil–plant transference. 

The strong effect of soil variables on the plant 
classification could be explained by relevance of soil 
properties in plant uptake. A previous study carried out 
by Santos–Araujo and Alleoni (2016) showed that the 
most important covariates for predicting the Zn content 
in vegetables sampled in SP were CECe, pH, organic 
carbon, and the pseudo-total content of Zn and Cu. 

Figure 4 – Mean values of the sum of bases, CECT, CECe, exchangeable calcium in soil, well–crystallized aluminum in soil, sand, amorphous 
aluminum in soil, nickel in soil and zinc in plant for the lettuce samples produced in São Paulo (SP) and Pernambuco (PE) state.
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As production is a result of cultivated area multiplied 
by yield, it is possible to use soil productivity to infer 
the incorporation of agricultural technology (Camargo 
Filho and Camargo, 2017). Therefore, the inclusion of 
soil parameters in the model for plant classification 
complements the assortment and may give insights into 
the geographical origin of lettuce. 

Conclusion

The Sustainable Capitol Hill (SCH) and Michigan State 
University list several reasons for customers to buy 
and consume locally produced food (Klavinski, 2013; 
SCH, 2019). Because local food involves a shorter time 
and less transportation effort from harvest to costumer 
table, it is likely to be safer to consume, fresher, less 
contaminated, more flavorful, and higher in nutritional 
value. It is also easier for customers to monitor the food 
origin and investigate practices and substances used to 
grow and harvest the crops. Purchasing local food also 
benefits the local economy as the money is retained 
within the community and reinvested in local businesses 
and services, also supporting local farmers, considerable 
importance in economic and food supply crises. 

Verifying the geographic origin of food is a 
substantial matter to ascertain that this important kind of 
food was produced by a trusted source that takes quality 
and safety into account. In this study, we proposed a 
novel methodology to determine the geographical origin 
of Brazilian lettuce based on their elemental composition 
and soil properties through the use of SVM, LDA, and 
feature selection. We analyzed the contents of several 
chemical variables and soil properties determined 
for 72 lettuce samples obtained from São Paulo and 
Pernambuco Sates in Brazil. Through the use of a filter 
method for feature selection, we estimated that soil 
cation exchangeable capacity, exchangeable Ca, well–
crystallized Al, sand, amorphous Al and Ni in soil, Zn 
levels in the plant and the sum of bases obtained by 
(Ca2+ + Mg2+ + K+) were generally the most important 
variables for differentiating lettuce samples produced in 
both regions. We developed classification models based 
on SVM, which were capable of discriminating lettuce 
samples from both regions with a high accuracy level, 
presenting approximately 98.67 % correct predictions 
when all 28 chemical variables were used for training, 
and 95.81 % correct predictions when only the most 
important variables were used for training. These values 
surpass those obtained by the LDA model, a well–known, 
reliable and widely employed model for classification of 
food samples, which scored 66 % and 86.29 % prediction 
accuracy when all variables and only the best rated 
variables were used for training, respectively. The values 
achieved proved that, when combined with the chemical 
composition of lettuce samples determined by ICP OES 
and certain soil properties, classification models based 
on SVM could successfully determine the geographical 
origin of lettuce samples with excellent accuracy, at the 

same time attesting that data mining techniques could 
powerfully support traceability strategies and ensure 
vegetable authenticity. Our previous literature search 
reveals that this is the first attempt to discriminate the 
geographical origin of Brazilian lettuce samples based on 
a powerful machine learning technique for data mining, 
such as SVM, also applied to chemical composition and 
soil parameters.
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