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ABSTRACT: The use of longitudinal measurements is an essential practice both in Psidium 
guajava L. breeding and in other perennial crops in which covariance structures can be 
introduced to explain the form of dependence between measurements. Hence, this study aimed 
to analyze six covariance structures to identify one that best described the correlation between 
the repeated measurements in time in traits of guava full-sib families. The repeatability coefficient 
for each trait was estimated and the minimum number of evaluations required for estimates 
representing the population was determined. The work was performed based on average data of 
three yield-related variables from nine harvests of a guava tree population evaluated from 2011 
to 2018. The best model was chosen based on the Akaike and Schwarz Bayesian information 
criterion. The autoregressive covariance structure best represented the dependencies among 
families between crops for all traits. The number of variables of fruits and total yield per plant 
presented repeatability estimates higher than 0.5 and may be essential traits for indirect 
selection of others, such as fruit mass, which had an estimated repeatability of 0.24, proving 
low regularity in the repetition of the character from one cycle to another. It was also possible to 
define four harvests as the minimum acceptable number of observations necessary on the same 
individual for these traits; therefore, the repetitions represented the individuals.
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Introduction

Long yield cycles in perennial plants require repeated 
measurements of individuals throughout time to 
estimate variance components with greater accuracy 
(Mathew et al., 2018). In perennial species, models 
should consider an additional effect, the well-known 
permanent environment effect, and phenotypic 
correlation among repeated measurements in the same 
individual, known as repeatability (Resende et al., 2006; 
Resende et al., 2017). The repeatability coefficient 
measures the capacity of individuals to repeat the 
trait expression throughout some yield cycles. This 
parameter is important to predict genotypic values, 
selective efficiency, and heritability in a minimum of 
measurements taken for a certain trait (Maia et al., 
2013).

The mixed linear models could be used to 
describe longitudinal data, choosing different matrices 
for covariance structures associated with random 
factors of the model that explain the dependence 
between measurements (Shalizi and Isik, 2019). The 
simplest repeatability model assumes the independent 
residual effect and considers environmental and 
genetic correlations constant among different registers 
of repeated measurements. Although this may not be a 
realistic assumption, it is commonly used, resulting in 
biased estimates of variance components (Mathew et 
al., 2018).

Covariance structures describe different patterns 
of dependence, ranging from standard repeatability 
with few parameters but with constant covariances to 
hyper-parametrized models that lead to overfitting and 
are computationally infeasible (Wade and Quaas, 1993; 

Wolfinger, 1993). However, no structure fits well in all 
populations of perennial plants, including guava. In 
this sense, this study aimed to analyze six covariance 
structures to identify the structure that best described 
the correlation between the repeated measurements for 
traits in guava full-sibs. Additionally, the repeatability 
coefficient for each trait was estimated and the 
minimum number of evaluations needed for estimates 
representing the population was determined.

Materials and Methods

We used guava tree families (Psidium guajava L.) from 
established crosses based on genetic diversity.The 
population is part of the final experiments of a guava 
tree genetic breeding program before the trials of 
growing value and use. Harvesting began after the end 
of the juvenile period of the plants, following the cycle 
of phytosanitary treatments: intermittent plant period, 
yield pruning, fertilization, and yield. 

The experiment comprised a randomized block 
design, with two replicates, 17 segregating families, and 
12 plants per family, evaluated during nine harvests. 
Three traits were evaluated in terms of the individual: 
fruit mass in g (FM), total number of fruits (NF), and 
total yield per plant in g (TY).

The procedure suggested by Littell et al. (2006) for 
mixed model analysis was adopted. Firstly, covariance 
structures were chosen. Subsequently, the fixed effects 
were specified, followed by the choice/estimate of the 
covariance structure. After that, the effects of treatment 
and time were evaluated using generalized minimum 
squares with the covariance estimated and after the 
statistical inference based on the results was conducted.
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Using the SAS software, the model was adjusted 
for each covariance structure at a time using the 
REPEATED statement in the PROC MIXED procedure 
(Littell et al., 2006). The restricted maximum likelihood 
was used as an estimator (Patterson and Thompson, 
1971) in the model:

Yijklm = μ + Pi + Fij + Bijk + Ml + eijkl 		  (1)

where: Yijkl denotes the measurement in the lth harvest 
in the kth block in the jth family of the ith plant. μ + Pi 
+ Fij + Bijk + Ml  is the mean of the plant i within the 
family j of block k in the harvest l, containing the effects 
of family, block, and harvest, respectively. eijkl is the 
random error associated with the measurement in the 
harvest l in the ith plant associated with jth family of the 
kth block, with ~ NID (0, R). 

The distinctive characteristic of a repeated 
measurement model is the variance and covariance 
structure of the error eijkl. Although the plants were 
randomly attributed to the families, which were randomly 
attributed to the blocks, the repeated measurement factor 
levels, the time in this case, are not randomly attributed 
to the units in the plants. The random errors eijkl for the 
same plant are thus not independent. Rather, it was 
assumed that errors for different plants are independent:	
	
Cov [eijkl, ei’j’k’l] = 0 				    (2)

If i ≠ i’, j ≠ j’, or k ≠ k’.

Moreover, as measurements in the same plant last 
for a period, they can have different variations and the 
correlations between pairs of measurements depend on 
the length of the time interval between measurements. 
Hence, in general, it was assumed

Var eijkl l�� �� � �
2 	  (3)

and

Cov e eijkl ijkl ll, � ��� �� � � 	  (4)

It was allowed that the variation of eijkl depended on 
the time of measurement/harvest l, and the covariance 
between errors in two harvests, l and l’, for the same 
plant, depended on the harvests. The covariance model 
can be expressed according to some structures involving 
fewer parameters in R. The following covariance 
structures of the errors were evaluated:

Compound symmetry (CS), characterized by 
equality of variance and covariance:
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First-order autoregressive (AR), characterized 
by equality of variance, and covariance decreases as 
distances between harvests increase:
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Variance component (VC), with homogeneous 
variance of harvests and absent covariance:
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Heterogeneous first-order autoregressive (HAR), 
heterogeneous variances and the covariance between 
two adjacent measurements is equal to the correlation 
(r), and the covariance between two non-adjacent 
measurements is the correlation raised to the number of 
measurements between the two -1:
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Compound symmetry with heterogeneous 
variance (HCS), characterized by inequality of variances:
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Unstructured (UN), using different variances 
for each of the lth harvests and different covariances 
between measurements in different harvests:
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Two model adjustment measurements were 
obtained for each model. The first one was the Akaike 
Information Criterion (AIC) (Akaike, 1974):

AIC L d� � �2 2log ( )� 	  (5)

where: q̂  represents the total number of fixed effect 
parameters and variation components estimated in the 
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model. The second adjustment measurement of the 
model was the Bayesian Information Criterion (BIC) 
(Schwarz, 1978):

BIC = –2logf(xn|q) + plogn	 (6)

where: f(xn|q) is the model chosen; p is the number 
of parameters to be estimated; n is the number of 
observations in the sample.

The accuracy function for permanent phenotypic 
effects was obtained by:

r
mp
m ppp

2
1 1

�
� �( )

	  (7)

where: rfp
2  is the permanent phenotypic accuracy; m, 

the number of measurements per individuals; and p, the 
repeatability coefficient.

The efficiency regarding the use of only one 
harvest was calculated as described by:

r
mp
m paaˆ

/
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�

	  (8)

where: raaˆ
2  is the efficiency in relation to the use of only 

one harvest; m is the measurements per individuals; and 
p is the repeatability coefficient.

The coefficient of determination, which represents 
the prediction certainty of the individual true value for 
the variables considering the number of measurements 
performed, was calculated by the equation (Cruz et al., 
2012):

R2 = m.p/1 + p.(m – 1)	  (9)

where: R2 is the coefficient of determination for the 
number of repetitions made; m is the number of 
measurements per individuals; and p is the repeatability 
coefficient.

The estimate of the number of measurements 
(n0), required to predict the individual true value with 
the value of genotype determination (R2) expected, was 
determined using the equation (Cruz et al., 2012):

n
R r

R
0

2

2
1

1
� �

�
( )

{( ) }r
	  (10)

where: R2 is the coefficient of determination for the 
number of repetitions made; and r is the number of 
measurements. 

Results and Discussion 

The term ‘repeated measurement’ is used for datasets 
with several measurements of a response variable in the 
same experimental unit. In most applications, several 
measurements are taken during a time. Generally, any 
data measured repeatedly over time or in space are 
repeated measurement data. The covariance structure 
of the data observed is what differentiates data analysis 
from repeated measurements. In randomized block 
designs, treatments are randomized to units within a 
block. It renders all observations within a particular 
block equally correlated. In repeated measurement 
experiments, however, two measurements made at 
adjacent time points are more likely to correlate than 
two measurements made at multiple time points.

The critical point in these models is a correct 
specification of the covariance structure to obtain 
efficient estimates in the analysis of repeated 
measurements. Six covariance structures were tested in 
this work. The best model was chosen based on Akaike 
(AIC) and Schwarz Bayesian (BIC) information criteria 
for the agronomic performance variables of full-sibs of 
Psidium guajava (Table 1).

No convergence of the iterative process occurred 
for the models that considered the HAR, HCS, and 
UN covariance structures, possibly because in each 
iteration, the residual variation was calculated after the 
equations of the mixed model were solved and the -2 
Log Res Like was obtained. If the difference between 
-2 Res Log Like of each iteration is less than 1E-8, the 
model will converge. If the model response continues to 
vary between iterations, it may not converge (Littell et 
al., 2006). This result suggests that these structures may 
not be appropriate for the residue modeling of the set 
used in this work to obtain repeatability estimates with 
greater accuracy.

A further reason for the non-conversion of the 
model is that the covariance matrix can be defined as non-

Table 1 – Values for the AIC (Akaike Information Criterion) and BIC (Schwarz Bayesian) information criteria for the model adjustment regarding 
six different covariance structures.

Variables Criteria
Structures

AR CS VC HAR HCS UN

FM
AIC 47052.8 48623.8 48864.8 * * *
BIC 47064.8 48635.9 48753.9 * * *

NF
AIC 32715.9 35501.4 36321.5 * * *
BIC 32727.9 35513.5 36319.4 * * *

TY
AIC 64176.7 66832.5 67502.2 * * *
BIC 64188.7 66844.5 67485.9 * * *

FM = fruit mass; NF = number of fruits, and TY = total yield per plant. AR = First-order autoregressive; CS = compound symmetry; VC = variance components; HAR 
= heterogeneous autoregressive; HCS = heterogeneous compound symmetry; UN = unstructured. *Did not converge.
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positive, in other words, a prerequisite. One way to deal 
with convergence problems could be to use nonlinear 
models, generalized mixed models, and the Bayesian 
methods. The SAS software can use a Fisher score linked 
to the estimate method until a predetermined iteration 
number (Littell et al., 2006). It was decided, however, 
to avoid convergence because the models that did not 
converge contained many parameters in the covariance 
matrix and such hyper-parameterization is not wanted.

The AIC and BIC enable comparing models with 
different factors and provide a higher grade to the more 
parameterized models, which assigns a lower model 
adjustment. Among these criteria, the BIC is the strictest, 
as it is a criterion that favors models with the least 
possible parameters to be estimated (Wolfinger, 1993). 
If the HAR, HCS, and UN models had converged, they 
would not be selected because of the significant number 
of parameters of the model to be estimated. Besides, the 
model selection criteria score better for simpler models, 
harming the more complex ones.

The unstructured covariance structure is the most 
complex one because it estimates unique correlations 
for each pair of points in time, a hyper-parameterized 
model. This structure is not commonly used, which 
makes it an unusual model for perennial crops. In 
contrast, the compound symmetry structure is also a 
very parameterized covariance matrix, but it is used in 
some works in which AR and CS are also cited (Maia et 
al., 2013; Quintal et al., 2017).

When a possible existence of a linear correlation 
between the measurements of the experimental unit 
is neglected, a more significant error in the residual 
variance component will possibly be attributed, as 
everything that is not in the model goes to the residue 
(Islam and Chowdhury, 2017). This is seen when the 
simple variance components are used, which consider 
a zero covariance between the measurements, not 
representing the relationship between the measurements 
(Woyann et al., 2018).

The variance component (VC) used in simple 
repeatability models presented the highest values of 
AIC and BIC, the least true, as predicted. This was likely 
to occur because this covariance structure assumes a 
lack of correlation between measurements. Hence, the 
assumption of independence cannot be admitted as a 
rule to support the classical variance analysis model for 
this study (Silva et al., 2021).

The autoregressive structure had the lowest 
value for all traits in both selection criteria. In this 
covariance structure, correlations among observations 
of the same individual diminish throughout time. In 
other words, correlations among the observations of the 
first harvest are greater with the second harvest, are 
smaller with the third, and are much smaller with the 
fourth harvest. Therefore, this structure was the most 
suitable to represent the existing correlation between 
the measurements according to the adjustment of the 
models. Working with three harvests, Quintal et al. 

(2017) concluded that the most appropriate structures 
to model yield variables in guava tree crops were AR 
and CS respectively. Similar results have shown that 
the spatial modeling of errors in Pear orange clones 
can be done by using first-order autoregressive model. 
This covariance structure enabled a better fit among the 
models under evaluation (Maia et al., 2013).

The covariance matrix parameters were estimated 
(r̂) for the structure with the lowest AIC and BIC values, 
the autoregressive. The values estimated were 0.57, 
0.87, and 0.87 for the variables fruit mass, number of 
fruits, and total yield per plant, respectively.

The parameter r estimated for the AR covariance 
structure approaches zero as harvests pass. For example, 
when plotting the response of yield along the time, the 
primary variable of interest in the crop, it can be seen 
that the climatic conditions influenced each crop at that 
time. Hence, as time passes, although measurements are 
taken in the same location, the climate of a measurement 
does not have much influence on another measurement 
taken long after (Figure 1).

After selecting the best model, the repeatability 
coefficient was estimated (Table 2). This coefficient was 
estimated for both variables, fruit mass and total plant 
yield, which presented repeatability estimates of 0.24 
and 0.54, respectively. This variation in repeatability 
coefficients may be related to the nature of the traits, 
the genetic properties of the population, and whether 
the individuals under evaluation are stabilized (Cruz et 
al., 2012).

The repeatability coefficient estimates are 
considered high when they are equal to or higher than 0.6; 
median when the estimates display values between 0.6 
and 0.3; and low when the values are below 0.3 (Resende 
et al., 2006). Variables with a repeatability coefficient 
above 0.5 with a coefficient of determination above 80 % 
prove the reliability of the phenotypic value to predict the 
true value of individuals (Bergo et al., 2013).

The variables number of fruits and total yield per 
plant showed estimates above 0.5, considered moderate 
values. Similar values were found by Costa (2003) by 
testing different methods to estimate the repeatability 
coefficient and working with the same variables in 
mango. The authors concluded that the coefficients 
estimated suggested that the environmental variance 
had little influence on these variables from one harvest 
to the other.

Pruning is a phytosanitary treatment that greatly 
influences these variables. In guava trees, yield pruning 
and subsequent removal of sprouts are commonly made, 
keeping the amount of branching, which will produce 
floral buds. If many branches are kept during sprout 
thinning, the number of fruits increases, but the fruit 
mass diminishes due to the distribution of the plant 
resources. Hence, the “sprout thinning environment” 
performed by the breeder influences the variables, but 
it must be constant throughout time to avoid influencing 
parameters such as heritability.
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Regarding the estimated number of 
measurements, four harvests can be established as 
the minimum number of observations required in the 
same individual for the variables number of fruits and 
total yield per plant. These measurements can lead to 
reliable data that enables individual selection, with over 
90 % reliability and minimal cost and labor. Quintal 
et al. (2017) and Almeida et al. (2019) worked with 
three guava crops to estimate the number of harvests 
needed with predictions from the third harvest. The 
authors concluded that a more significant number of 
harvests would be necessary, five of them, to reach 
a sure accuracy. In our study, however, in which 
measurements were performed and not predicted, it 
was recommended four harvests.

The repeatability in terms of the mean level 
of the four harvests (coefficient of determination) 
corresponds to 0.83 (NF) and 0.82 (TY). Coefficients 
of determination greater than 0.8 prove the reliability 
of the phenotypic value in predicting the true value of 
this population. A repeatability study with mango yield 
variables reported similar estimates (Costa, 2003).

The individual accuracy was 0.90 for the variables 
NF and TY. The selective accuracy results from the 
estimate of heritability, repeatability of the variable, 
and methodologies to predict genetic values. Given that 
this measurement is linked to the correlation between 
predicted genetic values and true genetic values of 
individuals, the greater the accuracy in the evaluation of 
an individual, the greater the reliability in the evaluation 
of the individual. 

The efficacy of five harvests compared to only one 
is 1.22 and 1.23 for the variables NF and TY, meaning 
that when four harvests were used, an increase of more 
than 20 % in efficacy was obtained on average compared 
to one. From the fourth harvest onward, the increase 
in the number of harvests presented a slight gain in 
efficacy; thus, an increase in the number of harvests was 
not viable.

The trait fruit mass showed an estimated 
repeatability of 0.24, indicating low regularity in the 
repetition of the character from one cycle to the other. In 
order to determine a minimum number of measurements 
to predict the true value of individuals, based on the 

Table 2 – Accuracy (A), efficiency (E), and repeatability (R2) values for the variables fruit mass (FM), number of fruits (NF), and total yield per plant 
(TY) in guava tree population.

Repeatability
FM NF TY

0.24 0.54 0.53
Harvests R2 A E R2 A E R2 A E
1 0.24 0.49 1 0.54 0.74 1 0.53 0.73 1
2 0.39 0.62 1.26 0.70 0.84 1.13 0.69 0.83 1.14
3 0.49 0.70 1.41 0.78 0.88 1.19 0.77 0.88 1.20
4 0.56 0.75 1.51 0.83 0.91 1.22 0.82 0.90 1.23
5 0.61 0.78 1.58 0.85 0.92 1.25 0.85 0.92 1.26
6 0.66 0.81 1.64 0.87 0.93 1.26 0.87 0.93 1.27
7 0.69 0.83 1.68 0.89 0.94 1.27 0.88 0.94 1.28
8 0.72 0.84 1.71 0.90 0.95 1.28 0.90 0.94 1.29
9 0.74 0.86 1.74 0.91 0.95 1.29 0.91 0.95 1.30

Figure 1 – Yield profile in Psidium guajava for nine harvests. The blue line is the density function of 17 guava tree families throughout time. The 
area around the blue line is the standard error. The green boxplot is the quantile and median of 17 guava tree families at a time.
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coefficient of determination of 0.85, considered a 
reliable value for a trait with low heritability (Bergo et 
al., 2013) for this variable, it was used:

n
R r

R r
0

2

2
1

1
0 851 0 24
1 0 85 0 24

17 94� �
�

� �
�

�( )
( )

. ( . )
( . ) .

.

Hence, to reach a coefficient of determination 
of 85 %, it is necessary to perform approximately 
18 measurements per individual. Therefore, the 
application of breeding methods that have a good 
parental control of the individuals is required to obtain 
gains in this variable, as well as indirect selection by 
means of studying correlations with better genetic 
control traits (Maia et al., 2013).

This low repeatability coefficient for the variable 
FM may be attributed to the genetic difference 
between the genotypes analyzed in the experiment, the 
experimental control, and the environmental variations 
due to the long period of exposure of the plants to the 
environment (perenniality). Nevertheless, this variable 
is relevant for fruit tree breeding, despite being a trait 
of low repeatability.

In this case, indirect selection by studying 
correlations can be a good strategy. For example, 
pulp mass, fruit diameter, and fruit length exhibited a 
correlation of 0.95, 0.9, and 0.78 with fruit mass (Silva 
et al., 2021) and can be used to select this variable 
indirectly.

Given the results obtained for this variable, some 
points should be emphasized. This variable does not 
keep the means similar throughout the harvests, which 
results in a low repeatability value. This low value 
for repeatability influences the model, indicating the 
need to carry out 18 harvests to make the selection 
in it. When a genetic breeding program is conducted 
on perennial plants, it is impossible to perform this 
number of harvests. Additional works have already 
evidenced that it is not viable to increase the number 
of measurements to reach higher levels of accuracy in 
perennial plant variables, such as mango tree crops 
(Costa, 2003).

Therefore, yield, the main trait of interest in 
guava tree crops, can be evaluated with few harvests, 
which still allows obtaining reliable data for individual 
predictions. Other traits, such as fruit mass, commonly 
sought for cultivars intended for table fruit, can be 
selected using indirect selection by other correlated 
variables.

Conclusion

The autoregressive structure provided the best results 
for all the variables, thus being suitable for modeling 
this type of experiment.

Four measurements can be used to estimate a 
value close to the true value of individuals for the 
variables NF and TY.

The variable FM provided a low repeatability 
coefficient value, requiring further observations to 
obtain high accuracy, making it impossible to rely solely 
on this variable.
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