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ABSTRACT: Regression analysis is highly relevant to agricultural sciences since many of the 
factors studied are quantitative. Researchers have generally used polynomial models to explain 
their experimental results, mainly because much of the existing software perform this analysis 
and a lack of knowledge of other models. On the other hand, many of the natural phenomena 
do not present such behavior; nevertheless, the use of non-linear models is costly and requires 
advanced knowledge of language programming such as R. Thus, this work presents several 
regression models found in scientific studies, implementing them in the form of an R package 
called AgroReg. The package comprises 44 analysis functions with 66 regression models 
such as polynomial, non-parametric (loess), segmented, logistic, exponential, and logarithmic, 
among others. The functions provide the coefficient of determination (R2), model coefficients 
and the respective p-values ​​from the t-test, root mean square error (RMSE), Akaike’s information 
criterion (AIC), Bayesian information criterion (BIC), maximum and minimum predicted values, 
and the regression plot. Furthermore, other measures of model quality and graphical analysis 
of residuals are also included. The package can be downloaded from the CRAN repository using 
the command: install.packages(“AgroReg”). AgroReg is a promising analysis tool in agricultural 
research on account of its user-friendly and straightforward functions that allow for fast and 
efficient data processing with greater reliability and relevant information.
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Introduction

Agronomic experiments are generally laborious, 
expensive, and often take years to be performed. 
Moreover, they are often tricky and complex in planning 
and execution. They depend on many factors that affect 
both the efficiency and reliability of results due to the 
natural variability of biological and agricultural systems 
(Piepho and Edmondson, 2018). 

Experimental design and analysis depend on the 
measurement structures of treatment factors, and their 
understanding is essential to a correct analysis (Piepho 
and Edmondson, 2018). In the case of qualitative 
factors, the levels do not have a specific level order on 
a numerical scale (Montgomery, 2017). In these cases, 
if the experiment has adequate repetitions, they can be 
compared by the standard error of the differences or 
tests of means (Hsu, 1996; Bretz et al., 2011; Piepho and 
Edmondson, 2018).

Treatment factors are quantitative when the levels 
can be ordered numerically (Montgomery, 2017). In 
this case, regression analysis is recommended, which 
uses distance information on the scale of quantitative 
predictors, allowing for the estimation of values ​​even if 
they were not observed in the study (Cochran and Cox, 
1986; Pimentel-Gomes, 2009; Banzatto and Kronka, 
2013; Storck et al., 2016). However, an experiment for 
such a purpose requires at least three levels of the factor, 
although at least five are desirable.

Experiments that study quantitative factors in 
agricultural sciences have been reported in several 

articles such as studies of plant density or population 
(Van Roekel and Coulter, 2011; Williams et al., 2021), 
fruit post-harvest quality (Marodin et al., 2016), seed 
germination (Motsa et al., 2015), weed control (Noel et 
al., 2018), and growth curves (Lúcio and Sari, 2017). In 
these studies, polynomial models were predominantly 
used and, although this is not incorrect, many natural 
phenomena do not present such behavior but rather 
specific models (Archontoulis and Miguez, 2015).

Programming languages, such as SAS or R, usually 
perform non-linear models. For instance, regression 
analysis can be performed in the base R language using 
functions such as lm, nls or glm. Nevertheless, non-
linear models performed by the nls function require the 
prior specification of values ​​to obtain model coefficient 
estimates, which is time-consuming. Implementing the 
R package may help carry out these analyses, as it is 
more straightforward and accessible for users. Thus, 
this work presents regression models found in scientific 
studies and implements them as an R package called 
AgroReg.

Materials and Methods

Creation of the AgroReg package

The package was built using the R (version 4.1.0) 
language (R Core Team, 2021), and documentation 
and checks were generated by the devtools packages 
(Wickham et al., 2021) and roxygen2 (Wickham et al., 
2021) to facilitate the construction and adequacy of the 
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CRAN policy. The drc (Ritz et al., 2015) and ggplot2 
(Wickham et al., 2016) packages were imported and 
added as a dependency, the first for logistic regression 
analysis and the second for graphical representation. 
Other packages (boot, minpack.lm, dplyr, rcompanion, 
and broom) have also been added as a dependency to 
make it easier to build functions.

Installation

All developed functions were written in the R 
programming language; therefore, they can be executed in 
the R environment or any GUI (Graphical User Interface) 
that uses this language, such as RStudio (https://www.
rstudio.com/). R can be installed on Windows, Linux, or 
Mac systems. Thus, the scientific community can freely 
use this package regardless of the operating system. 
The AgroReg package can be installed from the CRAN 
repository using the following command:

install.packages(“AgroReg”, dependencies=TRUE)

The following command must be run to load the 
package:

library(AgroReg)

The package documentation can be accessed 
via the link: https://cran.r‑project.org/web/packages/
AgroReg/AgroReg.pdf

Data set

The collection of functions available in the AgroReg 
package implements several methods to describe many 
of the phenomena observed in quantitative studies in 
agricultural sciences, as mentioned in Table 1. Thus, the 
data obtained in real experiments were implemented to 
better exemplify the applications of the package. The 
use of the functions available in the package and the 
interpretation of their results are best presented in the 
form of an applied example using real data.

“aristolochia”

The data for exemplifying the functions “LM”, “LM_i”, 
“LM13”, “LM13i”, “LM23”, “LM23i”, “LM2i3”, “logistic”, 
“LL”, “CD”, “BC”, “GP”, “SH”, “gaussianreg”, “loessreg”, 
“newton”, “valcam”, and “VG” come from an experiment 
conducted at the Seed Analysis Laboratory of the Center 
for Agricultural Sciences at the State University of 
Londrina (UEL) (23°19’42.8” S, 51°12’11.9” W, altitude 
580 m), in which five temperatures (15, 20, 25, 30, and 
35 °C) were assessed as to their effect on the germination 
of Aristolochia elegans. The experiment was conducted in 
a completely randomized design with twelve replicates 
of 25 seeds each. Data can be accessed by the command 
data(“aristolochia”).

“granada”

The “granada” dataset represents partial data from an 
experiment conducted at UEL to evaluate the drying 
kinetics of pomegranate peel over time. Mass loss 
was assessed at 60, 210, 390, 720, 930, 1410, 1890, 
2370 min after the beginning of the experiment. This 
dataset was used to exemplify the following functions: 
“AM”, “asymptotic”, “asymptotic_neg”, “asymptotic_i”, 
“asymptotic_ineg”, “biexponential”, “hill”, “MM”, “GP”, 
“weibull”, “GP”, “valcam”, “linear.linear”, “linear.
plateau”, “quadratic.plateau”, “plateau.linear”, “plateau.
quadratic”, “midilli”, “midillim”, “PAGE”, “peleg”, 
“potential”, “yieldloss”, “lorentiz”, and “mitscherlich” 
(Table 1). Data can be accessed by the command 
data(“granada”).

Regression models

All regression models implemented in the package 
are shown in Table 1, in addition to functions and 
descriptions, as well as applications in articles in the 
field of agricultural sciences. The models were grouped 
into non-parametric (loess), polynomial, logistic or 
S-shaped, logarithmic, bell-shaped, segmented, and 
exponential models. They were primarily extracted from 
scientific journals with original works such as the one 
from Sadeghi et al. (2019) or review articles, including 
the one written by Archontoulis and Miguez (2015), 
aiming to cover as many regression models as possible. 
Furthermore, modifications of specific models were also 
implemented.

Polynomial models, also called linear models, were 
implemented from the lm base R function. The same 
procedure was used to obtain the logarithmic curves, 
the Valcam model, and specific exponential models. On 
the other hand, the non-parametric loess regression, 
also known as local regression, was performed using the 
loess base R function.

Logistic equation models, also called sigmoid 
curves, are S-shaped and mainly used to describe plant 
growth curves, seed germination over time, or herbicide 
dose-response studies (Archontoulis and Miguez, 2015). 
They are implemented in the drc (Ritz et al., 2015) and 
aomisc (https://github.com/OnofriAndreaPG/aomisc) 
packages. Thus, in AgroReg, these functions were 
imported and summarized in a more straightforward 
function with more information.

Finally, nls from the stats package was used for the 
other functions, relying on the methodology of ordinary 
least squares. In these cases, pre-established algorithms 
were used to automate the initial information. Thereby, 
most functions do not require initial information to 
generate models, although the problematic convergence 
of coefficients may occur, owing to not estimating good 
initial values. In such a situation, the user can specify a 
priori information by the “initial” argument, according 
to each regression model.
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Table 1 – Functions, descriptions, mathematical model, and applications of the models implemented in the AgroReg package.

Function Description Model Applications

Descriptive

Nreg Descriptive graphic - -

Non-parametric

loess_model Local loess non-parametrical of 0, 1, 
or 2 degree - -

Polynomial or linear models

LM Simple linear, quadratic, inverse 
quadratic, cubic or quartic

y = β
o 
+ β

1
x

Silicon doses and their influence on tomato post-harvest durability 
and quality (Marodin et al., 2016), Chrysanthemum leucanthemum 
seed imbibition curve (Pêgo et al., 2012), potato yield according to 
K

2
O doses (Maingi and Mbuvi, 2020)

y = β
o 
+ β

1
x + β

2
x2 

y = β
o 
+ β

1
x + β

2
x0.5

y = β
o 
+ β

1
x + β

2
x2 + β

3
x3

y = β
o 
+ β

1
x + β

2
x2 + β

3
x3+ β

4
x4

LM_i
Simple linear, quadratic, inverse 
quadratic, cubic, or quartic without 
intercept

y = β
1
x

Drying kinetics of Cydonia oblonga (Tzempelikos et al., 2015)

y = β
1
x + β

2
x2 

y = β
1
x + β

2
x0.5

y = β
1
x + β

2
x2 + β

3
x3

y = β
1
x + β

2
x2 + β

3
x3+ β

4
x4

LM13 Cubic without β
2

y = β
o 
+ β

1
x + β

3
x3 Merremia aegyptia straw dose in vegetable cowpea (Silva et al., 

2020)

LM13i Inverse cubic without β
2 y x x� � �� � �0 1 3

1
3 -

LM23 Cubic without β
1

y = β
o 
+ β

2
x2 + β

3
x3 M. aegyptia straw dose in vegetable cowpea (Silva et al., 2020)

LM23i Inverse cubic without β
1 y x x� � �� � �0 2

1
2

3

1
3 -

LM2i3 Cubic without β
1
 and with inverse β

3 y x x� � �� � �0 2
2

3

1
3 -

valcam Valcam y = β
o 
+ β

1
x + β

2
x1.5 + β

3
x2 Drying kinetics of Bauhinia forficata (Silva et al., 2017)

Logistic, sigmoid, or S-shaped models

logistic
Logistic with three (npar=“L.3”), four 
(npar=“L.4”), or five (npar=“L.5") 
parameters

y d
eb x e�

� �1 ( )

Eleusine indica germination curve (Kerr et al., 2018) and growth 
curve of satsuma mandarin (Citrus unshiu Marc.) (Yano et al., 
2018) and strawberry production curve (Diel et al., 2019)

y c d c
eb x e� �
�

� �1 ( )

y c d c
eb x e f� �
�

� �1 ( )

LL Log-logistic with three (npar="LL.3"), 
four (npar="LL.4"), or five (npar="LL.5") 
parameters

y d
eb x e�

� �1 (log( ) log( ))

Fungicide dose-response (Noel et al., 2018), Tomato brown rugose 
fruit virus (ToBRFV) progress in tomato cultivars (González-Concha 
et al., 2021)

y c d c
eb x e� �

�
� �1 (log( ) log( ))

y c d c
eb x e f� �

�
� �1 (log( ) log( ))

BC Brain-Cousens with four (npar=“BC.4”) 
or five parameters (npar=“BC.5”)

y d fx
eb x e�
�

� �1 (log( ) log( )) Herbicide dose-response (Schabenberger et al., 1999), 
Trichoderma asperellum doses in wheat seeds (Couto et al., 2021)

y c d c fx
eb x e� �
� �

� �1 (log( ) log( ))

CD
Cedergreen-Ritz-Streibig with four 
(npar=“CRS.4”) or five (npar=“CRS.5”) 
parameters

y d fe
e

x

b x e�
�

�

�

�

1

1 (log( ) log( )) Kiwi fruit drying kinetics (Sadeghi, et al., 2019) and dose-response 
of flufenacet and pendimethalin to control Alopecurus myosuroides 
(Metcalfe et al., 2017)

y c d c fe
e

x

b x e� �
� �

�

�

�

1

1 (log( ) log( ))

Continue.
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weibull Weibull with three (npar=“w3”) or four 
(npar=“w4”) parameters 

y de eb x e

� � �(log( ) log( ))

Substrate water retention curve (Bateman et al., 2019)
y c d c e eb go x e

� � � � �

( )( )
( ( ) log( ))

GP
Gompertz with two (npar=“g2”), three 
(npar=“g3”), or four quatro (npar=“g4”) 
parameters

y e e eb x e

� � � �( )

Growth curve (Fang et al., 2022) and response-dose (Mendes et 
al., 2019) y d e e eb x e

� � � �

 
( )

y c d c e e eb x e

� � � � � �

( )( )
( )

VB Von Bertalanffy y L e k x t� � � �( )( )1 0 Strawberry production curve (Diel et al., 2019)

lorentz Lorentz with three (“lo3”) or four (“lo4”) 
parameters

y d
b x e

�
� �1 2( )

-
y c d c

b x e
�

�
� �1 2( )

Bell-shaped models

beta_reg Beta regression, developed by Yin et 
al. (1995)

y d
X X
X X

X X
X X

b

o b

c

c o

X X
X Xb

b
c o

o

�
��

�
�

�

�
�

��

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
� Cardinal temperature estimate for cultivars of Quinoa (Mamedi et 

al., 2017) and Alyssum homolocarpum (Zaferanieh et al., 2020)

gaussianreg Function analogous to Gaussian 
distribution or Bragg model 

y d e b x e� � � ( )2

-
y c d c e b x e� � � � �( ) ( ) 

2

Segmented models

linear.linear Linear-linear segmented
y = β

0
 + β

1
x (x < bp) Cardinal and optimal temperature estimate for seed germination 

(Motsa et al., 2015). Relationship of phosphorus content with 
wheat and maize yield (Xi et al., 2016)y = β

0
 + β

1
bp + wx (x > bp)

linear.plateau Linear-plateau segmented
y = β

0
 + β

1
x (x < bp) Estimate of optimal minimum plant density (Ferreira et al., 2020), 

onion bulb yield according to nitrogen doses (Gonçalves et al., 
2019)y = β

0
 + β

1
bp (x > bp)

plateau.linear Plateau-linear segmented 
y = β

0
 + β

1
bp (x < bp)  

Relationship between average daily temperature and weight and 
sunflower oil content (Angeloni et al., 2021)y = β

0
 + β

1
x (x > bp)

quadratic.
plateau Quadratic-plateau segmented 

y = β
0
 + β

1
x + β

2
 x2 (x < bp) Density (Van Roekel and Coulter, 2011) or population of maize 

plants (Williams et al., 2021)y = β
0
 + β

1
bp + β

2
bp2 (x > bp)

plateau.
quadratic Plateau-quadratic segmented 

y = β
0
 + β

1
x + β

2
x2 (x > bp)

-
y = β

0
 + β

1
bp + β

2
bp2 (x < bp)

Logarithmic models

LOG Logarithmic y = β
0
 + β

1
ln(x) Kiwi fruit drying kinetics (Sadeghi et al., 2019)

LOG2 Quadratic logarithmic y = β
0
 + β

1
ln(x) + β

2
ln(x)2 -

thompson Thompson or quadratic logarithmic 
without intercepto y = β

0
 β

1
ln(x) + β

2
ln(x)2 Kiwi fruit drying kinetics (Sadeghi et al., 2019)

Exponential models or equations that show exponential growth characteristics

asymptotic Logarithmic or Asymptotic y = a e–βx + c Kiwi fruit drying kinetics (Sadeghi et al., 2019)

asymptotic_i Henderson and Pabis or exponential 
bi-parametric model y = a e–βx Orange seed drying (Rosa et al., 2015)

asymptotic_ineg Negative asymptotic without intercepto y = –α e–βx -

biexponential Biexponential y A e A ee elrc x lrc x

� �� �1 2
1 2

  Atrazine degradation in soil (Swarcewicz and Gregorczyk, 2013)

mitscherlich Mitscherlich’s Law y = A (1–10–eb–ex) Evaluation of the effect of pH on phosphate availability (Barrow et 
al., 2020)

yieldloss Yield loss
y ix

i
A

x
�

�1 Relationship between weed density and yield loss (Cousens, 1985)

Table 1 – Continuation.

Continue.
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hill Hill y a x
b x

c

c�
�
�

-

MM Michaelis-Menten or rectangular 
hyperbola 

y Vm x
k x

�
�
�

Pomegranate peel drying kinetics (Shimizu et al., 2020)
y c Vm x

k x
� �

�
�

SH Steinhart-Hart y
A B x C x

�
� �

1
3ln( ) [ln( )]

Density ratio of maize plants to grain dry mass (Zhai et al., 2021)

PAGE Page y e kxn

� � Drying kinetics of Cydonia oblonga (Tzempelikos et al., 2015), and 
Kiwi (Sadegui et al., 2019)

newton Newton ou Lewis y = e–kx Kiwi (Sadegui et al., 2019) and onion drying kinetics (Sharma et 
al., 2005) 

potential Potential y = β
1
 xn Kiwi fruit drying kinetics (Sadegui et al., 2019)

midilli Midilli y e bxkxn

� ��
Kiwi fruit drying kinetics (Sadeghi et al., 2019)
Effects of drying conditions on the functional and physical quality 
of dry autumn olives (Zannou et al., 2021) 

midillim Midilli modified y = αekx + bx Kiwi fruit drying kinetics (Sadeghi et al., 2019)

AM Avhad and Marchetti y ekxn

� � Drying kinetics of Hass avocado seeds (Avhad and Marchetti, 
2016)

peleg Peleg y x
a bx

�
�
�

1 Effects of drying conditions on the functional and physical quality 
of dry autumn olives (Zannou et al., 2021)

Table 1 – Continuation.

Statistical information and parameters

The functions were developed to provide estimates of 
the maximum and minimum predicted values obtained 
in the curve within the studied range. In addition, 
statistical parameters such as AIC (Akaike’s information 
criterion), BIC (Bayesian information criterion), R2 
(coefficient of determination) or Pseudo-R2 (correlation 
between observed and predicted outcome), RMSE 
(root mean square error), and p-value from the t-test of 
coefficients were also returned. In the case of polynomial 
models, the variance inflation factor (VIF) is also given.

The root mean square error is calculated by the 
following formula:

							     

RMSE
Y Y

n
ii

n
i�

��� ( )1
2

	  			   (1)

where Ŷi is the response predicted by the model, Y
i
 the 

observed response, and n the sample size.
The Akaike’s Information (AIC) and Bayesian 

Information (BIC) Criteria are calculated by the formula:

AIC
i
 = –2logL

i 
+ 2p

i
	  (2)

BIC
i
 = –2logL

i
 + p

i
logn	  (3)

where: L
i
 and p

i
 are the likelihood function and number 

of parameters for each model, and n the number of 
observations.

The VIF is calculated using the formula:
							     

VIF
R

j pj
j

�
�

�
1

1
1 2

2
, , , 				    (4)

where: p is the number of predictor variables; Rj
2 the 

multiple correlation coefficient, resulting from the X
j
 

regression on the other p-1 regressors.
Other goodness-of-fit statistical parameters such 

as MBE – mean bias error, MBER – relative mean bias 
error, MAE – mean absolute error, RMAE – relative 
mean absolute error, SE – standard error, MSE – mean 
squared error, rMSE – relative mean square error, 
EF – modeling efficiency, SD – standard deviation of 
differences, and CRM – coefficient of residual mass 
are provided separately from the analyses, through the 
“stat_param” function. Graphical analysis of residuals 
can be performed by the command “extract.model” as 
follows:
							     
MBE

n
Y Yi ii

n� �� ���1
1

ˆ 	  			   (5)

RMBE n
Y Y

Y

i ii
n

o
�

�� ���1
1

ˆ

ˆ
 (6)

							     
MAE

n
Y Yi ii

n� ���1
1

ˆ 				    (7)

					   
RMAE n

Y Y

Y

i ii
n

i
�

���1
1

ˆ

ˆ
 				    (8)

SE Y Yii
n� �� ��� ˆ 2

1  				    (9)

MSE
Y Y

n
i ii

n

�
�� ��� ˆ 2

1 	  (10)
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rMSE

Y Y

n
Y

i ii
n

o
�

�� ��� ˆ

ˆ

2

1
	  (11)

EF
Y Y

Y Y

i ii
n

i ii
n

� �
�� �
�� �

�

�

�
�

1

2

1
2

1

ˆ
 (12)

SD
n

n

�
� � �

�
� ( )2

1
	 (13)

CRM
Yi

�
�

 (14)

where: Ŷi  
is the response predicted by the model, Y

i
 the 

observed response, Yi the mean of the observed response, 
∈ the mean of the difference between the predicted 
and the observed response, and n the sample size.

Results and Discussion

General information

The package has 44 regression analysis functions, which 
can also be accessed using the “regression” function and 
defining the “model” argument according to the requested 
regression model (Table 1). This function has the simple 
linear model (model=“LM1”) by default, as follows:

> data(“aristolochia”)

> with(aristolochia, regression(trat, resp, model=“LM1”))

For more information, access the documentation 
for the function (“?regression”).

In all analysis functions, the first two arguments 
are mandatory, representing the independent variable 
and dependent variable, respectively. In the case of 
polynomial functions (LM and LM_i), the argument 
“degree” defines the polynomial degree, while for logistic 
functions and some exponentials, such as logistic, LL, 
BC, CD, GP, weibull, lorentz, and MM, the argument 
“npar” sets the number of parameters.

Figures 1A and B show the plot of the simple 
linear regression analysis and Brain-Cousens four-
parameter logistic model, respectively. Curves joining 
can be accessed by the “plot_arrange” function (Figure 
1C), requiring a list with the outputs of each analysis as 
the only mandatory argument, as follows:

> data(“aristolochia”)

> reg1 = with (aristolochia, LM(trat, resp))

> reg2 = with(aristolochia, BC(trat, resp))

> plot_arrange(list(reg1, reg2))

Figure 1 – Exemplification of the output of a linear (A) and Brain-
Cousens logistic (B) function and union of the curves in a plot 
(C) using the functions from the AgroReg package for the 
“aristolochia” dataset of the germination of seeds of Aristolochia 
elegans depending on the temperature.
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Figure 2 – Visualization of all observations by scatter plot (A) and 
mean and standard deviation (B) for the “granada” dataset. WL = 
weight loss, Time (min) = Time after pomegranate peel begins to 
dry. The function returns a “not significant” label as this function 
can be used to represent the absence of a trend when you want 
to join the plots.

1000 min with subsequent stability. This behavior is like 
exponential models or models that behave similarly, such 
as Michaelis-Menten, logistic models, or Mitscherlich. 
Segmented models, such as linear-linear, linear-plateau, 
and quadratic-plateau models, are also used to explain 
this behavior. Next, the routine of these functions and 
the appearance of the curve (Figure 3) is presented.

> with(granada, Nreg(time, WL)) 

> models = c(“asymptotic_neg”, “biexponential”, “LL3”, 
“BC4”, “CD5”, “linear.linear”, “linear.plateau”, “quadratic.
plateau”, “mitscherlich”, “MM2”)

> m = lapply(models, function(x) {
m = with(granada, regression(time, WL, model = x))})
> plot_arrange(m, trat = paste(“(“,models,”)”))

The graphical representation synthesis is a 
laborious and error-prone step, especially when the 
user needs more experience with the R language. Thus 
automatically providing the graphics such as equations 
and the coefficient of determination (R2 or Pseudo R2) 
avoids errors made by the researcher and optimizes time 
in this process within the regression analysis. In addition, 
the user can also change several graphic parameters 
such as shape, size, and markup color; titles and text size 
of axes; plotting standard error bars, standard deviation, 
or with no bars; and equations position among other 
arguments (for help, access “?AgroReg”).

Finally, the package provides essential information 
on selecting regression models such as AIC and BIC. For 
both statistical criteria, a lower value indicates a preferable 
model. BIC differs from AIC only in the second term of 
the equation which depends on n. Thus, as n increases, 
BIC favors the simpler models (fewer parameters), 
which is why, sometimes, AIC and BIC indices disagree 
(Archontoulis and Miguez, 2015). In addition, the 
coefficient of determination (R2) is also returned, in 
which values ​​close to 1 are desirable, although, in the 
case of linear models (“LM” function), attention should 
be paid to the problem of multicollinearity, which is 
evaluated as VIF in the function and should be less than 
5 or 10 according to Myers and Montgomery (2002) and 
Petrini et al. (2012), respectively. The information can 
be summarized in a table using the “comparative_model” 
function and inserting a list with the variables returned 
in each analysis function.

Applied example 

To exemplify and guide the use of the AgroReg package 
and interpret the results generated, an applied example 
with the dataset “granada” was inserted. The first step of 
any statistical analysis is to study descriptive exploratory 
information, obtaining, for example, position measures 
such as mean, median, maximum, minimum, and 
measures of dispersion such as variance and standard 
deviation. On the other hand, in the case of regression 
analyses, a procedure that must be carried out in 
advance is the graphical visualization of the results 
(Archontoulis and Miguez, 2015) because, with such 
information, it is possible to identify patterns and thus 
target specific models, avoiding unnecessary processes 
and clearing the path to reach a biologically acceptable 
explanation. This critical stage was further explored 
from the dataset known as the Anscombe quartet, 
proposed by the statistician Francis Anscombe in 1973, 
who observed that in four datasets, identical fitted and 
regression coefficients were produced; however, when 
viewed graphically, they revealed surprisingly different 
patterns of covariation between x and y.

In the case of the “granada” dataset, exploratory 
plots using the “Nreg” function were generated (Figure 
2A and B). The dataset exhibited a visually noticeable 
low variability and a sharp rise in growth up to 
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Figure 3 – Regression plot with the ten regression models used to exemplify the commands in the AgroReg package for the “granada” dataset. 
WL = weight loss, Time (min) = Time after pomegranate peel begins to dry.

After obtaining the model, the next step is the 
analysis of the residues. In AgroReg, this analysis can be 
performed graphically, as follows:

> a = with(granada, asymptotic_neg(time, WL))
> extract.model(a, type = “qqplot”)

Based on the theoretical quantile graph (Figure 
4A-J), all models presented points close to the normal 
distribution curve, even though there are better-fitted 
models, such as three-parameter log-logistic and four-

parameter Brain-Cousens. Table 2 presents the statistical 
parameters of each model used in Figure 4A-J. In addition, 
the package also implemented bar graphs that facilitate 
the visualization of the model choice parameters (Figure 
5). Thus, in this example, the biexponential model had 
the lowest ​AIC (307.46) and BIC (318.44) values and was 
among the models with the lowest RMSE and higher R2, 
in addition to presenting all significant coefficients by 
the t-test (p < 0.05). However, although there are models 
statistically more adequate, almost all the models used 
could be applied to explain the behavior of this study. 

Figure 4 – QQ-plot plot of model residuals generated by the AgroReg package: negative asymptotic (A), biexponential (B), three-parameter log-
logistic (C), four-parameter Brain-Cousens (D), five-parameter Cedergreen-Ritz (E), segmented linear-linear (F), segmented linear-plateau (G), 
segmented quadratic-plateau (H), Mistcherlich (I), and two-parameter Michaelis-Menten (J). Residuals generated from the models used in the 
“granada” dataset for the variable WL (weight loss) as a function of drying time.
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Table 2 – Regression model, AgroReg package function, coefficient of determination (R2), Akaike’s information criterion (AIC), Bayesian information 
criterion (BIC), root mean square error (RMSE), and coefficients of the model for the example “granada” dataset for the variable WL (weight 
loss) as a function of drying time.

Model Function R2 AIC BIC RMSE Parameters

Negative asymptotic asymptotic_neg 0.98 310.34 318.97 2.568
Alpha = –63.66**
Beta = –0.00287**
Theta = 72.32**

Biexponential biexponential 0.98 307.46 318.44 2.475

A1 = –68.845**
lrc1 = –6.004**
A2 = 78.6817**
lrc2 = –10.06778**

Log-logistic with 3 parameters LL 0.96 340.94 349.58 3.26
b = –1.058**
d = 79.600**
e = 208.408**

Brain-Cousens BC 0.98 311.88 322.67 2.559

b = –0.742**
d = 149.638**
e = 842.598* 
f = –0.0196017**

Cedergreen-Ritz CD 0.98 308.01 320.97 2.444

b = –1.613**
c = 4.182ns

d = 71590**
e = 921.4**
f = –71540**

Linear-linear linear.linear 0.97 334.60 343.23 3.1036
B

0 
= 15.947**

X = 0.088**
W = –0.085**

Linear-plateau linear.plateau 0.96 351.47 360.11 3.54
a = 19.84**
b = 0.0668**
c = 765**

Quadrático-plateau quadratic.plateau 0.98 313.00 321.64 2.62

B
0
 = 14.1**

B
1
 = 0.112**

B
2 
= 0.0000556**

Jp = 1011**

Mitscherlich mitscherlich 0.98 310.34 318.97 2.567
a = 72.32 **
b = 0.00125**
e = 44.38**

Michaelis-Menten MM 0.96 339.88 346.55 3.285
Vm = 81.02**
K = 215.21**

*, **, ns significant at 5 %, 1 %, and not significant by the t-test, respectively.

Figure 5 – Graphic representation of comparisons between regression models according to the criteria of AIC (Akaike information criterion), BIC 
(Bayesian Information Criterion), R2 (coefficient of determination), and RMSE (root mean square error). The information is generated through the 
models used in the “granada” dataset for the variable WL (weight loss) as a function of drying time.
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AgroReg is a promising analysis tool in agricultural 
research because it has simple functions that allow for 
fast and efficient data processing, aiming to offer greater 
reliability and relevant information. In addition, new 
functions and updates will be carried out to improve 
the package to meet the demands of the scientific 
community.
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