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Ideal one dimensional MHD (non-resistive) equations are used to study the rotational in-
stability in �eld reversed con�guration plasmas. Instead of using resistive boundary layer
analysis, the eigenmode non hermitian equations are solved on the complex !-plane us-
ing a numerical code constructed using \Mathematica". We take into account the plasma
compressibility and compare our results with the Compact Torus (TC-1) experiment of the
Universidade Estadual de Campinas (UNICAMP), which is presented here. The m = 4
rotational mode observed in TC-1 is used to verify the consistency of our model.

I. Introduction

The prospect of �eld reversed con�guration (FRC)

devices to be competitive with other fusion devices re-

lies on the understanding of the stability properties[1]-

[3]. Frieman and Rotenberg [4] developed the original

perturbation theory for a 
owing equilibrium includ-

ing the plasma compressibility. We use their basic op-

erator equation to study the rotational mode in �eld

reversed con�guration. Other previous work are also

concentrated on rotational modes [5]-[8]. According to

boundary layer analysis [9],[10], the plasma is governed

by ideal MHD with real frequency ! on both sides of

the singular layer r0 where the equilibrium magnetic

�eld vanishes. To overcome the accumulation point of

the frequency spectrum of the eigenmode, resistivity

was introduced in the boundary layer which leads to a

growth rate strictly related to resistivity. But previous

works [5],[6], indicated that resistivity is not relevant to

analyse rotational modes.

Here we use the non resistive model in cylindri-

cal geometry with realistic equilibrium pro�les for the

density, pressure and magnetic �eld con�guration. We

solve the eigenmode equation developed by Frieman [4],

using a numerical code constructed with the software

\Mathematica" and compare our results with the Com-

pact Torus (TC-1) experiment of UNICAMP, where a

m=4 rotational mode is observed.
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II. Equilibrium and perturbed equations

We consider a reversed �eld �-pinch con�guration

with axial magnetic �eld and azimuthal rotation 
. All

variables depend on r only. The equilibrium pro�les are

given by (see Figures (1) - (3))

~B = Bz(r)ẑ;

where Bz is the magnetic �eld and is modeled, to be

realistic with the TC-1 machine, as

Bz(r) = �+ (1� �) tanh[(0:55r)4 + (0:55r)2];(1)

and

� = � tanh[(0:55)4 + (0:55)2]=(1� tanh[(0:55)4+ (0:55)2]);

�(r) = fexp[�(r=2)8] + 0:05g=1:05; (2)

where � is the mass density,

~v = v(r)�̂ = r
�̂; (3)

~v is the velocity �eld, and the rotational frequency 
 is

assumed to be constant.

We use the non resistive MHD and Maxwell equa-

tions, which are given by

�
d~v

dt
= �rp+ ~J � ~B; (4)

@�

@t
= �r � (�~v); (5)

and

@ ~B

@t
= r� (~v � ~B); (6)

with r � ~B = ~J , where ~J is the current density,

p=�
 =const, 
 is the ratio of speci�c heats, and

r � ~B = 0.

In equilibrium ( @
@t
� 0), we obtain

d

dr
(p+ B2

z=2) = �
2r: (7)

We use the Lagrangian representation, linearize the

equations and introduce the displacement vector ~� ,

which is considered a small quantity given by

~r = ~r0 + ~�(~r0; t) (8)

where ~r0 describes the equilibrium trajectory and
~�(~r0; t) describes the displacement from equilibrium,

and consider the equilibrium quantities as time inde-

pendent.

Following the linearization of the basic equations

described in [4] we obtain the non hermitian linearized

equation of motion in the form

�(
@2~�

@t2
) + 2�~v � r(

@~�

@t
) = ~F (~�); (9)

where

~F (~�) = r(
pr:~� + ~�:rp� ~B:~Q)

+ ~B:r~Q+ ~Q:r ~B +r:(�~�~v:r~v� �~v~v:r~�) (10)

and ~Q = r� (~� � ~B): (11)

Assuming normal mode solutions of the form

~�(~r0; t) = ~�(~r0) exp(i!t); (12)

the equation of motion becomes

�!2�~� + 2i!�~v:r~� = ~F (~�): (13)

This non Hermitian eigenvalue equation will be solved

with appropriate boundary conditions, ~�(r) = 0; for

r = 0 and r = a through a numerical code developed

using the software "Mathematica". The pressure p is

obtained solving equation (7) numerically.

Figure 1. Equilibrium magnetic �eld pro�le Bz(r).
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Figure 2. Equilibrium mass density pro�le �(r).

Figure 3. Equilibrium pressure pro�le p(r).

III. The UNICAMP TC-1 results

The Compact Torus (TC-1) machine at UNICAMP,

[11], is a �eld reversed �-pinch designed to study FRC

formation and stability. The main solenoid is 45 cm

long and 16 cm in diameter, and the two mirror �eld

solenoids are 10 cm long and 15 cm in diameter. The

base pressure of 1:0�10�6 Torr is �lled with Hydrogen

at (1 to 10) � 10�3 Torr. The 7 kV, 10:8 kJ polariza-

tion capacitor bank produces a reverse bias of 1:0 kG.

The 25 kV, 0:5 kJ preionization capacitor bank with

crowbar ionizes partially the working gas and is inter-

rupted after few oscillations, when the 22 kV, 8:8 kJ

main capacitor bank, with rise time of 5 �s, is switched

on. The main �eld decays after the main crowbar is

about 30 �s, and the peak magnetic �eld is 3:6 kG.

The typical plasma parameters of the TC-1 are the

following: separatrix radius of 3:5 cm, measured by

excluded-
ux loops, ion temperature of 180 eV, mea-

sured by CIV and SiIV impurity lines, electron density

of 1:0� 1015 cm�3 measured by CO2 laser interferom-

etry and electron temperature of 100 eV estimated by

pressure balance. The TC-1 machine and its diagnostic

set up are shown in Fig. 4.

Figure 4. Experimental arrangement and diagnostics of the
TC-1 machine in the Plasma Laboratory of UNICAMP.

One feature of the TC-1 machine is the capability of

crowbar on preionization bank, which controls the ion-

ization state before the main phase starts, and avoids

the normal oscillations from preionization bank to be

present after the start of the main discharge bank.

In Fig. 5, we present end-on framing pictures of

implosion and equilibrium phases for �lling pressure of

3:3 � 10�3 Torr and preionization time of 8 �s (one

period), where usual m = 0 mode plasma is obtained.

Figure 5. Plasma implosion cross section obtained by IMA-
CON framing camera with 0.2 �s interval with 3:3 mTorr
�lling pressure (Hydrogen).
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Figure 6. Azimuthal rotation of the plasma mode taken
from IMACON framing camera with 0.2 �s interval (Hy-
drogen, 7:5 mTorr).

In Fig. 6, it starts the appearance of the m = 4

mode. The �lling pressure in this case is 7:5�10�3 Torr

and the preionization time is 16 �s (two periods).

In Fig. 7, we show the case with same preionization

sequence as in Figure 6, but with a Hydrogen �lling

pressure of 10� 10�3 Torr, where the start of framing

pictures were delayed by 2 �s.

One can notice from the last two framing pictures

that during the implosion phase the plasma is circular

and it becames more square shaped and rotates around

the axis at near maximum compression. After this

phase, the plasma rotation is stopped by the leak of

particles from the square corners touching the wall, but

still mantaining the mode structure. The total time of

the sequence of events leading to an square plasma is

about 2 �s.

Figure 7. Azimuthal rotation of the plasma mode taken
from IMACON framing camera with 0.5�s interval (Hydro-
gen, 10 mTorr).

The plasma azimuthal rotation inferred from Fig. 7

before the wall touching is 1:4� 106 rad/s, as obtained

from the square plasma rotation during two sequences

of frame pictures.

IV. The rotational modes

We use our non resistive MHD model to calcu-

late the rotational modes using TC-1 parameters. We

solved equation (13) using typical �eld reversed equilib-

rium magnetic pro�le, to analyze the m = 2 and m = 4

modes. Taking the magnetic �eld at the edge B(rw)

to be 3:5 kG, the separatrix radius r0 be 3:5 cm, the

peak plasma density n(r0) to be 1015 cm�3, the Alfv�en

transit time �A is 0:1 �s. Since the measured plasma

rotation is 
0 = 1:4�106 rad/s, the normalized rotation


0 is of the order of 0:2. Estimating the plasma length

L to be 20 cm, and considering � = 2L, the normalized

wavevector kr0 is 0:5. The real and imaginary parts

of the eigenfrequency ! = !0=
0 = !0�A=
0 are plot-

ted in Fig. 8, for the m=2 mode, as a function of the

wavevector kr0 showing a decreasing Im(!0)�A=
0 and

an increasing Re(!0)�A=
0, and we de�ne 
 = Im(!).

At kr0 ! 0, Fig. 8 shows the Re(!)=
 = 1 limit ,

for the �rst radial mode, which agrees with the ear-

lier work of Freidberg and Wesson [1]. Firstly, we note

that Re(!) is di�erent fromm
 in the long wavelength

and small kr0 limit. This shows a fundamental error

in boundary layer analysis which assumes the marginal

stability expansion ! = m
 + i
 in solving the kr0

limit. The expansion would be adequate in the short

wavelength limit. Second, the result of [1] is based on

a �-pinch with parallel bias where B(r) is nonzero ev-

erywhere. They used an incompressible perturbed 
uid

model and assumed a more restricted expansion of the

perturbed variables (r � ~� = 0). In our case we as-

sume compressibility and the general expansion of the

perturbed quantities obtaining the same general eigen-

mode equation as in [4].

The eigenfrequency !0�A=
0 is plotted as a func-

tion of rotation 
0 in Fig. 9 (
0 = 0:20), for the m=2

mode, showing that 
 goes to zero as rotation goes to

zero. The displacement �r , real and imaginary parts,

are plotted in Figs. 10 and 11 respectively as a func-

tion of radius r=r0. For the m = 4 mode, Fig. 12 shows

the real and imaginary parts of the frequency !0�A=
0

as a function of the wavevector kr0. The corresponding

displacement �r , real and imaginary parts, is shown in

Figs. 13 and 14 as a function of radius r=r0: In Figure

15, the eigenfrequency !0�A=
0 is plotted against the
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rotation 
0 which shows again that 
 ! 0 in the zero

rotation limit.

Figure 8. Real and imaginary parts of the eigenfrequency
! for m = 2 radial modes as a function of wavevector
kr0(
0 = 0:20).

Figure 9. Real and imaginary parts of the eigenfrequency
! for m = 2 radial modes as a function of the rotation

(kr0 = 0:5).

Figure 10. Real part of the eigenfunction �r for m=2 as a
function of radius r=r0 (
0 = 0.20 and kr0 = 0:5)).

Figure 11. Imaginary part of the eigenfunction �r for m=2
as a function of radius r=r0 (
0 =0.20 and kr0 =0.5).

Figure 12. Real and imaginary parts of the eigenfrequency
! for m = 4 radial modes as a function of the wavevector
kr0 (
0 = 0:20).

Taking 
0 = 0:20 for the TC-1 machine, Fig.15

gives Im(!0)�A=
0 = 0:30 for the n=0 radial mode

(fundamental mode). This corresponds to 
�1 of the

order of 1.3 �s and the measured growth time is of the

order of 2.0 �s. The appearance of the m = 4 mode

rather than the m=2 mode in the TC-1 can be justi-

�ed by the larger growth rates in Fig. 15 than those in

Fig.9.
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Figure 13. Real part of the eigenfunction �r for m = 4 (fun-
damental mode n = 0) as a function of r (
0 = 0:20 and
kr0 = 0:5).

Figure 14. Imaginary part of the eigenfunction �r for m=4
as a function of radius r=r0 (
0 =0.20 and kr0 =0.5).

Figure 15. Real and imaginary parts of the eigenfrequency
! for m = 4 radial modes as a function of rotation 
 and
with kr0 = 0:5.

V. Conclusions

We used a one dimensional MHD model to study

the rotational instability in FRC plasmas taking into

account the plasma compressibility and comparing our

results with the TC-1 machine of Unicamp.

Although the m = 2 mode is commonly observed in

many machines, [12], we have only seen the m = 4

mode in TC-1. However, the presence of this mode is

compatible with the hybrid code of Harned [6], which

has predicted high m modes. We emphasize that the

appearance of the m=4 mode in TC-1 depends deci-

sively on the timing of the capacitor banks, whereas

�lling pressure plays a less critical role.

Acknowledgements

This work was supported by the Conselho Nacional

de Desenvolvimento Cient���co e Tecnol�ogico (CNPq),

the Financiadora de Estudos e Projetos (FINEP), and

the Funda�c~ao de Amparo a Pesquisa do Estado de S~ao

Paulo (FAPESP).

References

[1] J. P. Freidberg and J. A. Wesson, Phys. of Fluids 13,
1117 (1970).

[2] J. L. Schwarzmeier, D. C. Barnes, D.W. Hewett, C.
E. Seyler, A. I. Shestakov and R. L. Spencer, Phys. of
Fluids 26, 1295 (1983).

[3] D. C. Barnes and D. V. Anderson, Phys. Rev. Letters
46, 1337 (1981).

[4] E. Frieman and M. Rotenberg, Rev. of Mod. Phys. 32,
898 (1960)

[5] T. Ishimura, Phys. of Fluids 27, 2139 (1984).

[6] D. Harned, Phys. of Fluids 26, 1320 (1983)

[7] E. Hameiri, Phys. of Fluids 26, 230 (1983).

[8] Y. Ito, M. Tanjyo, S. Ohi, S. Goto and T. Ishimura,
Phys. of Fluids 30, 168 (1987).

[9] B. Coppi, R. M. O. Galv~ao, R. Pellat, M. Rosenbluth
and P. Rutherford, Sov. J. of Plasma Phys. 2, 533
(1976).

[10] R. M. O. Galv~ao and M. A. M. Santiago, Phys. of Flu-
ids 24, 661 (1981).

[11] D. O. Campos, M. Machida, S. V. Lebedev, M. Kantor,
S. A. Moshkalyov and L. A. Berni, Braz. J. Phys. 26,
747 (1996).

[12] A. L. Ho�man, J. T. Slough and D. G. Harding, Phys.
of Fluids 26, 1226 (1983).


