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The correlative method of unsymmetrized self-consistent �eld (CUSF) is used to study dynamical
characteristics of a strongly anharmonic crystal with body-centered cubic lattice, namely, the inter-
atomic and mean square relative displacements. We present the general formulae for crystals with
anharmonicity, including the strong one, up to fourth anharmonic terms. Taking into account the
second order of the method we calculate correlations in this lattice between the nearest, second,
third, fourth and �fth neighbors. The in
uence of more distant interactions is discussed. The results
are compared with those obtained previously for an weakly anharmonic BCC crystal. We use the
Schi� potencial for Na and also Lennard-Jones potentials for comparison.

I Introduction

The quadratic correlation moments of atomic positions

(QCM) as well as their mean square relative displace-

ments (MSRD) expressing the e�ective amplitude of

the atomic vibrations are the most important features

of lattice dynamics [1, 2].

Using the dynamical theory of crystal lattice, QCM

and MSRD have been calculated in the harmonic ap-

proximation [2]. However, this approximation is not

more valid at high temperatures due to anharmonic

e�ects which are of considerable importance. Here

the correlative method of unsymmetrized self-consistent

�eld (CUSF) [3, 4, 5, 6, 7, 8] is used to study the in-


uence of anharmonic e�ects on the QCM and MSRD

[9, 10], including strongly anharmonic ones. The gen-

eral expressions for QCM and MSRD are presented tak-

ing into account anharmonic terms up to the fourth

order. Recently, they have been applied to weakly an-

harmonic crystal with face- and body centered cubic

lattices [11, 12] and also to strongly anharmonic FCC

crystal [13]. In the present paper we study a strongly

anharmonic BCC crystal, namely solid Na.

II General Relations

In CUSF, the mean square relative displacements be-

tween two atoms i and j in a crystal, can be written

as

c

Daa(ij) = (qia � qja)
2
= q2ia + q2ja � 2Caa(ij) ; (1)

where a denotes the Cartesian components of atomic displacements and Caa(ij) = qiaqja is the correlation mo-

ment.We consider a perfect crystal with pairwise central interactions

U (~r; :::; ~rN) =
1

2

X
i6=j

� (j~ri � ~rjj) : (2)



C. G. Rodrigues et al. 451

In this case, taking into account anharmonic terms up to the fourth order we have for variances of the atomic

positions [10]
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and for QCM [9]
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where � = kT is the absolute temperature in energy units, and

������(ik) =
@ : : :�(j~rj)

@x�@x�:::
j~r=Â(ni�nk) ; (5)

are the derivatives of the interatomic potential, and all Greek indices are dummy. Generally speaking, the summation

extends over all K. For a perfect strongly anharmonic crystal of a high symmetry, the moments in the right sides

are expressed as [14].
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where �(x) is the solution of the transcendental equation

�(x) = 3x
D�2:5 [x+ 5�=6x]

D�1:5 [x+ 5�=6x]
; (7)
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in which D(z) are the parabolic cylinder functions and x is dimensionless combination of the temperature and the

second- and fourth-order force coe�cients x = K2

p
3=�K2,

K2 =
1

3

3X
�=1

K�2 ; K4 =
3

5

3X
�;�=1

K�2�2 ; (8)

where

K�l�m =
@l+m

@ql�q
m
�

X
n6=0

�(jq � Ânj)jq=0 : (9)

Here Â is the lattice matrix and n are vectors with integer components. The lattice matrix can be calculated

from the equation of state. For cubic crystals with strong anharmonicity up to the fourth order under hydrostatic

pressure it is of the form [4, 5]

P = �
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3v

�
1

2

dK0

da
+

��

2K2

dK2

da
+

(3� �)

4K4

dK4

da

�
+ P 2 + PH + PQ ; (10)

where a is the nearest neighbor distance, v(a) is the volume of the unit cell and K0(a)=2 is the energy per molecule

in the static lattice. Here P 2 and PH are the corrections of perturbation theory, and PQ is the �rst quantum

correction.

d

III In
uence on the dynamical

properties of strongly an-

harmonic BCC crystal

A spatial fragment of a strongly anharmonic crystal

with body centered lattice is shown in Fig. 1. First we

shall consider only the nearest neighbor interactions. In

this case, we can see from formula (4) that the second-

order perturbation theory enables the moments to be

calculated up to the �fth neighbors, inclusive. For the

second neighbors it is more convenient to use the crys-

tallographic coordinate system. Finally, under a rota-

tion of �=4 around the crystallographic Z-axis, we ob-

tain correlation moments between the third neighbors.

Figure 1. The arrangement of the neighbors of an atom in

the BCC lattice for the spatial fragment of this lattice.

Schi� [15] proposed the following potential for

sodium which is a typical crystal with the BCC lattice

c

'(r)=" =
�
A+ B=R2 +C=R4

� cos(2kFR)
R3

+
�
D +E=R2

� sin (2kFR)
R4

; (11)

d

where R = r=�, is the depth of the potential "=k =

599K, � = 0:324 nm the e�ective diameter of an

ion screened by free electrons. The parameters are:

A = 0:19, B = �1:02, C = �0:08, D = �0:43,

E = �2:54, 2kF = 5:987. Such potential is of an oscil-

lating form, what is known as Friedel oscillations. Es-

sentially all calculations that use such potentials refer

to numerical modelling [16].

Here we used the Schi� and the Lennard-Jones po-

tentials for numerical evaluations. We also used the
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solution the equation of state Eq. (10) obtained in ref-

erence [17]. We make this in the dimensionless form

taking into account only the nearest neighbor interac-

tions.

Figure 2. Quadratic correlation moments between lon-

gitudinal displacements of the nearest neighbors, Cxx(1),

calculated using various approximations: 1-harmonic, 2-

weakly anharmonic, 3-strongly anharmonic, and �fth neig-

bors, Cxx(5): 4-harmonic, 5-weakly anharmonic, 6-strongly

anharmonic.

In Fig. 2 are plotted the correlations of longitudi-

nal displacements between the nearest and �fth neigh-

bors versus the dimensionless temperature �=" for the

strongly anharmonic approximation using the Schi� for

Na potential, as well as the harmonic and weakly an-

harmonic approximations [12]. Note that at high tem-

peratures the anharmonicity reverses the convexity of

the curve Cxx(1) and Cxx(5) for the strongly anhar-

monic approximation. Moreover for this approximation

Cxx(1) becomes greater and Cxx(5) less than the one

for the weak anharmonicity.

In Figs. 3 and 4 we compare the longitudinal and

transversal correlation moments respectively calculated

using the Lennard-Jones and Schi� potentials. We can

see that the correlation moments using the Schi� po-

tential for Na are less anharmonic and at high tempera-

tures their values are also less than the ones calculated

by the Lennard-Jones potential with the exception of

the curves Cxx(5) and Cyy(1).

Figure 3. Longitudinal correlations moments Cxx(1)-(1,2),

Cxx(1)-(3,4) and Cxx(2)-(5,6) calculated using the Schi�

(1,3,5) and the Lenard-Jones (2,4,6) potentials.

The melting temperature of Na is 373 K. For tem-

perature less than 50 K, Na has another crystal struc-

ture. For this reason we investigate the QCM and

MSRD in the temperature range between 50 K and

373 K. In Fig. 5 we present the longitudinal and

transversal correlations between the nearest, second,

third and �fth neighbors calculated using the Schi� po-

tential. One can see that some moments are negative

implying that the corresponding atoms oscillate at such

a direction for the most part opposite in phase. The

negative sign of the longitudinal correlation moment in

the second-order perturbation theory results from the

obtuse angle between them and each of their common

nearest neighbor. When this angle is acute, such a cor-

relation is positive and in the case of straight angle,

it is very small being proportional to the temperature

squared. As a result of the symmetry of the coordinate

systems the components of transversal correlations be-

tween the nearest, second and �fth neighbors are the

same, namely Cyy(n) = Czz(n), n = 1; 2; 5. One can

note that the transversal correlations are much smaller

than the longitudinal ones.
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Figure 4. Transversal correlations moments Cyy(2)-(1,2),

Cyy(1)-(3,4) and Czz(3)-(5,6) calculated using the Schi�

(1,3,5) and the Lenard-Jones (2,4,6) potentials.

Figure 5. Correlations moments in the BCC lattice calcu-

lated using the Schi� for Na potential: 1�Cxx(1), 2�Cxx(5),

3 �Cxx(3), 4 �Cyy(2), 5�Cyy(5), 6�Cyy(5), 1�Czz(3),

1 �Cxx(2).

IV An In
uence of the More

Distant Interactions

The interactions between more distant atoms provide

the thermodynamic stability of the BCC crystal. For

this reason, we shall discuss an in
uence of the more

distant interactions on QCM for a strongly anharmonic

BCC crystal. To do this we use the solution of equation

of state (10) taking into account interactions up to the

seventh neighbors [17].

For the BCC lattice, the di�erence between the

nearest- and second-neighbor distances is about 15:5%,

while that between the second- and third-neighbor ones

is more than 40%. For this reason we include only the

in
uence of the second-neighbor interactions on the in-

teratomic correlations.

Figure 6. Longitudinal correlations moments Cxx(2)-(1,3),

Cxx(4)-(5) and transversal Cyy(5)-(2,4), Cyy(4)-(6) without

(1,2) and with the second-neighbor interactions (3,4,5,6),

calculated using the Schi� for Na potential.

The Fig. 6 shows that an in
uence of more distant

interactions on the correlation moments only between

the second, fourth and the �fth neighbors is signi�cant.

The absolute values for both correlation moments are

greater than the ones calculated without considering

the contributions from more distant interactions. One

notes that the correlation between the fourth neigh-

bors is nearly zero even considering more distant neigh-
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bors. The correlations Cxx(4) and Cyy(4) are a conse-

quence of the interactions between the second neigh-

bors. The correlations between the fourth neighbors

are very small.

In Fig. 7 we show the mean square relative atomic

displacements in the BCC crystal with strong anhar-

monicity calculated using the Schi� for Na potential

and considering the in
uence of more distant interac-

tions.

Figure 7. Longitudinal mean square relative displacemets:

1�Dxx(1), 2 �Dxx(2), 3�Dxx(3), 4�Dxx(4) ' Dxx(n),

n � 6, 5 �Dxx(5).

V Conclusions

Using CUSF we have studied the interatomic quadratic

correlation moments and the mean square relative dis-

placement of atoms in a BCC crystal, namely, in solid

Na at normal pressure. We evaluated the harmonic,

weak and strong anharmonicity. The comparisons of

theses three approximations show the importance of the

anharmonic e�ects at high temperature.

The fact that the transversal correlations through Y

and Z -axis are much smaller than the longitudinal cor-

relations through the -axis is because you have chosen

the coordinate system with X -axis running through

the centers of atoms.

The negative correlations are due to the moviment

of their atoms that oscillate opposite in phase.

The longitudianal correlations between the nearest

neighbors in BCC lattice are greater than in FCC lat-

tice. However, in BCC crystal the transversal corre-

lations between the second neighbors are less than in

FCC lattice.

The present work completes a series of investiga-

tions on interatomic correlations and relative displace-

ments of atoms in low-dimensional models of anhar-

monic crystals [9, 10, 18] as well as in three-dimensional

strongly and weakly anharmonic crystals [11, 12, 13,

19].

Finally, we used the results obtained here to study

the in
uence of the strong anharmonicity on Linde-

mann's melting law which is a subject that has dis-

played an active interest up to the present [20].
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