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The phenomenon of macroscopic homogenization is illustrated with a simple example of
di�usion. We examine the conditions under which a d{dimensional simple random walk in a
symmetric random media converges to a Brownian motion. For d = 1, both the macroscopic
homogeneity condition and the di�usion coe�cient can be read from an explicit expression
for the Green's function. Except for this case, the two available formulas for the e�ective
di�usion matrix � do not explicit show how macroscopic homogenization takes place. Using
an electrostatic analogy due to Anshelevich, Khanin and Sinai [AKS], we discuss upper and
lower bounds on the di�usion coe�cient � for d > 1.

I Introduction

The long time behavior of random walks on a random

environment is reviewed. We focus mainly on the fol-

lowing question:

What are the conditions under which a properly

scaled random walk on a non{homogeneous medium

converges to a Brownian motion.

This and related phenomena are usually named

macroscopic homogenization (and the environmental

conditions are called macroscopic homogeneity con-

ditions) because such system looks homogeneous at

macroscopic scales. The discussion will be restricted

to simple random walks with non{vanishing transition

probabilities (or rates) fwhxyig satisfying

whxyi = whyxi (I.1)

for all nearest neighbor sites hxyi of a d {dimensional

lattice Zd. The so{called symmetric medium has been

considered by several authors (see e.g. [ABSO, AKS,

AV, MFGW, Ku, PV] and references therein).

Except for a basic lemma, the general scheme of our

presentation will be dimensional independent. How-

ever, the one{dimensional problem plays a central role

in this work since, in this case, the macroscopic homo-

geneity condition can be read from an explicit formula.

The d = 1 case has been mostly investigated. The

�rst mathematical results [KKS, So, Si] were concerned

with asymmetric random walks with transition prob-

abilities wx;x+1 = 1 � wx;x�1, x 2 Z, being indepen-

dent and identically distributed (i.i.d.) random vari-

ables (note that wx;x+1 6= wx+1;x). The trajectories

fX(t); t > 0 jX(0) = x0g of asymmetric random walks

were shown to behave very anomalously. Symmetric

random walks began to be discussed in a series of pa-

pers (see e.g. [ABO, BSW, ABSO]) in connection with

the problem of disordered chains of harmonic oscilla-

tors (see [LM] for an introduction and a selection of

reprints) and other problems in physics. Using Dyson's

integral equation [D], these authors derived the follow-

ing asymptotic behavior for the trajectories: if

Ew�1x;x+1 <1 ; (I.2)

where E denotes the expectation value with respect to

the i.i.d. random variables fwx;x+1g, then

EX2 (t) � 2
�
Ew�1x;x+1

��1
t ;

as t ! 1, and the convergence of X(t)=
p
t to the

Gaussian random variable with zero mean and variance

2
�
Ew�1x;x+1

��1
is implied. In addition, if condition (I.2)

is violated, then EX2(t) grows as t� with an exponent

� < 1 depending on the divergence of the distribution

at wx;x+1 = 0.

A mathematical proof of convergence to Brown-

ian motion for d = 1 symmetric random walks was



given by Anshelevich and Vologodski [AV]. For d � 2

there are at least two di�erent proofs and both re-

quire macroscopic homogeneity conditions more strin-

gent than (I.2). Anshelevich, Khanin and Sinai [AKS]

proved the result by developing an expansion for the

expected value of the inverse of a non-homogeneous dis-

crete Laplacian. K�unnemann [Ku] has proven this re-

sult by extending Papanicolaou{Varadhan's approach

[PV]. Whether (I.2) is a necessary (and su�cient)

macroscopic homogeneity condition for d � 2, remains,

to our knowledge, an open problem.

The present paper is inspired by the work of An-

shelevich, Khanin and Sinai. We use the logic of this

proof in order to simplify the Anshelevich and Vologod-

ski's proofs for d = 1. Our proof, in particular, elimi-

nates the technical hypothesis of wx;x+1 to be strictly

positive and illustrates with textbook's mathematical

methods the macroscopic homogeneity condition (I.2).

A Brownian motion is described by the di�usion

equation. The random environment induces an e�ec-

tive di�usive matrix � whose elements are given by

limt!1 E (Xi(t)Xj(t)) =t, i; j = 1; : : : ; d. For the one{

dimensional problem, the reciprocal of this constant

is given by the macroscopic homogeneity condition:

��1 = Ew�1x;x+1 . For d � 2, the two available formulas

for the e�ective di�usion matrix (see [AKS, Ku]) do not

explicitly show how macroscopic homogenization takes

place and this makes it di�cult to obtain estimates. In

this review (see also [AKS]) the upper bound

� � Ewhxyi

will be shown to hold if
��1� whxyi=Ewhxyi

�� � � < 1=2.

We also discuss how a lower bound can be obtained us-

ing the electrostatic equivalence of the di�usion prob-

lem as formulated in [AKS].

The outline of the present work is as follows. In

Section II we formulate the problem and state our re-

sults. The proofs will be given in Section III under

the assumption that the eigenvalues and eigenvectors

of the semi{group generator of the process converge

to the eigenvalues and eigenfunctions of a Laplacian.

The eigenvalue problem is a consequence of our basic

lemma (Lemma III.1) which will be proven in Section

IV for d = 1 by Green�s function method. The spec-

tral perturbation theory will be presented in Section

V. Finally, the di�usion coe�cient will be examined in

Section VI.

II Statement of Results

Let B denote the set of bonds of the regular lattice

Z
d and let w = fwbgb2B be an assignment of positive

numbers. Each component wb represents the transition

rate of a random walk to go from the site x to y along

the bond b = hxyi. The assignment w de�nes an sym-

metric environment on Zd if the transition rates satisfy

whxyi = whyxi .

Given an environment w and a �nite set � � Z
d,

a continuous time random walk on �, with absorbing

boundary condition, is a Markov process fX�;w(t); t �
0g with di�erential transition matrix W� =W�(w) de-

�ned by

(W� u)x =
X
y2Zd:
jx�yj=1

whxyi uy

= (��;w u)x + ux
X
y2Zd:
jx�yj=1

whxyi ;(II.1)

where

(��;w u)x =
X
y2Zd:

jx�yj=1

whxyi (uy � ux) ;

for all x 2 � and u such that uy = 0 if y 2 Z
d n �.

Note that ���;w is a positive matrix,

(u; (���;w)u) =
1

2

X
x;y2Zd:
jx�yj=1

whxyi (uy � ux)
2 � 0 ;

(II.2)

and, if wb = w for all b 2 B , ��;w = w�� where �� is

the �nite di�erence Laplacian with 0{Dirichlet bound-

ary condition on �. From here on, � is taken to be the

hypercube centered at origin with size j�j = (2L� 1)d,

L 2 N: �L :=
�
x = (x1; : : : ; xd) 2 Z

d : supi jxij < L
	
,

and all quantities depending on � will be indexed by L

instead.

The probability distribution of fXL;w(t); t � 0g is

governed by the semi{group bTL
t generated by �L;w. If

XL;w(t) denotes the position of a random walk at time

t, then

P (XL;w(t) = xjXL;w(0) = 0) =
�
et�L;wu0

�
x
; (II.3)

where (u0)x = �0;x.

The semi{group bTL
t is the solution of the initial

value problem in R
� ,

du

dt
��L;w u = 0 ; (II.4)

with initial condition u(0) = u0.



The solution of (II.4) exists for all times t > 0 and

all sizes L < 1 but may depend on the realization of

w and on the initial value. We present the su�cient

conditions on the environment w by which the solu-

tion of (II.4), under suitable scaling of time and space,

converges almost everywhere in w to the fundamental

solution of the heat equation,

@u

@t
� @2u = 0 ; (II.5)

with u(t; @D) = 0. Here, (II.5) is de�ned in the do-

main t > 0 and � 2 D := (�1; 1)d with boundary

@D = f� : supi j�ij = 1g, and @2 = @2(�) is given

by

@2 = @ � �@ =
dX

i;j=1

�ij
@2

@�i@�j
: (II.6)

The heat kernel Tt(�; �) = et @
2

(�; �) when de�ned

in Rd �R
d gives rise to a Wiener process (or Brownian

motion) fB(t); t � 0g with covariance EB(t)B(s) =

4�min(s; t) (see e.g. Simon [S]). In view of the bound-

ary condition, Tt yields a Brownian motion fB0(t); t �
0g on the domainD with absorbing frontiers. The prob-

ability density ofB0(s+t)�B0(s) to be equal to � can be

obtained by solving equations (II.5) by Fourier method

Tt(�; 0) =
X
n2Nd

+

e�(�
2=4)n2t

dY
i=1

sc (�ni�i=2) ; (II.7)

where n2 = n � �n =
Pd

i;j=1ni�ijnj and sc(nix) stands

for either cos (nix) or sin (nix) depending on whether

ni is an odd or even number.

This discussion suggests the following de�nition.

De�nition II.1 The random walk in a random envi-

ronment w is said to converge to a Brownian motion

if there exist a constant � = �(w), the di�usion coe�-

cient, such that

lim
L!1

�
eL

2 t�L;wu0

�
[L�]

=
�
et @

2(�) �0

�
(�)

uniformly in t > 0, � 2 D and �0 on the space of �nite

measures M with support in D. For r 2 R
d , [r] 2 Z

d

and has as components the integer part of the compo-

nents of r; and u0 2 R
�L is a vector given by

(u0)x = Ld
Z (x1+1)=L

x1=L

� � �
Z (xd+1)=L

xd=L

d�0(�) :

It is important to note that, by the dominant

convergence theorem, this de�nition implies the con-

vergence in distribution of the random walk pro-

cess
�
(1=L)XL;w(L

2t); t � 0
	
to the Brownian motion

fB0(t); t � 0g as it is known in Probability Theory

(weak convergence of their distributions): XL(t) �
1

L
XL;w(L

2t) �! B0(t) in distribution if, for any col-

lection 0 < s1 < � � � < sn of positive numbers and any

collection f1; : : : ; fn of bounded and continuous func-

tions in D, n 2 N, we have

c

E�0 f1(XL(s1)) � � � fn(XL(sn)) �! E�0 f1(B0(s1)) � � � fn(B0(sn)) ; (II.8)

d
as N ! 1, where E�0 means the expectation of the

process starting with the measure �0. Note also that

XL(t) has been scaled as in the central limit theorem:

XL(t) is a sum of about L2 independent increments1

divided up by L.

Theorem II.2 (Anshelevich and Vologodski) If

d = 1 and the environment w is a stationary process

such that the partial sums

sx(w) =
1

x

x�1X
z=0

1

wz;z+1
(II.9)

converge as x ! 1 to ��1, 0 < � < 1, almost every-

where in w, then a random walk in a random environ-

ment w converges, for almost every w, to a Brownian

motion with di�usion coe�cient �.

1A simple random walk with continuum time jumps according to a Poisson process on time with rate 2d and there will be 2dL2t jumps
in average after a time L2t. With the random environment, the Poisson process has a site dependent rate given by

P
y:jx�yj=1

whxyi.



Theorem II.3 (Anshelevich, Khanin and Sinai)

For any d � 1 and � < 1=2, let w = fwbgb2B be in-

dependent and identically distributed random variables

such that ���1� wb

�w

��� � � ; (II.10)

with �w =Ewb . Then a random walk in a random

environment w converges, for almost every w, to a

Brownian motion with di�usion coe�cient matrix � =

�(d; �; �w).

Remark II.4 1. Theorem II.2 was proven in [AV]

under the condition (II.9) with wx;x+1 > 0.

The positive condition has been eliminated in our

proof. Condition (II.9) is met if w = fwbg are i.i

d. random variables with 0 < Ew�1b <1. Finite-

ness of �rst negative moment seems to be, accord-

ing to arguments presented in [ABSO] (see also

[FIN]), a su�cient and necessary homogeneity

condition since, otherwise, the walk would spend

a extremely large time between jumps leading the

process to be sub{di�usive.

2. Whether the homogeneity condition 0 < Ew�1b <

1 is also su�cient for d > 1 is, to our knowl-

edge, an open problem. It would already be an

important achievement to prove Theorem II.3 for

any distribution whose support is R. It is unfor-

tunate that both proofs (see [AKS, Ku]) require as

a technical step wb to be bounded away from 0 and

1.

3. Theorem II.3 holds also if the transition probabil-

ities fwxyg do no vanish for y � x belonging to a

�nite set U+ that is able to generate Zd by trans-

lations. Under the same sort of condition (II.10),

[AKS] have shown convergence to Brownian mo-

tion satisfying the di�usion equation (II.5).

4. Theorem II.3 can also be extended to Brownian

motion on R
d if one combines the result with

both absorbing and periodic boundary conditions

on @D (see details in [AKS]).

Theorem II.5 Under the conditions of Theorem II.3

and a conjecture formulated in (VI.27), there exist a

�nite constant C = C(d), such that the bounds

1� % � �

Ewb
� 1 (II.11)

hold with 1 being the d� d identity matrix and % a pos-

itive matrix such that

% � 4�C (1 + C)

1� 4� (1 + C)
;

in the sense of quadratic forms.

III Basic Lemma

The proof of Theorems II.2 and II.3 presented in this

section are based on the uniform convergence of the

eigenvalues and eigenvectors of �L;w to the eigenvalues

and eigenfunctions of the Laplacian operator @2 on D.
The uniform convergence follows from a classical result

in perturbation theory which says the following.

If A1; A2; : : : ; An; : : : is a sequence of bounded oper-

ators in a Hilbert space H which converge to A in the

operator norm, then all isolated pieces of their spectrum

and their respective projections converge uniformly, as

n!1, to those of A.

Because �L;w and @2 are unbounded operators we

consider their inverse instead. To formulate the results

of this section, we need some de�nitions.

Let iL be an isometry of the vector space R� into the

piecewise constant functions in the vector space L2
0(D),

of square{integrable functions f on D = (�1; 1)d with

f(@D) = 0:

iL : R� �! L2
0(D) ;

given by

(iL u)(�) =

�
u[L�] if � 2 (�1; 1)d
0 if � 2 @D ;

(III.1)

with [x] as in De�nition II.1.

The adjoint operator iyL : L2
0(D) �! R

� ,

(iyL f)x = Ld
Z (x1+1)=L

x1=L

dx1 � � �
Z (xd+1)=L

xd=L

dxd f(x) ; (III.2)



d
is de�ned by the equation

hf ; iL ui = (iyL f ; u) ;

with the inner product in R� and L2
0(D) given, respec-

tively, by

(u; v) =
1

Ld

X
x2�

ux vx (III.3)

and

hf; gi =
Z
[�1;1]d

f(x) g(x) dx : (III.4)

We shall denote by

��1L := L�2
�
iL�

�1
L;w i

y
L

�
(III.5)

the scaled inverse of �L;w. The operator kernel of �
�1
L

is a step function with step{width 1=L which, as we

shall see in the next lemma, approximates the kernel

(@2)�1(r; s) in the operator norm induced by L2
0{norm:

kAk := sup
f :kfk2=1

kAfk2 ; (III.6)

where kfk22 := hf; fi.

Lemma III.1 (Basic Lemma) Under the conditions

of Theorems II.3 and II.3, there exist a �nite number

L0 = L0(w) such that, f��1L ;L > L0g is a sequence of

bounded self{adjoint operator in L2
0(D) which converges

k��1L � (@2)�1k �! 0 ; (III.7)

as L!1, in the operator norm topology.

It thus follows from perturbation theory (see e.g.

[F]):

Corollary III.2 If � is an isolated eigenvalue of

(@2)�1 and E the orthogonal projection in its eigenspace

E, one can �nd a subspace EL � L2
0(D), invariant un-

der ��1L , and a corresponding orthogonal projection EL

such that

kEL �Ek �! 0 (III.8)

and EL
�
��1L � �I

�
EL
 �! 0 ; (III.9)

as L!1

Lemma III.1 will be proven for d = 1 random walks

in Section IV. This lemma reduces the Brownian mo-

tion limit problem to the convergence of the inverse

matrix ��1
L;w to the inverse Laplacian (@2)�1 in the L2

0{

operator norm topology. Corollary III.2 will be proven

in Section V.

Proof of Theorems II.2 and II.3 assuming Corol-

lary III.2. (As in Appendix 3 of [AKS]) Let

' : R� �! R be given by

'(�) = et=� (III.10)

and note that ' is uniformly continuous at � = 0 with

'(0) = 0. We have Tt = '((@2)�1) and TL
t = et�L =

'
�
��1L

�
.

In view of De�nition II.1 and the isometry iL, The-

orems II.2 and II.3 can be restated as2

sup
�02M

sup
�2D

���(Tt � TL
t )�0

�
(�)
�� �! 0 ; (III.11)

as L!1. We shall prove an equivalent statement:

lim
L!1

kTt � TL
t k = lim

L!1
k'((@2)�1)� '

�
��1L

� k = 0 :

The inverse Laplacian (@2)�1 on D with 0 {Dirichlet

boundary condition is a compact operator with spectral

decomposition given by (recall equation (II.7))

(@2)�1 =
X
n2Nd

+

�n En ; (III.12)

where �n =

0@(�=2)2 dX
i;j=1

ni�i;jnj

1A�1

� 4=(�2n2) and

en(�) =
dY
i=1

sc[(�=2)ni �i], n 2 N
d
+ , are eigenvalues and

associate eigenfunctions of (@2)�1 and

Enf = hen; fi en : (III.13)

Because 0 is an accumulation point, we introduce

an integer cut{o� N <1 and let

(@2N )
�1 =

X
n2Nd

+
:

jnj�N

�n En : (III.14)

2The isometry iL has been introduced to bring all operators to the same Hilbert space L2
0
(D). Note, however, that ��1

L
and TLt

remain �nite rank operators.



We have

k'((@2N )�1)� '((@2)�1)k2 =
X
jnj>N

'2(�n) ; (III.15)

which can be made as small as we wish by letting

N ! 1. More generally, the uniform continuity of

' at 0 means the following: given " > 0 and a non{

positive bounded operators A, we can �nd � > 0 such

that if kAk < � we have k'(A)k < "=3. We shall use

this fact often in the sequel.

From Corollary III.2, there exist a projector

EL;N =
X
n2N3

+
:

jnj�N

EL
n ;

where EL
n is, analogously to En, the projector on the

invariant subspace: ��1L ELn = ELn . Writing

��1L;N = EL;N��1L EL;N (III.16)

and using the fact that EL;N is an orthogonal projector,

we have

c

'(��1L )� '(��1L;N ) = '
�
��1L;N + (��1L � ��1L;N)

�
� '(��1L;N )

= '(��1L � ��1L;N )
(III.17)

d
(here '(A�1) is de�ned by its power series I + tA+

t2A2=2 + � � �).
We now show that k��1L � ��1L;Nk can be made

smaller then � = �(") if L and N are chosen su�-

cient large. By Lemma III.1, there exist L1 � L0,

L1 = L1(�), such that

k��1L � (@2)�1k < �

3
; (III.18)

for all L > L1. From (III.12) and (III.14), there exist

N1 = N1(�) such that

k(@2)�1 � (@2N )
�1k < �

3
; (III.19)

if N > N1. By Lemma III.1, there exist L2 > L0,

L2 = L2(�), such that

k(@2N )�1 � ��1L;Nk <
�

3
(III.20)

holds for all L > L2 with N �xed.

If L > max(L1; L2) andN > N1, equations (III.18){

(III.20) yield

c

k��1L � ��1L;Nk � k��1L � (@2)�1k+ k(@2)�1 � (@2N )
�1k+ k(@2N )�1 � ��1L;Nk < � ; (III.21)

d

which implies, due the continuity of ' and the orthog-

onal relation (III.17),

k'(�L)� '(�L;N )k < "

3
: (III.22)

By uniform continuity of ' and (III.20), we also

have

k'((@2)�1)� '((@2N )
�1)k < "

3
: (III.23)

In addition, using the spectral decomposition of

(@2N )
�1 and ��1L;N , and taking into account

k�nEn � �LnE
L
n k � j�n � �Ln jkEnk+ j�Ln jkEn �EL

n k
(III.24)

and Lemma III.1, we can �nd L3 > L0, L3 = L3(";N),

such that

k'((@2N )�1)� '(��1N;L)k <
"

3
: (III.25)

Now, let L > max(L1; L2; L3). It then follows from

(III.22), (III.23) and (III.25)



c

k'((@2)�1)� '(��1L )k � k'((@2)�1)� '((@2N )
�1)k

+ k'((@2N )�1)� '(��1N;L)k+ k'(��1L )� '(��1L;N )k < " ;

d

which implies strong convergence of the semi{group and

completes the proof of Theorem II.3. 2

Remark III.3 The introduction of the cut{o� N in

(III.14) is necessary even for homogeneous environ-

ment. In this case, the eigenvalues �Ln and eigenvectors

eLn of L�2��1
L can be computed explicitly:

�Ln =

 
�4L2

dX
i=1

sin2
�

4L
ni

!�1
(III.26)

and

eLn(x) =

dY
i=1

sc
� �

2L
ni xi

�
; (III.27)

with n 2 �� := f1; 2; : : : ; (2L � 1)gd (recall sc (nix)

stands for cos (nix) or sin (nix), depending on whether

ni is an odd or even number). Note that j�n��Ln j, with

�n given by (III.12), may not be small if jnj = O(L).

We always pick N large but �xed and let L ! 1 in

order (III.25) to be true.

IV Proof of Lemma III.1 (d = 1)

In this section we prove Lemma III.1 for d = 1. We con-

sider the second{order Sturm{Liouville di�erence equa-

tion

�L;w u = f

with u(@D) = 0, and use the method of Green to cal-

culate the matrix elements of ��1
L;w. This gives, in view

of equation (III.5), an explicit formula for the operator

kernel ��1L (r; s).

The procedure starts by looking for two linear inde-

pendent solutions of the homogeneous equation

c

(�L;w u)x = whx�1;xi(ux�1 � ux)� whx;x+1i(ux � ux+1) = 0 ; (IV.1)

d

with x 2 f�L+1; : : : ; L�1g and u�L = uL = 0. With-

out loss of generality, we set whL�1;Li = wh�L;�L+1i =

�.

Proposition IV.1 Let �L 2 R
2L�1 be a vector valued

function of the environment w given by

(�L)x = �L

xX
y=�L+1

w�1hy�1;yi ; (IV.2)

for all x 2 f�L+ 1; : : : ; L� 1g, where

��1L =

LX
y=�L+1

w�1hy�1;yi :

Then u1 = �L and u2 = 1� �L are two linear indepen-

dent solutions of (IV.1).

Proof. u1 = �L is a solution of (IV.1) by simple veri-

�cation and the same can be said of u2 = 1 � �L. For

this, note that

whx�1;xi(r�L)x = �L (IV.3)

holds uniformly in x, where (ru)x = ux�ux�1. It thus
remains to verify that they are linear independent.

Let W = W (u1; u2;x) be the \Wronskian" of the

two solutions u1 and u2 given by the following determi-

nant

W =

���� (u1)x (u2)x
whx�1;xi(ru1)x whx�1;xi(ru2)x

���� : (IV.4)

It follows that two solutions u1 and u2 are linear in-

dependent if W (u1; u2;x) 6= 0 for all x 2 f�L; : : : ; Lg.



Plugging u1 and u2 into (IV.4) we have, in view of

(IV.3),

W = ��L [(�L)x + 1� (�L)x] = ��L ; (IV.5)

which concludes the proof of the proposition.

2

The inverse matrix ��1
L;w can be calculated by the

so called Green's function method (see e.g. [J]):

�
��1
L;w

�
x;y

=

8>>><>>>:
(�L)x [1� (�L)y]

��L if x � y

[1� (�L)x] (�L)y
��L if x > y :

(IV.6)

To see this is true, we note
�
��1
L;w

�
z;y

is the z{

component of a vector for each y �xed. So, by de�ni-

tion �
�L;w�

�1
L;w

�
x;y

= 0

holds for all x 6= y. For x = y we have

c

�
�L;w�

�1
L;w

�
x;x

= whx;x+1i

�
r��1

L;w

�
x+1;x

� whx�1;xi

�
r��1

L;w

�
x;x

= �whx;x+1i(r�L)x+1 (�L)x��L � whx�1;xi(r�L)x 1� (�L)x
��L

= (�L)x + (1� (�L)x) = 1 ;

d

by (IV.3), verifying the assertion. We are now ready to write the operator kernel of

��1L . In view of

c

(iy g;A iy f) =
1

L

X
x;y2�

(iy g)xAx;y (i
y f)y

=
1

L

X
x;y2�

L

Z (x+1)=L

x=L

dr g(r)Ax;y L

Z (y+1)=L

y=L

ds g(s) (IV.7)

=

Z 1

�1

dr

Z 1

�1

ds g(r)
�
LA[Lr];[Ls]

�
f(s) = hg; i A iy fi;

d

valid for any (2L�1)�(2L�1)matrix A and f 2 L2
0(D), and de�nitions (III.5) and (III.1), we have

c

��1L (r; s) = L�2
�
i��1

L;w i
y
�
(r; s) = L�1

�
��1
L;w

�
[Lr];[Ls]

; (IV.8)



for any �1 � r; s � 1.

If new variables �L := 2 �L � 1 are introduced into

equation (IV.6), the operator kernel (IV.8) can be writ-

ten as

c

��1L (r; s) =
�1
4L�L

�
1� ��(�L)[Lr] � (�L)[Ls]

��� (�L)[Lr] (�L)[Ls]
	
; (IV.9)

d

in view of the fact that (�L)x is a monotone increasing

function of x.

By Schwarz inequality the operator norm

(III.6) is bounded by the L2{norm of the opera-

tor kernel, the Hilbert{Schmidt norm jkKkj2 :=Z 1

�1

dr

Z 1

�1

ds jK(r; s)j2. Since the functions in the

Hilbert space has compact support, we have

kKk � jkKkj � 4 sup
�1<r;s<1

jK(r; s)j

and k��1L � (@2)�1k �! 0 is implied by the pointwise

convergence ��1L (r; s) �! (@2)�1(r; s) of the operator

kernel. We shall see that the latter convergence sense

is consequence of the following result.

Proposition IV.2 Given " > 0 and w satisfying the

hypothesis of Theorem II.2. Then, there exist an integer

number L0 = L0("; w) such that��(�L)[Lr] � r
�� < " (IV.10)

holds for all L > L0 and �1 < r < 1.

Proof. Under the hypothesis of Theorem II.2 the strong

law of large numbers holds and

2L�L �! � ; (IV.11)

as L!1, for almost every w (see eq. (IV.2)). Analo-

gously, since [Lr]=L �! r as L!1,

(�L)[Lr] = 2L�L� [Lr] + L

L
� 1

[Lr] + L

[Lr]X
y=�L+1

w�1hy�1;yi�1

(IV.12)

converges to r as L! 1 for each r 2 (�1; 1) and this

gives (IV.10). 2

The Green's function method can also be used to

compute the integral kernel of (@2)�1 as an operator in

the Hilbert space L2
0(D). The two linear independent

solutions of the homogeneous equation

�
d2f

dr2
= 0 ; �1 < r < 1 ; (IV.13)

with boundary condition f(�1) = f(1) = 0 are f1 = 1+

r and f2 = 1� r. Replacing u1(2) and whx�1;xi(ru1(2))
by f1(2) and �(df1(2)=dr) in (IV.4), gives W = �2�.
Substituting these into (IV.6) following the simpli�ca-

tion of (IV.9), yields

(@2)�1(r; s) =
�1
2�

f1� jr � sj � r sg (IV.14)

Note that j(@2)�1(r; s)j � 1=(2�) and, in view of (IV.9)

and Proposition IV.2,

����1L (r; s)
�� � C (IV.15)

holds uniformly in r; s 2 (�1; 1) for all L > L0.

Now, let �L(r) := (i �L)(r) � r and b��1L :=

2L�L �
�1
L =�. Then, if L > L0, in view of (IV.9),

(IV.14) and Proposition IV.2, we have

c

����1L (r; s)� (@2)�1(r; s)
�� � ����2L�L� � 1

���� ����1L (r; s)
��+ ���b��1L (r; s)� (@2)�1(r; s)

��� ; (IV.16)

where



���b��1L (r; s)� (@2)�1(r; s)
��� =

1

2�
j�L(r)�L(s) + r�L(s) + s�L(r) + j�L(s)� �L(r)jj

<
2"

�
+

"2

2�

(IV.17)

d

uniformly in r; s 2 (�1; 1). When combined with

(IV.11) and (IV.15) this proves Lemma III.1 for d = 1.

2

V Perturbation of Spectra

Proof of Corollary III.2. This proof can be found in

Appendix B of [AKS] and is essentially based on the

perturbation theory of Hermitian bounded operators

developed by Friedrichs in [F]. Since it can be described

shortly, we repeat the proof's derivation for complete-

ness. Our derivation, however, is more close to [F] in

the sense that we perturb an interval of the spectrum.

When the interval contains one single eigenvalue this

reduces to the derivation of [AKS]. The generalization

is however essential in dealing with intervals contain-

ing accumulation point of the spectrum. This situation

has to be considered in order to show that the spec-

trum projection in such intervals remains orthogonal

when the perturbation is turned on.

We now introduce some notation. Let I0 2 R

be an isolated closed interval of the spectrum �(@�2)

of @�2 de�ned with Dirichlet boundary condition on

D = (�1; 1). There exist 0 < � < 1 and an interval

I � I0 such that I \ �(@�2) = �(@�2) \ I0 and

dist (I0;R n I) > � :

Let E0 denote the eigenspace spanfen : �n 2 I0g 2
L2
0(D) associated with I0 and E0 the spectral projection

onto E0. Let E1=L denote the subspace of the Hilbert

space H := L2
0(D) invariant under the action of �L and

E1=L the projection (not necessarily orthogonal) onto

E1=L.
The projection E1=L is de�ned by the following set

of equations:

(I �E1=L) �
�1
L E1=L = 0 (V.1)

(i.e. E1=L is an invariant subspace) and the two condi-

tions

E1=LE0 = E1=L and E0E1=L = E0 : (V.2)

Note that, under (V.2) E1=L is a projector

c

E2
1=L = (E1=LE0)E1=L = E1=L(E0 E1=L) = E1=LE0 = E1=L ;

d

which is consistent with E0 in the sense that

limL!1E1=L = E0.

We shall prove that, provided VL := ��1L � @�2 is

bounded, E1=L depends analytically on 1=L and E1=L
tends to E0 as 1=L ! 0. The proof of this statement

uses equation (V.1) to write an integral equation. For

simplicity, we shall drop the index L of the quantities

��1L , VL, E1=L and E1=L.

Our starting point begins with equation

(1�E)@�2E = @�2E �E@�2E
= @�2E �E@�2 ;

(V.3)

which comes from the following facts. The operator

@�2 commutes with the spectral projector E0. Using

this and equations (V.2), we have



E@�2E = E E0@
�2E = E @�2E0 E = E @�2E0 = EE0 @

�2 = E @�2 ;

d
and this implies the second line of (V.3). The commu-

tation relation [@�2; E0] = 0 allows us to replace E in

the equation (V.3) by Q := E �E0

(1�E)@�2E = @�2Q�Q@�2 : (V.4)

Combining (V.1) with (V.4) and using ��1 = @�2+

V , gives

@�2Q = Q@�2 � (I �E)V E
= @�2Q� (I �E0 �Q)V (E0 +Q) :

(V.5)

Since the interval I0 is isolate from the rest of the

spectrum, @�2 is an invertible bounded operator in the

subspace (I � E0)H. We can solve the left hand side

of (V.5) for Q by de�ning

X f :=

�
@2 f if f 2 (I �E0)H
0 otherwise :

Note that X @�2 = @�2X = I �E0 and kXk < ��1.

Equation (V.5) can thus be written as

Q = g(Q) ; (V.6)

where

g(Q) = X @�2Q�X (I +E0 �Q)V (Q�E0) :

Proposition V.1 The sequence Qn; n = 0; 1; : : :, of

projectors de�ned by

Qn = g(Qn�1) ; (V.7)

with initial condition Q0 = 0 satis�es the conditions

(V.2) and converges, Q = limn!1Qn, to the unique

solution of equation (V.6).

Proof. We have kQnk � q < 1 for all n 2 N provided q

is chosen small enough and L is taken so large that if

kQk � q then

kg(Q)k � kXk kE0 @
�2k q + ��1 (1 + q)2kVLk � q :

(V.8)

Note that the smallness of g depends on the smallness

of V . Since

kXkkE0 @
�2k � jI0j

� + jI0j := � < 1 ;

equation (V.8) holds provided

kV k � (1� �)�

(1 + q)2
q : (V.9)

Now, for �xed value of q, it can be shown (see ref.

[F] for details)

jg(Q)� g(Q0)j � � jQ�Q0j

also holds with � < 1 and this implies Proposition V.1

by the Banach �xed point theorem. 2

We have proven the existence of a unique projector

E1=L such that kQ1=Lk = kE1=L�E0k � q. Since q can

be made arbitrarily small by taking L su�ciently large

so that (V.9) holds, we have limL!1 kE1=L � E0k = 0

and E1=L �! E0 as L!1.

To complete the proof of Theorem III.1, we need

to �nd an orthogonal projector EL onto EL � E1=L in

order to get (III.8). This is achieved by setting

EL = E1=L(E
y
1=LE1=L)

�1Ey1=L (V.10)

and noting that the inverse operator (EyE)�1 exist be-

cause kQk � q implies

kE0 fk � kE fk+ qkfk = kE fk+ qkE0 fk ;

for any f 2 H such that E0f = f . As a consequence

kE fk � (1� q)kfk and

hf; EyE fi � (1� q)2kfk :

One can show, in addition, that [��1; EL] = 0 for

all L. Therefore, for any � 2 I0 \ �(@�2),
c

kEL
�
��1 � �I

�
ELk = k ���1 � �I

�
ELk

� k �@�2 � �I
� �
E0 + (EL � E0)

� k+ kV ELk
� k �@�2 � �I

� k+ k@�2k kEL �E0k+ kVLk :
(V.11)



Since the right hand side goes to zero as L ! 1 this

concludes the proof of Corollary III.2. 2

VI Di�usion Coe�cient

This section is devoted to the proof of Theorem II.5.

The di�usion coe�cient will be estimated throughout

an expansion for the expectation of the inverse matrix,

E(�L;w )
�1, with w satisfying the macroscopic homo-

geneity condition (II.10). This is justi�ed in ref. [AKS]

in view of the fact that (�L;w)
�1, when properly scaled,

converge to its expectation for almost all environment

w. Thus, the formula
�
E(�L;w )

�1
��1 � �L;� is expect

to hold in the limit as L!1. We will see that very im-

portant cancellations take place by inverting the series

expansion of E(�L;w )
�1.

A simple algebraic manipulation shows

(��L;w)
1=2 1

��L;w
(��L;w)

1=2
=

1

I �DL;w
; (VI.1)

where

DL;w := (��L;w)
�1=2

(�L;w ��L;w) (��L;w)
�1=2

(VI.2)

is a well de�ned matrix since, in view of (II.2) and

(II.10), ��L;w is positive and the square root of ��L;w

can be taken.

Choosing w = E wb and use (II.1) to write �L;w =

w�L where �L is the �nite di�erence Laplacian with

0{Dirichlet boundary condition on �, equation (VI.2)

can be written as

DL;w = (��L)
�1=2

�L;� (��L)
�1=2

; (VI.3)

where � = f�bg given by �b = wb=w � 1, are i.i.d.

random variables with mean E �b = 0, such that

j�bj � � <
1

2
(VI.4)

holds in view of (II.10).

Equation (VI.1) suggests us the use of Neumann se-

ries to develop a formal expansion of (�L;w)
�1 in power

of DL;w due to the small parameter �. The remaining

of this section is devoted to the pointwise convergence

of the matrix element of
h
E (I �DL;w)

�1
i�1

.

Using (VI.3), we have

c

1

I �DL;w
= I +

X
n�1

(��L)
�1=2

�L;�

h
(��L)

�1
�L;�

in�1
(��L)

�1=2
: (VI.5)

d

To write (VI.5) in a more convenient form, let

rL : R� �! R
BL be the �nite di�erence operator:

(rL u)hxyi = �(rL u)hyxi = �hxyi (uy � ux) :

where the sign �hxyi =
P

i(yi � xi) = �1, according to
whether hxyi is positively (= 1) or negatively (= �1)
oriented. rL maps a 0{form u into a 1{formsrLu. Let

r�L : RBL �! R
� be its adjoint (!;rL u) = (r�L !; u),

i.e. the �nite divergent operator which maps a 1{form

! into a 0{form r�L! given by

(r�L !)x =
X

y:jx�yj=1

!hyxi ;

and let M� : RBL �! R
BL be the multiplication oper-

ator by �: (M� !)b := �b !b.

With these notations, we have

�L;� = r�LM�rL ; (VI.6)

and its bilinear form reads

(u;�L;�v) = (ru;M�rv) = 1

Ld

X
b

�b (ru)b (rv)b ;

recovering expression (II.2) for the quadratic form.

De�ne

� := rL (��L)
�1r�L ; (VI.7)

and note that, since (��L)
�1
x;y is the Coulomb potential

between two unit charges located at x and y, �b;b0 is

the dipole interaction potential between two unit dipoles

located at b and b0. Note that � maps 1{form into 1{

form.

In view of (VI.6) and (VI.7), equation (VI.5) can be

rewritten as

1

I �DL;w
= I +

X
n�1

X
�2Bn

L

��W� ; (VI.8)



where, for � = (b1; b2; : : : ; bn),

�� =
nY

k=1

�bk ; (VI.9)

and

(v;W� u) =
1

j�j #b1 �b1;b2 �b2;b3 � � � �bn�1;bn �bn ;

(VI.10)

with # and � being 1{forms given by r (��L)
�1=2

v

and r (��L)
�1=2

u, respectively.

Concern the convergence, as � % Z
d, of a generic

term of the expansion (VI.8), the following remark is

now in order.

Remark VI.1 The asymptotic behavior of the dipole

potential �b;b0 for L >> dist (b; b0) >> 1 can be esti-

mated by its spectrum decomposition 3,

�b;b0 =
1

Ld

X
n2��

~�n (reLn)b (reLn)b0 ; (VI.11)

where

~��1n = 4

dX
k=1

sin2
�

4L
nk

and eLn as in (III.27). If we take b = hxx(i)i and

b0 = hyy(j)i, where z(k) is a nearest site of z whose

components are given by z
(k)
` = z` + �k;`, and make a

change of variables, 'i = (�=2L)ni, i = 1; : : : ; d, we

have

c

lim
L!1

�b;b0 =
1

4�d

Z
[0;�]d

dd'

 
dX

k=1

sin2('k=2)

!�1
rirj

dY
k=1

cos ('k(xk � yk)) ; (VI.12)

d

where rkf(z) = f(z(k))� f(z) is the di�erence opera-

tor in the k{th direction. The jx� yj >> 1 behavior of

�b;b0 is given by restricting the integral (VI.12) around

a "{neighborhood of 0 with " jx� yj = O(1):

c

�b;b0 � �1
(2�)d

Z
j'j�"

dd'
'i 'j
'2

tan ('i(xi � yi)) tan ('j(xj � yj))

dY
k=1

cos ('k(xk � yk))

� �1
(2�)djx� yjd

Z
jtj�O(1)

ddt
ti tj
t2

(VI.13)

� 1

[dist (b; b0)]d
:

d

As a consequence, �b;b0 is not summable in absolute

value, X
b02BL

j�b;b0 j � logL ;

and the uniform convergence with respect to � of the

�{summation in (VI.8) requires cancellations due to the

dipole orientations (see ref. [PPNM]).

We shall exhibit in the following another kind of

cancellation due to the inversion of the expected value

of (VI.8).

Inverting the expectation of (VI.8) givesh
E (I �DL;w)

�1
i�1

= I ��L ; (VI.14)

where

3Since we have not rescaled the space � � Zd, it is convenient to introduce a base fêLngn2�� , �� = f1; : : : ; 2L � 1gd, normalized

with respect to the scalar product ((u; v)) :=
P

x2�
ux vx = Ld(u; v): êLn = eLn=

p
Ld. The spectrum resolution of the identity is written

in terms of this base.



�L =
X
k�1

(�1)k+1
X

n1;:::;nk

X
�=(�1;:::;�k)

E ��1 � � � E ��k W� ; (VI.15)

d

and � 2 B
n1
L � � � � � B

nk
L , with ni � 1. Note that

W� =W�1 � � �W�k .

To see how the log{divergent terms in (VI.14) cancel

out, it is convenient to use graph{theoretical language.

A graph G consists of two sets (V;E): V = fv1; : : : ; vsg
is the vertex set and E = fe1; : : : ; es0g the connecting

set of edges. To each edge e its assigned an ordered

pair of vertices (vv0) (its extremities) which are called

adjacent if v 6= v0; otherwise e is said to be a \loop".

To the problem at our hand, we shall identify the bonds

fb1; : : : ; bng as a the vertex set of a graph G whose con-

nectivity is determined by the presence of interactions

�b;b0 .

Two graphs G and G0 are isomorphic (denoted

G � G0) if there is a one{to{one correspondence be-

tween their elements which preserves the incidence

relation. A path � on G is an ordered sequence

fvi0 ; ei1 ; : : : ; ein ; ving of alternately vertices and edges

of G such that eik =
�
vik�1

vik
�
holds for each k; the

edges fei1 ; : : : ; eing are the steps of the path and the

vertices fvi0 ; : : : ; ving are the points visited by the path.
� may be identi�ed with one of these ordered sets since

it can be uniquely determined by each of them. Two

vertices v; v0 2 V may be connected by more than one

path. A graph G is said to be connected if any two ver-

tices v; v0 can be joined by at least one path � on G.

The components of a non{connected graph are its max-

imum connected subgraphs. Given two vertices v; v0,

the disconnecting set of edges is a set whose removal

from the graph G destroys all paths between v; v0. A

cut{set is a minimal set of edges the removal of which

from a connected graph G causes it to fall into two

components G1; G2.

Turning back to equation (VI.14), one may interpret

� = fb1; : : : ; bng as a set of vertices visited by a path.

In view of the fact that �b has zero mean, we have

E �� � ��� = 0 (VI.16)

if there exist at least one bond bi which are not repeated

in the list � = fb1; : : : ; bng.

The condition (VI.16) says that the path � must

visit each vertex at least twice otherwise its contri-

bution to (VI.14) vanishes. The set of distinct bonds

V = fbi1 ; : : : bisg and edges E = f(b1b2) ; : : : ; (bn�1bn)g
form a connected graph G with even valency V(b) � 4

for each vertex b 2 G. Graphs with this property will

be called admissible graphs. Note that each path �

yields only one graph G but there are possibly many

n{step paths covering each edge (bi�1bi) of G exactly

once which starts at b1 and ends at bn. If we denote by

[�]G the set of all paths � satisfying these conditions

for a given admissible graph G, we have

Proposition VI.2 Equation (VI.15) can be written as

�L =
X
n�1

X
G:jEj=n�1
admissible

AGWG ; (VI.17)

with

AG :=
X

�2[�]G

X
�=(�1;:::;�s)

(�1)s+1 ���1 � � � ���s ; (VI.18)

where we sum over all sizes n 2 N; n � 1, all admissi-

ble graphs G of size jEj = n, over all paths � in [�]G

and over all decompositions of � into s; s � 1, succes-

sive paths (�1; : : : ;�s), each of which capable of gener-

ating admissible graphs Gi. Here, with the notation of

(VI.10) and footnote in Remark VI.1,

((v;WG u)) = #b1

0@ Y
hbb0i2E(G)

�b;b0

1A �bn ; (VI.19)

for n > 1 with �b1;b1 = 1 for n = 1 (the case that G is

the trivial graph (fb1g; ;)).

We shall in the sequel state two lemmas and prove

Theorem II.5 under an extra assumption.

Lemma VI.3 If G is an admissible graph with at least

one cut{set contained one edge (i.e. G falls into two

components by cutting a single edge), then AG = 0.



Lemma VI.4 There exist a constant C[G] < 1, de-

pending on the equivalence class [G] of isomorphic

graphs G, such that

X
G0:G0�G
b1;bn fixed

������
Y

hbb0i2E(G0)

�b;b0

������ � C[G]

[1 + dist(b1; bn)]
2d

(VI.20)

holds uniformly in L for all admissible graph G with

jEj = n and cut{sets with no less than two elements.

Remark VI.5 The proof of Lemmas VI.3 and VI.4

are essentially given in [AKS] (see Assertions I and

II of Section 4). Note that our estimate (VI.20) have

not included the logarithmic corrections which appears

in that reference. To get rid of these one has to control

the loop subgraphs of G carefully as it is done in the

ref. [PPNM]. The uniform upper bound (VI.20) results

from the hypothesis that G remains connected by cutting

one single edge.

Graphs with single edge cut{sets do not contribute

to (VI.17) due to the following cancellation in Lemma

VI.3.

Proof of Lemma VI.3. Let (bi bi+1) be the only edge

of a cut{set and let � = (�1; : : : ;�s) be a decomposi-

tion of a path in G. Either both bi and bi+1 belongs

to some �j or they belong to two successive ones. We

call the latter decomposition type A and the former

type B. It turns out that there is an one{to{one corre-

spondence between type A and type B decompositions

di�ering only by the splitting of �j into two elements

�
(1)
j and �

(2)
j . Lemma VI.3 follows from the fact that

the contribution to (VI.18) of a pair of decompositions

established by this correspondence have the same abso-

lute value with opposite signals. Note ���j = ��
�
(1)
j

��
�
(2)
j

if the edge (bi bi+1) bridges the two paths �
(1)
j and �

(2)
j .

2

In view of Proposition VI.2 and Lemmas VI.3 and

VI.4, equation (VI.15) can be estimated as

j((v;�L u))j �
X

b;b02BL

#b
KL

[1 + dist(b; b0)]
2d
�b0 ; (VI.21)

where

KL =
X
n�1

X
[G]:jEj=n�1
admissible

A[G]C[G] ; (VI.22)

with the sum running over the equivalence classes [G]

of isomorphic admissible graphs G of size jEj = n and

C[G] as in Lemma VI.4. Note that AG = A[G].

Now we show that, if one uses, as in refs. [AKS] and

[PPNM], the upper bound

C[G] � Cr (VI.23)

for some geometric constant C < 1 where r = jV j is
the number of vertices in G, the equation (VI.22) can-

not be bounded uniformly in L. Taking into account

property (VI.4),

j���1 � � � ���s j � �n (VI.24)

holds uniformly in � and equation (VI.22) can be

bounded by

KL �
X
n�1

�
2n� 1

n

�
�n

min (n;j�j)X
r=1

�(n; r)Cr : (VI.25)

Here, we have identi�ed each path � = fb1; : : : ; bng
in a given graph G = (V;E) of size jEj = n � 1

with a partition P = (P1; : : : ; Pr) of f1; 2; : : : ; ng into

r = jV j pairwise disjoint subsets. This association

is one{to{one since � is an ordered set of elements.

Note that each component Pj corresponds to one ver-

tex bi1 = bi2 = � � � = bip of G visited p = jPj j times
by the path �. One can thus replace the sum over all

equivalent classes of graphs [G] and over all paths �

in [G] by the sum over all partitions P . The factor

�(n; r) counts the number of partitions of f1; 2; : : : ; ng
into r subsets. The bound (VI.25) disregards the fact

that G is an admissible graph. Also, the consistency

of each decomposition � = (�1; : : : ;�s) into paths �i's

which gives rise to admissible graphs has been not con-

sidered. The binomial factor
�
2n�1
n

� � 4n counts the

decomposition of � with n steps into any number of

paths with the number of steps � n (the cardinality

of the set f1 � i1 � i2 � � � � � in�1 � n � 1g). In

addition, for the upper limit in the second sum we note

that r = jV j � (2L� 1)d (the number of vertices of G

cannot be larger than the number of sites in �).

Equation (VI.25) cannot be uniformly bounded

since, from the recursion relation �(n; r) = �(n�1; r�
1) + r�(n� 1; r) (see [W]), we have

�(n; r) � r�(n � 1; r) � rn�r�(r; r) = rn�r ;

which gives a factorial growth



min(n;j�j)X
r=1

�(n; r)Cr �
�

(C n=2)n=2 if n � j�j=2
(C j�j=2)n�j�j=2 if n > j�j=2 ;

d
after replacing the sum by the term with r =

min(n; j�j)=2.
A sharper upper bound for (VI.23) may be assumed

if one think of C[G] as being given by

C[G] = sup
G0�G

������
Y

hbb0i2E(G0)

�b;b0

������ (1 + dist(b1; bn))
2d

:

(VI.26)

As one varies the partition P of f1; : : : ; ng, the graphG,
and the path � over it, varies accordingly and the decay

of �b;b0 in this formula can be useful. We propose that

C[G] = Cn;r depends on the number of vertices r = jV j

and edges n = jEj as follows.

Conjecture VI.6 Let e�(n; r) = Cn;r �(n; r). There

exist a geometric constant C <1 such that

e�(n; r) � e�(n� 1; r � 1) + C e�(n� 1; r) (VI.27)

holds for n; r 2 N, n � r with e�(r; r) = Cr.

Note that �(n; r) satis�es (VI.27) with C replaced

by r. Assuming (VI.27) and using that e�(1; 1) = C ande�(k; l) = 0 if k < l, we have

c

nX
r=1

e�(n; r) �
nX

r=2

e�(n� 1; r � 1) + C

n�1X
r=1

e�(n� 1; r)

= (1 + C)
n�1X
r=1

e�(n� 1; r)

� C(1 + C)n ;

(VI.28)

d
which leads (VI.25) to be bounded by

KL �
X
n�1

(4�)n
min(n;j�j)X

r=1

e�(n; r) � C�0

1� �0
; (VI.29)

where �0 = 4(1 + C)�.

This concludes the preliminaries and we are now

ready to prove Theorem II.5. We observe at this

point that no restrictions about the random variables

�b's has been made beside (VI.16) and (VI.24) with

� small enough. Has Conjecture VI.6 been proved

one could work along similar expansions to show

that (��L;w)
�1=2 (��L;w) (��L;w)

�1=2 converges toh
E (I �DL;w)

�1
i�1

with probability 1.

Proof of the upper bound of II.11. Let us recall some

facts about the matrix ��L;w. By equation (II.2)

it is a positive de�nite matrix and its square root is

well de�ned. We also have E (��L;w) = ��L;w =

�w�L and, by Lemma III.1, i(��L;w)
�1iy=L2 con-

verges with probability 1 to (�@2(�))�1 exactly as

i(�rL � �rL)
�1iy=L2 does.

In view of this, we can apply Schwarz inequality to

the following identity4:

c

I =
�
E (��L;w )

1=2 (��L;w)
�1=2

�2
� E (��L;w ) E (��L;w )

�1

4In the following, for any two matrices A and B, A � B means (u;Au) � (u;B u) for all vectors u.



in order to get

�
E (��L;w )

�1
��1 � �w�L ; (VI.30)

which implies � � w and concludes our assertion. 2

Proof of the lower bound of II.11. From equations

(VI.1), (VI.3) and (VI.14), we have

c

�
E (��L;w )

�1
��1

= �w�L � w(��L)
1=2�L(��L)

1=2 (VI.31)

= �wr�RLr ;

d

where RL : RBL �! R
BL is a matrix whose elements,

in view of (VI.21) and (VI.29), are bounded by

(RL)b;b0 � �b;b0 � KL

[1 + dist(b; b0)]2d
(VI.32)

with KL � �0C= (1� �0). Note from equations (VI.30)

and (VI.31) that �L is a positive matrix.

Using the isometry operators (III.1) and

(III.2) and the fact that iyi is the identity ma-

trix in R
j�j , we have L2 i

�
E (��L;w )

�1
��1

iy =

w
�
L ir�iy � �iRLi

y
� �
L iriy� with L ir�iy and

L iriy converging in L2
0 (D) to the operator @ =

(@=@�1; : : : ; @=@�d). In addition, we claim that the ker-

nel of i (I �RL) i
y converges in distribution, as L!1,

to the delta function �(�; �) times a d � d matrix %,

since the matrix elements of RL decay faster than

1=dist(b; b0)d as dist(b; b0) ! 1. For this, note that

i (I �RL) i
y(�; �) = O �L�d� if � 6= � and = O �Ld� if

� = �.

Whether % is a diagonal matrix cannot be decided

by our estimates. The results from this section leads to�
iRLi

y
�
i;j
(�; �) �! (�i;j + %i;j) �(�; �) and this implies

� = w (1� %)

where 1 is the d� d identity and % is a positive matrix

satisfying % � �0C= (1� �0).

2
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