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The quantum mechanical problem posed by the internal motion of three particles subject to
Coulomb interactions is variationally solved by means of an Eckart-Gaussian (EG) ansatz that
exhibits an exponential behavior with respect to the radial coordinates fr1,r2g, and a harmonic
Gaussian-type dependence on the interparticle distance r12, thereby providing explicit correlation.

The proposed wavefunction is of the form (e��1r1��1r2 + e��2r1��2r2) rl12 e
�
(r12�u0)

2

, through
which ground state energies are calculated for a few two-electron atoms�considering �nite nuclear
mass e�ects�and molecular ions corresponding to electronic and mesonic systems. The physical
interpretation and advantages of the EG wavefunction are discussed in terms of the relative masses
of the particles in the analyzed systems. A useful application of the variational method is presented
where the underlying structure of the 3-body wavefunction combines an atomic- and a molecular-
like description of the system. The obtained energies agree with the exact results within 10�4�10�2

Hartrees.

I Introduction

Three particles interacting via Coulomb forces repre-

sents a fundamental problem in quantum mechanics

whose approximate solution provides some insight into

the more complex analysis associated with few-body

problems. Three-body Coulomb systems comprise a

variety of diatomic molecular ions, e.g. hydrogenic and

their isotopic species like H+
2 [1], HD+, HT+ and DT+

[2], as well as exotic systems of interest in muon cat-

alyzed fusion such as pp�+, dd�+, dt�+ and tt�+ [3].

Coulomb systems involving three particles relate also to

the analysis of matter-antimatter coexistence, as that

rendered by the experimental observation of antipro-

tonic helium (�pHe+) [4] and the formation of positro-

nium ions Ps� (e�e�e+) through collisions of positron

with atomic hydrogen [5] and other experimental tech-

niques [6]. The study of two-electron atoms including

the e�ect of �nite nuclear mass to investigate bound [7]

and resonant structure [8] involves the quantum me-

chanical analysis of three particles undergoing electro-

static interactions.

H+
2 , being the simplest molecular species, has been the

subject of numerous studies to illustrate the separa-

tion of electronic and nuclear motion as prescribed by

the Born-Oppenheimer approximation [9], and it has

been analyzed under adiabatic [10] and nonadiabatic

treatments both within CI (Con�guration Interaction)

schemes [11] and by means of correlated wavefunctions

variationally optimized [12]. In connection with the

latter, attempting accurate descriptions of ground and

excited state properties for 3-particle systems involves

multiparameter set optimizations that often represent a

challenging numerical task. Therefore, a suitable choice

of the trial wavefunction and an e�cient handling of the

numerical optimization, are important aspects to con-

sider.

The earliest attempts to describe two-electron systems

in a nonadiabatic fashion, within the in�nitely heavy

nucleus approximation, led to propose trial wavefunc-

tions of the form

	 = N e��(r1+r2) P (r1; r2; r12); (1)

where N is a normalization constant and � is a varia-

tional parameter. Correlation is thus introduced via a

polynomial function P (r1; r2; r12) that depends on the

interelectronic distance

r12 = jr1 � r2j; (2)

as a third coordinate, in addition to the electron-

nucleus distances r1 and r2. Ever since, Hylleraas co-
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ordinates,

s = r1 + r2; t = r2 � r1; u = r12; (3)

have been widely used to expand wavefunctions vari-

ationally optimized in basis sets [13] that depend on

these variables.

Three-particle systems for electronic (including �nite-

size corrections) [7a,7b] and mesomolecular species [14],

have been described through correlated Slater-geminals

	SG =
NX
k

Ck e
��kr1��kr2�
kr12 ; (4)

where coe�cients Ck are found by solving the secular

equation (Rayleigh-Ritz variational method) and the

exponents �k, �k and 
k are variationally optimized

within selected samples of parameter sets. For each

expansion the procedure involves optimization of six

parameters to be varied on pseudorandom sequences.

Wavefunctions expanded in generalized Hylleraas basis

sets [15]

	GH =
NX
k

Ck r
nk
1 rmk2 rlk12 e

��kr1��kr2�
kr12 ; (5)

have also been utilized for the variational description

of 3-body Coulomb systems where optimization tech-

niques similar to those of correlated Slater-geminals are

followed.

With the above wavefunctions relatively low expansions

are su�cient to accomplish reasonably accurate ener-

gies to describe ground and low excited states of elec-

tronic molecular ions. By contrast, obtaining the en-

ergy spectrum for mesomolecular systems (e.g. dd�+,

dt�+ and tt�+), where � is the binding particle, be-

comes a remarkably more di�cult task. This is essen-

tially due to the presence of the large muon mass, out-

weighing that of electrons by more than two orders of

magnitude (m� = 207me), which makes these systems

strongly nonadiabatic. Indeed, mesomolecular species,

which play a key role in muon catalyzed fusion pro-

cesses, consist of two isotopic hydrogen nuclei and a

muon, all three tightly bound via Coulomb interactions,

where high vibrational energies overcome the electro-

static repulsion driving the nuclei at so short distances

from each other�in fact, within the strong forces in-

teraction range�that fusion eventually occurs. From

a theoretical point of view, these molecular ions were

originally analyzed through wavefunctions expressed in

adiabatic expansions [16], and later nonadiabatically

approached by means of correlated basis sets [15]. In

either treatment, considerably large expansions are nec-

essary to reach convergence within an accuracy of frac-

tions of millielectronvolts. It would thus be desirable to

construct a wavefunction giving a high accuracy with a

reduced expansion length. As a �rst step to this end,

we here propose an ansatz that combines an atomic-

and a molecular-like character of the form

c

	EG = (rn1 r
m
2 e

��1r1��1r2 + rm1 r
n
2 e
��2r1��2r2 ) rl12 e

�
(r12�u0)
2

; (6)

where �1 = p�, �1 = q�, �2 = q�, �2 = p�, and �, �, 
 and u0 are variational parameters, whereas p and q are

asymmetry factors de�ned as

p = 1 +

�
m1 �m2

m1 +m2

�
; q = 1�

�
m1 �m2

m1 +m2

�
; (m1 � m2); (7)

d

that depend on the masses of particles 1 and 2, whose

distances to particle 3 are denoted by r1 and r2, re-

spectively. Hence, for homonuclear systems (m1=m2;

p=q=1) the above wavefunction is symmetric under

exchange of these coordinates, i.e. 	EG (r1; r2) =

	EG (r2; r1), whereas for heteronuclear systems (m1 >

m2), it is asymmetric: 	EG (r1; r2) 6= 	EG (r2; r1).

(Note that the operation r1 
 r2 is not to be applied

on the labels of masses m1 and m2, because this would

lead to a symmetric combination for either homonuclear

or heteronuclear systems.)

The atomic-like character of 	EG is clearly associ-

ated with the symmetric (or asymmetric) combination

of exponential functions, whereas the Gaussian fac-

tor rl12 e
�
(r12�u0)

2

, denotes a harmonic oscillator-type

function that describes vibrational motion on the inter-

particle coordinate r12, around an equilibrium distance

u0. The �rst part of the wavefunction,
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	E = rn1 r
m
2 e

��1r1��1r2 + rm1 r
n
2 e
��2r1��2r2 (8)

corresponds to a generalized Eckart function [17], which

was the earliest variational uncorrelated ansatz (sym-

metric combination) utilized to describe two-electron

atoms, assuming an in�nitely heavy nuclear mass,

where through separate screening factors on each co-

ordinate a more 
exible description of the atom is at-

tained, as compared to the simpler function

	0 = (rn1 r
m
2 + rm1 r

n
2 ) e

��(r1+r2 ): (9)

In order to assess the accuracy of the here proposed

Eckart-Gaussian wavefunction, 	EG, we set out to

make a systematic comparison with that obtained

through a generalized Hylleraas function,

c

	GH = (rn1 r
m
2 e

�a1r1�b1r2 + rm1 r
n
2 e
�b2r1�a2r2 ) rl12 e

�c r12 ; (10)

d
which is the most similar to the former that has been

utilized in a correlated description of 3-body Coulomb

systems. (The set fa1; b1; a2; b2g relates to variational

parameters a and b via asymmetry mass-dependent fac-

tors in the same fashion as given for the EG function.)

In this report we compare variational ground state en-

ergies as obtained for the Eckart-Gaussian and General-

ized Hylleraas ans�atze, Eqs. (6) and (10), respectively,

for a variety of atomic and molecular species, compris-

ing three charged particles subject to electrostatic in-

teractions.

II Theory

We consider the nonrelativistic 3-body CoulombHamil-

tonian,

c

H = � 1

2m13
r2
1 �

1

2m23
r2
2 �

1

m3
r1 � r2 +

z1z3
r1

+
z2z3
r2

+
z1z2
r12

; (11)

d
where the mij's refer to reduced masses of particles i

and j (it is assumed that m1 � m2), m3 denotes the

mass of particle 3 and z1; z2; z3 are the charges of parti-

cles 1, 2 and 3, respectively. The masses involved in the

analyzed systems are given in atomic units: me = 1:0,

m� = 206:7686, mp = 1836:1515, md = 3670:481,

mt = 5496:899 and m� = 7294:295, corresponding to

the electron, proton, deuteron, triton and � (helium

nucleus) particles, respectively. The mass-polarization

term gives the �nite nuclear mass correction (propor-

tional to the scalar product of r1 and r2), which for

an atomic hamiltonian is absent in the in�nitely heavy

nucleus approximation (m3 !1).

When expressed in Hylleraas coordinates the above

Hamiltonian reads,

c

H = � 1

2m13

�
@2

@r21
+

2

r1

@

@r1
+

@2

@r212
+

2

r12

@

@r12
+ 2r̂1 � r̂12 @2

@r1r12

�

� 1

2m23

�
@2

@r22
+

2

r2

@

@r2
+

@2

@r212
+

2

r12

@

@r12
� 2r̂2 � r̂12 @2

@r2r12

�

� 1

m3

�
r̂1 � r̂2 @2

@r1r2
+ r̂1 � r̂12 @2

@r1r12
� r̂2 � r̂12 @2

@r2r12
� @2

@r212
� 2

r12

@

@r12

�

+
z1z3
r1

+
z2z3
r2

+
z1z2
r12

; (12)
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where r̂1, r̂2 and r̂12 denote the unit vectors for distances between particles 1-3, 2-3 and 1-2, respectively.

The expectation value of the Hamiltonian with respect to the EG and GH trial functions,

E =
< 	jHj	 >

< 	j	 >
; (13)

leads to integrals of the form

FNML =

Z 1

0

dr1

Z 1

0

dr2

Z r1+r2

jr1�r1j

dr12 r
N
1 rM2 rL12 e

�Ar1�Br2�C1r12�C2r
2

12 ; (14)

where the di�erential volume is

dV = 8�2 r1 r2 r12 dr1 dr2 dr12: (15)

The above integral can be expressed in terms of Hylleraas coordinates s; t and u:

0 � s � 1; 0 � u � s; �u � t � u; (16)

which relate to r1, r2 and r12 as

r1 =
1

2
(s � t); r2 =

1

2
(s + t); r12 = u: (17)

We thus obtain,

FNML =
1

2N+M+1

Z 1

0

ds

Z s

0

du

Z u

�u

dt (s � t)N (s + t)M uL �

e�
A

2
(s�t)�B

2
(s+t)�C1u�C2u

2

; (18)

which leads to

FNML =
N !M !

2N+M+1

NX
k=0

MX
r=0

(�1)N�k
k!r!(N � k)!(M � r)!

�
Z 1

0

ds

Z s

0

du

Z u

�u

dt sk+r tN+M�k�r uL �

e�
1

2
(A+B)s� 1

2
(B�A)t�C1u�C2u

2

: (19)

It is straightforward to prove than an integral of the form

GNML =

Z 1

0
ds

Z s

0
du

Z u

�u

dt sN tM uL e�As�Bt�C1u�C2u
2

; (20)

can be written as

GNML =
N !M !

AN+1BM+1

NX
k=0

MX
r=0

AkBr

k!r!
�

f (�1)r
Z 1

0

ds sL+k+re�(A�B+C1 )s�C2s
2

�
Z 1

0

ds sL+k+re�(A+B+C1 )s�C2s
2g; (21)

for B 6= 0, and

GNML =
1 + (�1)M
M + 1

N !

AN+1

NX
k=0

Ak

k!

Z 1

0

ds sM+L+1+ke�(A+C1)s�C2s
2

; (22)

for B = 0.
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GNML (and therefore FNML) can analytically be evaluated for C2 = 0 (GH functions). Otherwise (EG functions),

one deals with the improper integrals

IN =

Z 1

0
dx xN e�p1x�p2x

2

; (23)

which can be calculated through the recursion formula

2p2IN+1 + p1IN � NIN�1 = 0; N � 1: (24)

The ones of lowest order are given by

I0 =
1

2

r
�

p2
ez

2

erfc (z); I1 =
1� p1 I0

p2
;

�
z =

p1
2
p
p2

�
; (25)

where erfc (z) denotes the complementary error function,

erfc (z) =
2p
�

Z 1

z

dt e�t
2

; (26)

d

which can be calculated for any argument with stan-

dard numerical methods.

III Results and Discussion

Energies for EG and GH trial wavefunctions were var-

ied with respect to the four nonlinear f�; �; 
; u0g and
three nonlinear parameters fa; b; cg, respectively, by

means of an algorithm based on a numerical quasi-

Newton method to minimize a multivariable function.

Optimization for either case took a negligibly short pro-

cessing time. Converged optimal values were attained

within a gradient magnitude in the range 10�6� 10�5,

for which analytical expressions for the energy gradients

were also calculated.

For the sake of simplicity, powers fn;m; lg for the cor-
responding coordinates r1, r2 and r12, in both trial

functions, were chosen so as to ful�ll the condition

n+m+l�2. Throughout all calculated systems, the op-

timal powers, giving the lowest variational energies for

the two wavefunctions commensurate with this condi-

tion, were found to consistently span the set n=m=0

and l either equal to 0, 1 or 2. Thus, the actual ans�atze

that we here investigate are of the form

	EG = (e��1r1��1r2 + e��2r1��2r2 ) rl12 e
�
(r12�u0)

2

; (27)

(as stated in the abstract of this report) and

	GH = (e�a1r1�b1r2 + e�b2r1�a2r2) rl12 e
�c r12 : (28)

In Table 1 variationally optimized ground state energies

are given for 3-body Coulomb systems classi�ed�for

interpretive purposes�in three classes: two-electron

atoms, molecular electronic ions and mesomolecular

species.

As seen in this table, the EG function consistently

yields lower variational energies than those obtained

with function GH, except for the muonic molecule

pp�+. It is interesting to note that for the two-electron

atoms here analyzed the molecular description gives

a better result. In this case, the vibrational part of

function EG describes the electronic motion within the

Coulomb �eld created by the binding particle, which

is a positively charged nucleus. In a way, this is the

opposite view of the Born-Oppenheimer approxima-

tion, where the fast motion of the light particles among

themselves proceeds in the presence of a heavy body,

although in a nonadiabatic fashion since no distance

is ever �xed to solve the Schr�odinger equation. How-

ever, the optimal energies obtained for the two func-

tions are very similar, thus indicating that the intrinsi-

cally atomic part of the EG wavefunction provides an

essential contribution, where by comparison the vibra-

tional ansatz barely improves the overall description.

Surprisingly, this trend shows up even for the lightest

atomic ion, Ps� (e�e�e+), where the three particles

possess the same mass and the ground state is very

di�use, albeit in this case we obtain the most alike op-

timal energies for the two functions, i.e. we deal with

the most atomic-like molecule of all.

As also shown in the same table, ground state energies

for electronic molecular ions, as obtained with function

EG, are the most accurate of all homonuclear systems

here analyzed�including the exotic molecular species
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Mu+2 (�+�+e�)�where the slow motion of the heavy

particles in the presence of an electron is adequately

described via the molecular ansatz. In contrast to the

previous case, the atomic part of the wavefunction plays

a less signi�cant role to improve the global description

of these molecular species, as inferred from the energies

optimized through function GH, which remain in aver-

age .03 Hartrees o� the exact values, as compared to the

substantially more accurate energies that the EG wave-

function yields (being 3� 10�4 to 10�3 Hartrees above

the exact nonrelativistic values). In fact, for molecules

with increasingly heavier nuclei a higher accuracy in

the energies is accomplished. Accordingly, description

of vibrational internuclear motion correspondingly be-

comes a more important feature. Kolos et al. [12a] re-

port a ground state energy of �0:58305 Hartrees for H+
2

through a 32-term GH expansion, which compared to

that obtained with our one-term EG function, �0:59643
Hartrees, clearly indicates the latter's higher variational

accuracy.

Mesomolecular species present the most challenging

systems upon variational analysis. These molecules are

formed under extreme conditions of chemical con�ne-

ment, comprising three massive particles tightly bound,

where atomic and molecular characters are strongly in-

termingled. Their accurate description thus calls for an

approach where both features are explicitly accounted

for. The optimal energies obtained through functions

EG and GH, as seen in Table 1, clearly show that a

purely atomic description, despite the built-in corre-

lation in the wavefunction, does not lead to a higher

variational accuracy. With the exception of pp�+, the

EG function yields a lower energy for homonuclear as

well as heteronuclear molecules, especially so for the

heaviest species dd�+, dt�+ and tt�+. Note that for

these three the energies obtained with both trial func-

tions di�er to a greater extent than those optimized

for the two-electron atoms. This is consistent with our

conjecture: the vibrational ansatz plays a more impor-

tant role in highly con�ned Coulomb systems, like me-

somolecules. It is interesting to note that the one case

where the GH function gives a marginally lower energy,

pp�+, corresponds to the mesonic molecule where nu-

clei and binding particle have the least unequal masses

(m3=m1 = 0:11).

For heteronuclear systems the present �ndings show a

lesser degree of accuracy, the EG function being never-

theless variationally superior. The description of three

di�erent particles becomes a more di�cult task, where

one no longer has the advantage of using a symmet-

ric wavefunction. These systems are usually described

through unsymmetrized wavefunctions, i.e. we could

have chosen trial functions of the form

�EG = rn1 r
m
2 rl12 e

��r1��r2�
(r12�u0)
2

; (29)

and

�GH = rn1 r
m
2 rl12 e

�a r1�b r2�c r12 ; (30)

instead of the here proposed EG and GH wavefunc-

tions, respectively. However, at the present varia-

tional level where only one-term functions are analyzed,

the above ans�atze were found�in the course of test

calculations�to give remarkably poor energies upon op-

timization. The asymmetry we introduce in the wave-

functions is more advantageous since it preserves the

same structure for symmetric and asymmetric combina-

tions, and depends on the particle masses of the speci�c

heteronuclear system under study. The latter is thus

physically described in a more meaningful way since

the degree of asymmetry is dictated by its particular

characteristics.

The optimal parameters for the EG and GH wavefunc-

tions, associated with true minima corresponding to

vanishing energy gradient (jrEj � 10�5), are given in

Table 2. In general, the pair of linear exponents for

each function, f�; �g and fa; bg, respectively, are very
similar, which is to be expected since they correspond

to the same Eckart-type function for either variational

ansatz. For most of two-electron atoms optimal pa-

rameter c is negative and thus factor e�c r12 yields a

sizable contribution, which physically re
ects the fact

of having two fermions with paired spins (thus spin-

uncorrelated) that spatially become highly correlated

in the 1s-orbital. This feature is apparent even for

positronium, Ps�, though in a less pronounced fash-

ion since the corresponding optimal parameter c is in

this case positive and factor e�c r12 is thus smaller in

magnitude. This is consistent with a highly di�use

ground state that this atom is known to possess, i.e.

the electrons are far less con�ned in the 1s-orbital

within the positron Coulomb �eld than in the pres-

ence of a heavy nucleus. EG function's optimal pa-

rameter 
 is fairly small for two-electron atoms where

through a minimal contribution of the Gaussian fac-

tor e�
 r
2

12 (
 � 1 ) e�
 r
2

12 � 1), the ansatz allows

for a prevalence of atomic character, leading thereof to

their most suitable representation. By contrast, this

factor becomes substantially more important for the

electronic molecular ions where a large optimal param-

eter 
 points to an enhanced vibrational and localized

character, essential for the appropriate description of

nuclear motion in these systems. For mesomolecular

species, optimal parameter 
 becomes smaller by com-

parison, though not as small as in the case of two-
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electron atoms, where the EG function yields atomic

and molecular character to roughly the same extent.

This is in line with the interpretation above discussed

regarding the physical features of mesonic molecules.

In order to further test the accuracy of the here pro-

posed EG trial function, we have performed a series

of calculations for all systems considered in Table 1

by using 4- and 10-term Hylleraas trial functions, ex-

pressed in coordinates s, t and u, which represent

classical ans�atze for the variational description of two-

electron atom ground states, proposed by Hylleraas in

his early work [18]. We point out that the calculations

here performed were obtained by using the full 3-body

Coulomb Hamiltonian (see Eq. (11)), and not within

the in�nitely heavy nucleus approximation (adopted in

Hylleraas' approach).

In Table 3 it is shown the accuracy of our EG function

for two-electron atoms and molecular ions in compari-

son to that of the 4- and 10-term Hylleraas functions,

c

	S4 = e��s(1 + c1u+ c2t
2 + c3s) ; (31)

	S10 = e��s(1 + c1u+ c2t
2 + c3s + c4s

2 + c5u
2

+ c6su + c7st
2 + c8t

2u+ c9u
3) ; (32)

for homonuclear systems, and

	A4 = e��s(1 + c1u+ c2t + c3s) ; (33)

	A10 = e��s(1 + c1u+ c2t + c3s+ c4s
2 + c5u

2

+ c6su + c7st+ c8tu+ c9u
3) ; (34)

for heteronuclear species. The expansions for the for-

mer are symmetric under exchange of coordinates r1
and r2, i.e. s ! s, t ! �t and u ! u, thus, s, u and

t2 are invariant under this operation and 	S(s; t; u) =

	S(s;�t; u), whereas those for the latter are corre-

spondingly asymmetric, i.e. terms containing t reverse

sign and therefore 	A(s; t; u) 6= 	A(s;�t; u). These

particular expansions were chosen because, �rstly, the

4-term function contains the same number of varia-

tional parameters (�, c1, c2 and c3) as our one-term

EG trial function, which is spanned by four nonlinear

parameters, and their variational ability can thus be

compared on fair grounds (notice also that both trial

functions contain the correlation factor u = r12). Sec-

ondly, the inclusion of 10 terms should, to a reasonable

extent, provide information on the variational ability of

a given basis set for a minimal expansion. The vari-

ational energies here given were fully optimized and

correspond to an energy gradient magnitude averaging

� 10�6 throughout, for which analytical expressions of

the gradient were used.

From these results it is clear that the atomic systems

are unfavorably described by our one-term EG function

in comparison to the Hylleraas expansions (although

it es marginally more accurate than function 	S4 for

Mu�, H�, D� and T�), which is not surprising since

the EG function's vibrational part (e�
(r12�u0)
2

) be-

comes inadequate and unphysical when associated with

the lightest particles of the system (r12 corresponds to

interelectronic distance), in the presence of a third mas-

sive body (nucleus).

By contrast, the feature that for two-electron atoms

is unphysical becomes precisely what is desirable in

molecular ions since the vibrational part of function EG

is in this case associated with the nuclear motion (r12
corresponds to internuclear distance), which is also in

line with the fundamental concept on which the Born-

Oppenheimer approximation is based: The relatively

slow motion of the nuclei proceeds favorably in the pres-

ence of a light binding particle (electron or muon). Re-

sults in Table 3 unquestionably show that the electronic

molecules and mesomolecular species here analyzed are

far better described by the one-term EG function than

by any of the Hylleraas expansions.

In this report, rather than describing two-electron
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atoms, we are aimed at improving a variational descrip-

tion for electronic and muonic molecular species, most

especially the latter, which are known to require large

correlated expansions to achieve a reasonable accuracy.

We believe that the calculations here presented indicate

that, for the latter systems, EG expansions are likely to

attain a high variational accuracy upon relatively low

expansions, at least lower than those that basis sets ex-

pressed in Hylleraas or GH-type trial functions would

probably need.

IV Concluding Remarks

A trial wavefunction combining atomic and molecular

character via an Eckart-type function times a corre-

lated Gaussian ansatz has been proposed for the vari-

ational description of 3-body Coulomb systems. We

have demonstrated the accuracy of this function by per-

forming a systematic comparison with that obtained

through a generalized Hylleraas basis consisting of one

term as well as 4-term and 10-term Hylleraas func-

tions. When applied on di�erent atomic and molec-

ular species, their variational precision is shown to be

dependent on the relative masses between the binding

particle and the the other two connected via interparti-

cle distance r12, where in general the EG wavefunction

is found to be more accurate for molecular systems.

The full variational ability of these functions must of

course be established through a convergence analysis

upon systematic increase of basis set expansions, per-

formed e.g. via pseudorandom sequences spanned on

variationally optimized intervals for the nonlinear pa-

rameters. Such intervals can be generated through ran-

dom tempering formulas for selected low-order EG ex-

pansions. The latter deliver core functions over which

a systematic increase of basis sets is performed, while

keeping the nonlinear parameters �xed. This procedure

is quite feasible and has previously been applied in the

optimization of Slater-geminals, as mentioned in the

introductory section. One of the present authors has

recently utilized a similar procedure to optimize gener-

alized Hylleraas-Gaussian basis sets applied to the vari-

ational description of two-electron atoms (within the

in�nitely heavy nucleus approximation) [19].

A convergence analysis for Eckart-Gaussian basis sets

to describe bound structure of mesomolecular systems

will be the subject of future investigation.
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Table 1: In descending order, the three frames contain data for two-electron atoms, molecular electronic ions and mesomolec-

ular species, respectively. Optimal energy (E) and energy di�erence (E�Eex) corresponding to EG and GH trial functions

are given on the �rst and second row, respectively, for each entry. mrel denotes the ratio between the binding particle mass

(m3) and that of the heavier of particles 1 and 2 (m1), i.e. mrel =m3=m1, whereas masy = (m1�m2)=(m1 +m2) relates to

the asymmetry mass-dependent factors p and q (see de�nition in text) as masy=p�1=1�q. Exact results (Eex):
a[7b], b[7c],

c[7a], d[20], e[14b]. Energy for two-electron atoms and electronic molecules is given in Hartrees (atomic units: ~=e=me=1),

whereas for mesomolecular systems is given in natural muonic units (~=e=m13=1, i.e. energy is calculated by normalizing

masses m13, m23 and m3 to the �rst of these in the Hamiltonian).

Ground state energies for 3-body Coulomb systems optimized with EG and GH trial functions.

System mrel masy E Eex E �Eex

Ps� 1.000000 0.000000 �0.259648 �0:262005a 0.002357
�0.259395 0.002610

Mu� 206.76860 0.000000 �0.522724 �0:525055a 0.002331
�0.521140 0.003915

H� 1836.1515 0.000000 �0.525411 �0:527446a 0.002035
�0.523843 0.003603

D� 3670.4810 0.000000 �0.525421 �0:527598a 0.002177
�0.523854 0.003744

T� 5496.8990 0.000000 �0.525424 �0:527649a 0.002225
�0.523858 0.003791

He 7294.2950 0.000000 �2.901524 �2:903305b 0.001781
�2.899508 0.003797

Mu+2 0.004836 0.000000 �0.583477 �0:584929c 0.001452
�0.563132 0.021797

H+
2 0.000545 0.000000 �0.596431 �0:597138d 0.000708

�0.566587 0.030552
HD+ 0.000272 0.333113 �0.583765 �0:597899d 0.014134

�0.551346 0.046553
HT+ 0.000182 0.499212 �0.566344 �0:598176d 0.031832

�0.533996 0.064181
D+
2 0.000272 0.000000 �0.598232 �0:598789d 0.000557

�0.566808 0.031981
DT+ 0.000182 0.199230 �0.593826 �0:599131d 0.005305

�0.561223 0.037908
T+
2 0.000182 0.000000 �0.599017 �0:599414d 0.000397

�0.566881 0.032533

pp�+ 0.112610 0.000000 �0.546462 �0:550059e 0.003597
�0.546589 0.003470

pd�+ 0.056333 0.333113 �0.526491 �0:541594e 0.015103
�0.525527 0.016067

pt�+ 0.037615 0.499212 �0.513212 �0:539435e 0.026223
�0.512119 0.027316

dd�+ 0.056333 0.000000 �0.557606 �0:561030e 0.003424
�0.555271 0.005759

dt�+ 0.037615 0.199230 �0.551168 �0:558854e 0.007686
�0.547059 0.011796

tt�+ 0.037615 0.000000 �0.564018 �0:566926e 0.002908
�0.558760 0.008166
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Table 2: First and second row on each entry contain the optimal power of r12 (l) and optimized nonlinear parameters for
	EG and 	GH functions, respectively.
Optimal parameters for EG and GH trial functions as obtained for 3-body Coulomb systems.

System l � � u0 

a b c

Ps� 0 0.521065 0.152122 8.207317 0.007387
1 0.518905 0.141383 0.149460

Mu� 0 1.067582 0.468815 11.412738 0.009568
0 1.069274 0.478895 �0.144277

H� 0 1.073239 0.473216 11.493968 0.009572
0 1.074954 0.483461 �0.146388

D� 0 1.073270 0.473353 11.502739 0.009566
0 1.074986 0.483605 �0.146478

T� 0 1.073281 0.473398 11.505649 0.009564
0 1.074997 0.483653 �0.146508

He 0 2.207402 1.417328 4.457742 0.032528
0 2.206545 1.440414 �0.207210

Mu+2 2 1.113204 0.215249 1.768604 1.323858
2 1.091963 0.224230 1.089973

H+
2 2 1.129880 0.216721 1.939882 4.878074

2 1.098259 0.224988 1.105470
HD+ 2 1.166271 0.260161 1.964174 5.767281

2 1.111677 0.271631 1.113650
HT+ 2 1.207226 0.290739 2.024280 5.990961

2 0.320490 1.077554 1.077851
D+
2 2 1.132012 0.216967 1.958335 7.088874

2 1.098662 0.225036 1.106470
DT+ 2 1.144748 0.237466 1.963353 7.862970

2 1.106812 0.243965 1.112853
T+
2 2 1.132924 0.217077 1.966063 8.776659

2 1.098796 0.225051 1.106805

pp�+ 1 1.069479 0.230202 0.254500 0.096940
2 1.069093 0.230012 0.904877

pd�+ 1 1.047678 0.283213 1.047219 0.145637
2 1.039766 0.289034 0.920505

pt�+ 1 0.999216 0.331158 1.243055 0.149021
2 0.343728 0.972910 0.882194

dd�+ 2 1.082599 0.221787 0.000000 0.183586
2 1.081373 0.227672 0.988577

dt�+ 2 1.083979 0.243432 0.000000 0.190654
2 1.078459 0.249494 1.001337

tt�+ 2 1.091545 0.220170 0.207601 0.220009
2 1.086495 0.226837 1.023091
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Table 3: Optimized energies for atomic and molecular species. Energies E4 and E10 correspond to those obtained with
	S4;A4 and 	S10;A10 Hylleraas trial functions, whereas EEG refers to that of EG trial function's (as given in Table 1). Energy
di�erences (E�Eex) are given on the second row for each entry.
Ground state energies for 3-body Coulomb systems optimized with 4- and 10-term Hylleraas functions as well as EG trial
function.

System E4 E10 EEG Eex

Ps� �0.259692 �0.261002 �0.259648 �0.262005
0.002313 0.001003 0.002357

Mu� �0.522653 �0.524147 �0.522724 �0.525055
0.002402 0.000908 0.002331

H� �0.525326 �0.526547 �0.525411 �0.527446
0.002120 0.000898 0.002035

D� �0.525335 �0.526701 �0.525421 �0.527598
0.002263 0.000898 0.002177

T� �0.525338 �0.526751 �0.525424 �0.527649
0.002311 0.000898 0.002225

He �2.902547 �2.903220 �2.901524 �2.903305
0.000757 0.000084 0.001781

Mu+2 �0.528530 �0.560234 �0.583477 �0.584929
0.056399 0.024694 0.001452

H+
2 �0.530987 �0.563677 �0.596431 �0.597138

0.066152 0.033462 0.000708
HD+ �0.494991 �0.531906 �0.583765 �0.597899

0.102908 0.065993 0.014134
HT+ �0.495016 �0.531943 �0.566344 �0.598176

0.103161 0.066233 0.031832
D+
2 �0.531143 �0.563897 �0.598232 �0.598789

0.067645 0.034891 0.000557
DT+ �0.495089 �0.532055 �0.593826 �0.599131

0.104042 0.067076 0.005305
T+
2 �0.531195 �0.563971 �0.599017 �0.599414

0.068219 0.035444 0.000397

pp�+ �0.527316 �0.545755 �0.546462 �0.550059
0.022743 0.004304 0.003597

pd�+ �0.479865 �0.502170 �0.526491 �0.541594
0.061729 0.039425 0.015103

pt�+ �0.476208 �0.499331 �0.513212 �0.539435
0.063227 0.040104 0.026223

dd�+ �0.529073 �0.553041 �0.557606 �0.561030
0.031956 0.007989 0.003424

dt�+ �0.488960 �0.516606 �0.551168 �0.558854
0.069894 0.042248 0.007686

tt�+ �0.529753 �0.556174 �0.564018 �0.566926
0.037173 0.010752 0.002908


