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A novel microscopic mechanism for hydrogen-enhanced oxygen di�usion in p-doped silicon is pro-
posed. A path for joint di�usion of O and H is obtained from an ab-initio molecular dynamics
"kick" simulation. The migration pathway consists of a two-step mechanism, with a maximum
energy of 1.46 eV. This path represents a 0.54 eV reduction in the static barrier when compared
with the di�usion of isolated O in Si, in excellent agreement with experiments.

Being the predominant impurity in Czochralski-

grown silicon, oxygen has been extensively studied since

the early years of semiconductor research[1]. In particu-

lar, the di�usion of oxygen in silicon is extremely impor-

tant from a technological point-of-view, since it governs

both the formation of electric-active oxygen complexes

(\thermal donors")[2, 3] and the precipitation of SiO2

in silicon [1].

The ground-state con�guration of a single oxygen

in silicon is a bent bond-center (BC) interstitial (Oi).

Di�usion of Oi in silicon occurs by jumps between

neighboring BC sites with a measured migration en-

ergy of 2.53-2.56 eV [4]. Theoretical calculations [6, 7]

have been performed within the framework of transi-

tion state theory (TST) [5], in which the migration en-

ergy is expressed as the energy di�erence between two

static con�gurations: the ground-state and the saddle-

point. For the case of Oi, the saddle-point is the well-

known "ylid" con�guration, with a three-fold coordi-

nated oxygen. These ab-initio pseudopotential, local-

density-functional, supercell calculations give migration

energies in the range of 1.8-2.2 eV. Several mechanisms

have been proposed to explain this discrepancy with

respect to experimental results [6, 7, 8].

It has been observed that oxygen di�usion in hydro-

genated silicon occurs with a much lower activation en-

ergy, 1.6-2.0 eV [9, 10, 11]. The microscopic mechanism

responsible for this enhancement of oxygen di�usion in

the presence of hydrogen is still controversial. There

are a few theoretical proposals in the literature. Based

on Hartree-Fock cluster calculations, Estreicher [12] has

proposed that the di�usion process would initiate with

H in a metastable tetrahedral (T ) site which would then

assist an oxygen jump to a neighboring bond center

with an activation energy of 1.25 eV. During the pro-

cess, the H atom itself would become trapped in a stable

BC con�guration. This model assumes that H di�u-

sion in silicon is an out-of-equilibrium process on which

the hydrogen atoms jump between adjacent T sites,

without actually visiting the BC ground-state. This

view is not supported by either ab initio [13] or tight-

binding [?] molecular-dynamics (MD) simulations of

hydrogen di�usion. Another proposal is due to Jones

et al[15], based on local-density-functional (LDF) clus-

ter calculations. In disagreement with Estreicher, they

�nd the anti-bonding (AB) site opposite to the Si-O-
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Si unit to be the ground-state for H in the presence of

O (as opposed to the BC site). They propose a mech-

anism for migration on which the Si-H backbond be-

comes stronger as the O jumps from one BC position

to another, therefore lowering the saddle-point energy

to 1.4 eV. Recently, Ramamoorthy and Pantelides [16]

have investigated the relative stability of several O+H

con�gurations in silicon at di�erent charge states. They

�nd the BC con�guration to be stable for the positive

and neutral charge states, while the AB is stable for

the negative con�guration. A joint migration pathway

is proposed for the neutral BC structure on which the

oxygen and hydrogen jump together to adjacent BC

con�gurations, with an activation energy of 1.2 eV.

In this work, we perform ab initio total-energy cal-

culations and molecular dynamics (MD) simulations to

investigate the mechanism for H-enhanced O di�usion

in Si. Our calculations are based on the pseudopo-

tential, local-density functional and supercell approx-

imations. We use the Rappe et al. optimized pseu-

dopotentials [17], which allow converged calculations

for oxygen-containing systems with a plane-wave cut-

o� of only 40 Ry. A cubic supercell with 64 Si, 1

O and 1 H is adopted, allowing atomic relaxation of

up to 3rd-nearest-neighbors of both O and H. �-point

is used for k-point sampling in most of the calcula-

tions. Electronic minimizations are performed using the

conjugate-gradients technique [18]. We focus our cal-

culations on the H+ charge state, for it is the dominant

state for isolated hydrogen in p-doped silicon [19, 20].

Initially we search for the ground state of the O+H

system in silicon. We �nd the con�guration with both

atoms at adjacent BC sites to be lower in energy by 0.22

eV when compared with the metastable AB con�gura-

tion. In Fig. 1(a) we show our calculated ground-state

geometry and electronic density, and in Table I some

calculated bond lengths and bond angles are presented.

We then proceed to investigate the migration path-

way. We seek for a pathway which represents a joint dif-

fusion of the O+H complex, i.e., on which the �nal con-

�guration is equivalent to the initial ground-state con-

�guration, except by a translation of both atoms in the

jump direction. A rigorous calculation of the saddle-

point for the joint migration is a formidable task, due

to the many degrees of freedom involved in the problem.

Therefore, we try a dynamical approach: The O atom

is \kicked" in a direction perpendicular to the Si-(O)-Si

axis (indicated by the arrow in Fig. 1(a)) with a 2.0 eV

kinetic energy and then we let the system evolve in a

MD simulation. We de�ne our calculated energy barrier

as the energy of a "saddle-point" given by the con�gura-

tion of maximum potential energy along the trajectory.

If our guess to this initial kick is good enough so that

it mimics the actual movement of the O atom just be-

fore a migration jump, the other atoms will respond to

it in a way to generate a pathway similar to the low-

est energy path. It is important to emphasize that the

energy barrier calculated by this procedure will be an

upper bound to the true minimum barrier for di�usion

[21].

The MD simulations are performed using the Ver-

let algorithm with a 10�3 ps time step. As a result of

the simulation, we observe that the O atom jumps over

a barrier of 1.46 eV. The "saddle-point" con�guration,

is shown in Fig. 1(b). After the O atom overcomes

the barrier and the potential energy starts to increase

again, the MD simulation is stopped and the system is

allowed to relaxed to a new minimum-energy con�gu-

ration. Surprisingly, this con�guration is not equiva-

lent to the initial ground-state, but rather a metastable

state. This state is shown in Fig. 1(c). Instead of

jumping to the next BC position, the H atom remains

bonded to the central Si atom. Moreover, the Si-Si

bond on which the O was initially centered is not re-

formed. Therefore the dynamics of the di�usion jump

produces a broken-bond defect in Si. This con�guration

has an energy of only 0.30 eV above the ground state.

Interestingly, this type of defect has been proposed to

be generated in the di�usi! on jump of a single O atom

in silicon, but in that case it had an energy of 1.2 eV

above the respective ground state [6, 22]. Here, the H

atom plays an important role in saturating one of the

Si dangling bonds and therefore greatly reduces the en-

ergy of this state. The other Si dangling bond remains

and it produces a gap state which is empty in the pos-

itive charge state. The electronic density associated to

this state is shown in Fig. 2. Some geometrical param-

eters related to this metastable state are also listed in

Table I.
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Figure 1. Geometries and electronic densities of four con�gurations of the O+H pair in silicon, on the (110) plane which
contains both impurities. Atomic positions are represented by the vertices formed the thick lines. Contours run from 0.25 to
6.25 electrons/�A3 . (a) Initial ground-state con�guration, with BC O and H. The arrow indicates the direction of the initial
\kick" on the oxygen. (b) \Saddle-point" con�guration, de�ned as the con�guration with maximum potential energy (1.46
eV above the ground state) during the MD simulation. (c) Metastable state with 0.30 eV, with H-saturated Si-Si broken
bond. (d) Final \ground-state" con�guration, with BC O and H. A true ground-state can be obtained by rotations of H and
O along the Si-Si axes.

Table I. Some bond lengths and bond angles of the ground- and metastable state con�gurations of O+H in Si,
shown in Fig. 1(a) and 1(c), respectively. Sic denotes the central Si atom, which is initially bonded to both O and
H.

Ground state Metastable state

Si-O 1.629 �A Si-O 1.669 �A
Sic-O 1.582 �A Sic-O 1.630 �A
Sic-H 1.586 �A Sic-H 1.567 �A
Si-H 1.645 �A

Si-O-Sic 142.7� Si-O-Sic 117.4�

O-Sic-H 100.6� O-Sic-H 98.0�

Sic-H-Si 132.2�



614 R.B. Capaz et al.

Figure 2. Electronic density for the empty gap state at the
metastable con�guration. Contours run from 0.02 to 0.10
electrons/�A3 .

In order to complete the joint di�usion jump, the

Si-H bond has to be broken so that the H goes to the

BC position and the Si-Si bond reforms. We calcu-

late the activation energy for this process by perform-

ing constrained total-energy calculations on which the

Si-H distance is kept �xed at several values between

two extreme limits: a initial situation where the Si-H

distance is small and there is a bond between the two

atoms and a �nal situation where the distance is large

and the bond is broken. As a result of these calcula-

tions, we �nd an extra activation energy of just 0.16 eV

(0.46 eV above the ground state) to bring the system

to a �nal con�guration with H and O at adjacent BC

sites, shown in Fig. 1(d). This con�guration is not ex-

actly equivalent to the ground state (in fact, it has an

energy of 0.25 eV above it), but the true ground state

can be trivially obtained by rotations of the O and H

atoms by 180� around their respective Si-Si axes, which

are expected to cost very little energy.

Therefore we conclude that H-enhanced O di�usion

in p-doped silicon occurs in a very interesting two-step

mechanism. The initial step consists of a jump of the O

atom between two adjacent BC con�gurations and the

simultaneous formation of an intermediate metastable

state corresponding to a H-saturated Si-Si broken-bond

defect. In the second step, this defect is annealed and

the H jumps to the stable BC con�guration. It should

be interesting to try an experimental detection of this

metastable state, but this should be a di�cult task due

to its small annealing energy barrier. An overall en-

ergy barrier of at most 1.46 eV for the combined pro-

cess is obtained. This is somewhat smaller than the

experimental values of 1.6-2.0 eV. This discrepancy is

similar to the case of isolated oxygen. Therefore, our

barrier should be compared to the total energy of the

"ylid" con�guration. We calculate this energy to be 2.0

eV above its respective BC ground state, consistent w!

ith previous ab initio calculations [6, 7]. Therefore, the

presence of hydrogen is responsible for at least a 0.54 eV

reduction in the saddle-point energy, in excellent agree-

ment with experiments. It is now clear the fundamental

role played by H during the di�usion process: it serves

both to "open up" a Si-Si bond on which the O atom

will jump into and, more importantly, to decrease the

energy of an important intermediate state during the

di�usion jump by saturating a Si broken bond. This

behavior is quite typical of hydrogen in semiconductors,

therefore we believe that hydrogen may behave in simi-

lar ways in assisting di�usion jumps of other impurities

in semiconductors.

Acknowledgments

This work is partially supported by Brazilian agen-

cies Conselho Nacional de Desenvolvimento Cient���co

e Tecnol�ogico (CNPq), Programa de Apoio a N�ucleos

de Excelência (PRONEX-MCT), Funda�c~ao de Amparo

�a Pesquisa do Estado do Rio de Janeiro (FAPERJ)

e Funda�c~ao de Amparo �a Pesquisa do Estado de S~ao

Paulo (FAPESP).

References

[1] Oxygen in Silicon, edited by F. Shimura, Semiconduc-
tors and Semimetals Vol. 42 (Academic Press, New
York, 1994).

[2] U. G�osele and T. Y. Tan, Appl. Phys. A 28, 79 (1982).

[3] J. W. Corbett, P. De�ak, and R. Wu, Mater. Sci. Forum
38-41, 579 (1989).

[4] P. D. Southgate, Proc. Phys. Soc. (London) 36, 385
(1960); C. Haas, J. Phys. Chem. Solids 15, 108 (1960);
G. D. Watkins, J. W. Corbett, and R. S. McDonald, J.
Appl. Phys. 53, 7097 (1982); S.-T. Lee and D. Nichols,
Appl. Phys. Lett. 47, 1001 (1985); J. C. Mikkelsen, Jr.,
Mat. Res. Soc. Symp. Proc. 59, 19 (1986).

[5] G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

[6] M. Needels, J. D. Joannopoulos, Y. Bar-Yam, S. T.
Pantelides, and R. H. Wolfe, in Defects in Materi-

als, edited by P. D. Bristowe, J. E. Epperson, J. E.
Gri�th, and Z. Liliental-Weber, MRS Symposia Pro-
ceedings 209 (Materials Research Society, Pittsburgh,
1991), p.103.

[7] M. Ramamoorthy and S. T. Pantelides, Phys. Rev.
Lett. 76, 267 (1996).

[8] Z. Jiang and R. A. Brown, Phys. Rev. Lett. 74, 2046
(1995).

[9] R. Murray, Physica B 170, 115 (1991).



Brazilian Journal of Physics, vol. 29, no. 4, December, 1999 615

[10] S. A. McQuaid, R. C. Newman, J. H. Tucker, E. C.
Lightowlers, A. Kubiak, and M. Goulding, Appl. Phys.
Lett. 58, 2933 (1991).

[11] H. J. Stein and S. Hahn, J. Appl. Phys. 75, 3477 (1994).

[12] S. K. Estreicher, Phys. Rev. B 41, 9886 (1990).

[13] F. Buda, G. L. Chiarotti, R. Car, and M. Parrinello,
Phys. Rev. Lett. 63, 294 (1989).

[14] G. Panzarini and L. Colombo, Phys. Rev. Lett. 73,
1636 (1994).

[15] R. Jones, S. �Oberg, and A. Umerski, Materials Science
Forum 83-87, 551 (1992).

[16] M. Ramamoorthy and S. T. Pantelides, Solid State
Comm. 106, 243 (1998).

[17] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D.
Joannopoulos, Phys. Rev. B41, 1227 (1990).

[18] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and
J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

[19] C. H. Seager and R. A. Anderson, Appl. Phys. Lett.
53, 1181 (1988).

[20] C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides,
Phys. Rev. Lett. 60, 2761 (1988).

[21] In fact, a trajectory generated by this molecular dy-
namics would approach the minimum energy trajectory
if the di�using atom had a mass much greater than the
mass of the host atoms, so that the latter would re-
spond almost instantaneously to the movement of the
di�user.

[22] A. Dal Pino, Jr., M. Needels, and J. D. Joannopoulos,
Phys. Rev. B 45, 3304 (1992).


