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The aim of this work is to improve the study of a phonon laser (saser) proposed by us several
years ago[1]. This is a device capable to generate an intense coherent beam of acoustical phonons.
Our acoustic laser consists in a double barrier heterostructure tailored such the energy di�erence
between the ground and the �rst excited state in the well is close to the energy of the LO phonon.
The electrons are directly injected into the excited level. Therefore they decay producing a high
rate of LO phonons. These phonons are con�ned inside the well and decay into a pair of phonons[2]:
LO ! ~LO + TA. The TA phonons escape the well in the [111] direction constituting an intense
coherent beam. Recently were studied (and sometimes realized experimentally) several kinds of
phonon lasers. Up to our knowledge our saser is the only that has a very short wavelength (smaller
than 25 �A) and a very long range (greater than 1000�m). Because of that, such beam could
have applications to acoustic nanoscopy, acoustic nanolithography and phonoelectronics. In early
articles[1, 3, 4, 5, 6] we get the kinetic equations for the averaged electron and phonon populations.
Quantum 
uctuations were not taken into account. The system Hamiltonian is H = He +Hph +
He�ph+Hph�ph+He�e. To solve this Hamiltonian we expand their eigenfunctions in the basis of the
eigenstates jjn1n2n3i of the single particle part of it. We obtain a set of coupled equations for the
expansion coe�cients that can be solved with some approximations. The results are qualitatively
similar to those obtained previously.

I Introduction

In the recent years, the study of mesoscopic system has

steadily grown. New theoretical approaches appeared

at the time when new technologies were developed to

produce systems of sizes ranging from 5 nm to 500 nm.

In particular, double barrier heterostructures (DBH)

have attracted a large attention due to its potential ap-

plications as ultra-high-frequency electronic oscillators,

diodes, transistors and other electronic devices [7].

After the work of Goldman, Tsui and Cunningham

[8, 9], it was realized the importance of electron-phonon

interactions on the electronic properties of these struc-

tures. However, little importance has been given to the

study of the phonons generated in this process, the way

they propagate, their decay processes, etc.

This paper is dedicated mainly to the study of

phonon generation in a DBH under the e�ect of an ex-

ternal applied bias. In previous works [3, 4, 6] this

study was done through a set of phenomenological ki-

netic equations for the average populations. In this

paper a set of quantum kinetic equations is obtained

to describe the electron and phonon population using a

full quantum treatment.
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II The device

The device studied here consist on a DBH made of

GaAs-AlGaAs. The sizes of the system are calculated

in order to get �" = "1�"0 � ~!0 for an applied bias V

such that the �rst excited level is above the Fermi level

"LF in the emitter. Here "0 is the energy of the ground

state in the well, "1 is the energy of the �rst excited

level and !0 is the �-point LO phonon frequency. By

increasing V the levels in the well are lowered in rela-

tion to "LF . If "LF is low enough then the ground state

falls below the bottom of the conduction band and the

current is almost suppressed until the level "1 reaches

"LF . By further augmenting V the current begins to 
ow

through the excited level, but since �" remains much

less than ~!0 phonon emission is inhibited. For a given

bias V the resonant condition �" � ~!0 is achieved

and the electrons begin to decay to the ground state by

emitting LO phonons. The potential pro�le and the

level positions at this resonant condition are shown in

�gure 1.

Figure 1. Potential pro�le and energy levels at resonant
condition.

As our system has wide barriers, the electrons re-

main con�ned in the well for long time. For an Al

concentration greater than 0:25 [10] or 0:3 [11] the LO

phonons are also con�ned inside the well. They can

be also absorbed by exciting electrons from "0 to "1.

This process acts in parallel with the decay of primary

phonons due to anharmonicity. One of the products of

this decay are the TA phonons. The device proposed

here could produce a continuous beam of TA phonons

in the range of 2 THz. These secondary TA phonons

are coherent and form a beam that we call saser by

analogy with a laser. The ultra short wavelength of

these phonons permits potential applications that were

discussed in a previous paper[5].

III The Hamiltonian

Our system is described by the Hamiltonian:

H = Ho +Hint (1)

where Ho is the single particle Hamiltonian given by

an electronic part He plus the contributionsHLO,HfLO,
HTA for the LO,gLO and TA phonons respectively:

Ho = He +HLO +HfLO +HTA: (2)

Hint is the Hamiltonian that describes the electron-

phonon (He�ph) and the phonon-phonon (Hph�ph) in-

teractions

Hint = He�ph +Hph�ph: (3)

The electronic system is described by a tight binding

Hamiltonian with hoppings v between nearest neigh-

bors. The Hamiltonian can be written in a Wannier

basis, in terms of the electronic creation and annihila-

tion operators c+jlm, cjlm at sites jlm,

c

He =
1X

jlm=�1

"jlmc
+
jlmcjlm + v

X
<jlm;j0l0m0>

�
c+jlmcj0l0m0 + c+j0l0m0cjlm

�
(4)

with j, l, m = �1, : : :, 1.

Because the system has translational symmetry in the directions perpendicular to the grow direction z, the

Hamiltonian can be uncoupled. We expand the operators cjlm in plane waves in the xy direction,

cjlm =
X
k?

c
jk?e

ik?�xlm : (5)

By doing that, we can treat the system as a sum over 1D Hamiltonians for each wave vector k? perpendicular
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to the current in the z direction

He =
X
k?

8<
:
X
j

"
0

jk?
c+
jk?

c
jk?

+ v
X
<jj0>

�
c+
jk?

c
j0k?

+ c+
j0k?

c
jk?

�9=
; (6)

d

where "
0

jk?
= "

jk? � 4v. The energies "
0

jk?
are mea-

sured from the bottom of the conduction band of the

emitter and "
jk? = "j + "k? . The energies "j are cho-

sen to describe the energy pro�le of the DBH.

For the sake of simplicity we will left implicit the

dependence with k?.

For the z direction we separate the space in three

regions: the dispersion region and two semi-in�nity uni-

dimensional chains. To the left we will have planes with

energy "j = 0 for j � 0 and to the right "j = V for

j � L+1, L is the length of the DBH. The correspond-

ing eigenstates of these two regions are planes waves. If

we disconnect the DBH from the left and right chains

we get for the dispersion region the pro�le of an in�nity

(even not rectangular) well as it is shown in �gure 2.

Figure 2. The pro�le for the scattering region.

For the dispersion region we diagonalize a three-

diagonal matrix of order L corresponding to the pro�le

showed above getting the eigenvalues "m and the eigen-

vectors jmi of equation

H0
ezjmi = "mjmi: (7)

Here, H0
ez is the part of Hez that goes from the be-

ginning of the left barrier to the end of the right one.

Written in the basis of planes this is

H0
ez =

0
BBBBBBBB@

"
0

1 v 0

v "
0

2 v

0 v "
0

3

. . .

. . .
. . .

v

v "
0

L

1
CCCCCCCCA
: (8)

After the diagonalization we get L discrete levels.

We label these levels through the index m as m = 0,

0 : : :. For the right chain we rename the planes, from

L+ 1, L + 2, : : : to 1, 2, : : :; and for the left one, from

0, �1, �2,: : :, �1 to 1, 2, : : :, 1. Therefore we get

a new picture where we have two semi-in�nity chains,

the �rst one corresponding to the planes j = 1, : : :,

1 and the other one corresponding to j = 1, : : :, 1.

Between the L levels obtained from the diagonaliza-

tion of the matrix (8), only the two states with lower

energies will participate signi�cantly in the electronic

transport. The others are far over the Fermi level, thus

they do not contribute. Therefore the dispersion re-

gion is represented by j = 0 for the fundamental level

and j = 0 for the excited level, with energies "0 and "0
respectively.

To connect the DBH with the left and right chains

we computed the matrix elements

vjm = hjjHezjmi: (9)

Only four values are relevant in our calculations:

v10, v10, v01, and v01. Finally, the electronic Hamilto-

nian is

c

He =
X
j

"jc
+
j cj + v10

�
c+
1
c0 + c+

0
c1

�
+ v10

�
c+
1
c0 + c+0 c1

�
+ (10)
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+v01

�
c+
0
c1 + c+1 c0

�
+ v01

�
c+0 c1 + c+1 c0

�
+
X

j 6=0;1;0

v
�
c+j cj+1 + c+j cj+1

�
:

d

As it is well know [12], the dominant dispersion

process in polar semiconductors is due to the coupling

between electrons and LO phonons. In this work we

also considered the phonons resulting from the decay

of the LO phonons, i.e., the gLO and the TA phonons.

The Hamiltonians HLO, HfLO, HTA used here are the

simplest for each kind of phonons considering just one

mode. They are

HLO = ~!1b
+
1 b1 (11)

HfLO = (~!2 � i~�2) b
+
2 b2 (12)

HTA = (~!3 � i~�3) b
+
3 b3 (13)

where ~!1, ~!2, ~!3 are the energies for LO, gLO
and TA phonons respectively and b+i , bi are the cre-

ation and annihilation operators for phonons. In this

case we introduce two imaginary terms (i~�2;i~�3) that

take into account the decay by anharmonicity of gLO
and the escape of the TA phonons. The decay of LO

phonons is described in detail by the termHph�ph . This

is important because it describes the stimulated emis-

sion of TA phonons that is the main process of our

device.

The electron-phonon interaction Hamiltonian has

the form,

He�ph = g
�
c+0 c0b

+
1 + c+

0
c0b1

�
(14)

where g is a constant that measure the strength of

the interaction.

The phonon-phonon interaction is given by[2]

Hph�ph = 

�
b1b

+
2 b

+
3 + b+1 b2b3

�
: (15)

This Hamiltonian describes the decay LO !gLO +

TA and its inverse process (recombination).

Now we de�ne the operators:

On1;n2;n3
j = cj

bn11 bn22 bn33p
n1!
p
n2!
p
n3!

: (16)

The operators On1;n2;n3
y

j creates the eigenstates of

Ho:

jjn1n2n3i � On1;n2;n3
y

j j0i (17)

formed by an electron at plane j and n1 LO

phonons, n2 gLO phonons, and n3 TA phonons.

Using the operators (16) and the Hamiltonian (1)

we can calculate their equations of motion. In order to

simplify the notation we call n for n1; n2; n3:

i~
dOnj
dt

=
�Onj ;H� (18)

For the stationary solutionsOnj (t) = Onj (0)ei!t, the
previous equations can be written as:

~!Onj =
�Onj ;H� (19)

If we replace the Hamiltonian (1) into equation (19)

we get the following equations:

c

~!Onj = "Tj Onj + g
n
Ono b+1 �j;0 +

p
n1c

+
0 c0On

�

j + On0 b1�j;0
o
+

+


8><
>:

p
n1 (n2 + 1) (n3 + 1)On0

j +

+
p
(n1 + 1)n3O(n1+1);n2;(n3�1)

j b+2 +

+
p
(n1 + 1)n2b

+
3 O(n1+1);(n2�1);n3

j

9>=
>;+ (20)

+v10

�
On
1
�j;0 +On0 �j;1

�
+ v10

�
On
1
�j;0 +On0 �j;1

�

+v01

�
On
0
�j;1 +On1 �j;0

�
+ v01

�On0 �j;1 +On1 �j;0�
+vOnj+1

�
j 6= 0; 1; 0

�
+ vOnj�1

�
j 6= 0; 0; 1

�
where "Tj = "j+n1~!1+n2(~!2� i~�2)+n3(~!3� i~�3) and we de�ned n0 � (n1�1); (n2+1); (n3+1); n00 �

(n1 + 1); (n2 � 1); (n3 � 1); n� � (n1 � 1); n2; n3 and n+ � (n1 + 1); n2; n3.
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We expand the eigenstates j�i of H in the eigenstates of Ho

j�i =
X
j;n

anj jjni: (21)

Due to the orthogonality of jjni the amplitudes can be calculated as anj = hjnj�i = h0jOn
j
j�i.

~!anj = "Tj a
n
j + g

np
n1a

n�

0
�j;0 +

p
n1 + 1an

+

0 �j;0

o
+

+

np

n1 (n2 + 1) (n3 + 1)an
0

j +
p
(n1 + 1)n2n3a

n00

j

o
+

+v10

�
an
1
�j;0 + an

0
�j;1

�
+ v10

�
an
1
�j;0 + an0 �j;1

�
+ (22)

+v01

�
an
0
�j;1 + an1 �j;0

�
+ v01

�
an0 �j;1 + an1 �j;0

�
+

+vanj+1
�
j 6= 0; 1; 0

�
+ vanj�1

�
j 6= 0; 0; 1

�
:

d

IV The kinetic equations

To obtain the kinetic equations that describe the pop-

ulation of electrons and phonons we need to obtain the

equations of motion for the electron number operators

c+j cj and the phonon number operators b+i bi.

i~
d

dt

�
c+j cj

�
=

�
c+j cj;H

�
(23)

i~
d

dt

�
b+i bi

�
=

�
b+i bi;H

�
De�ning the averaged populations for electrons in

the excited and ground states as:

hnji =
X
occ

h�jc+j cjj�iforj = 0; 0

and the averaged populations for the LO, gLO, and
TA phonons as:

hnii =
X
occ

h�jb+i bij�ifori = LO ;gLO ;TA

and using the equations (23) we get the set of kinetic

quantum equations:

d

dt
hn0i = GI

0
�GO

0
� GE

0
(24)

d

dt
hn0i = GI

0 � GO
0 +GE

0
(25)

d

dt
hnLOi = GE

0
� GE

LO (26)

d

dt
hnfLOi = �GE

LO �DfLO (27)

d

dt
hnTAi = �GE

LO �ETA (28)

The population rates in (24,25,26,27,28) are:

the electronic input rate from the emitter

GI

0
=

2v10
~

X
n;occ

Im
n
an

�

0
an
1

o
; (29)

and the output rate from the excited level to the

collector,

GO

0
=

2v01
~

X
n;occ

Im
n
an

�

1 an
0

o
: (30)

The net balance between the emission and absorp-

tion of LO phonons via the electron transitions is given

by

c

GE

0
=

2g

~

X
n;occ

Im
n
an

+�

0 an
0

op
n1 + 1: (31)

The input rate from the emitter directly to the ground state,

GI
0 =

2v10
~

X
n;occ

Im
n
an

�

0 an
1

o
; (32)
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is equal to zero near the saser resonant condition because the products (an
�

0 an
1
) are real numbers, when the ground

state merges below the bottom of the conduction band at the emitter. This is due to the fact that the modes

connected to the ground state at left are evanescent modes.

The output rate from the ground state to the collector is

GO
0 =

2v01
~

X
n;occ

Im
n
an

�

1 an0

o
: (33)

The decay of one phonon LO by the emission of a pair of gLO and TA phonons, and the inverse process (i.e.,

recombination) are given by

GE
LO =

2


~

X
n;occ

Im
n
an

+�

j an
�

j

op
(n1 + 1) (n2 + 1) (n3 + 1) : (34)

The decay rate of the gLO population turns out to be

DfLO = 2�2
X
n;j

n
an

�

j anj

o
n2 = 2�2hnfLOi (35)

Finally the escape rate of the TA phonons is given by

ETA = 2�3
X
n;j

n
an

�

j anj

o
n3 = 2�3hnTAi (36)

A diagram for the input and output rates is shown in �gure 3.

Figure 3. Diagram for the several rates.

To put the kinetic equations (24,25,26,27,28) as a function of the populations we have to replace the amplitudes

anj from (22). By doing that, we get a new set of kinetic equations something di�erent form the previous one[5].

For the sake of comparison we show the equations derived in reference [5],

dhn0i
dt

= G� R0hn0i �w[hn0i(hnLOi+ 1)� hn0ihnLOi] (37)

dhn0i
dt

= w[hn0i(hnLOi+ 1)� hn0ihnLOi]�R0hn0i (38)

dhnLOi
dt

= w[hn0i(hnLOi+ 1)� hn0ihnLOi]� 
o(1 + hnTAi)hnLOi (39)

dhnTAi
dt

= 
o(1 + hnTAi)hnLOi � hnTAi=� (40)
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where G is the input current, R0 and R0 are the es-

cape rate through the right barrier, w is the transition

rate due to LO phonon emission, 
o is the decay rate

of the LO phonons and ��1 = �2 is the escape rate

of the TA phonons. Comparing (37) with (24) we see

that the escape terms are coincident. By other hand,

the second term appearing in (24) contain the second

one in (37) plus some other cross terms that take into

account that our system, due the escape of the electron

from the dispersion region to the left chain, does not

have levels but slightly hybridized peaks.

V The calculation of the cur-

rent

In order to calculate the electronic current and the

saser intensity we have to solve the system (22). In

previous papers [4, 6] we solved a restrict version of

these equations in which the peaks corresponding to

the excited level and the satellite of the ground state

mixed in two polaronic branches. In that paper was

not considered Hph�ph in the calculation of the elec-

tronic current. In this paper the phonon-phonon term

is taken into account explicitely. In �gure 4 we can see

the two polaronic branches when the lifetime of thegLO
is �2 = ��12 = 0:05ps. Such small liftime can occur

when the gLO decays by stimulated emission of other

phonons. When this lifetime is increased to �2 = 10ps

it appears a third peak corresponding mainly to one

electron in the ground state with a pair (gLO + TA) of

phonons. The electronic current can be calculated from

the amplitudes ajn. In �gure 5 can be seen the input

current for the same lifetimes as above. For �2 = 0:05ps

the result is the same as in our previous calculations.

The current presents two peaks corresponding to the

passage of the polaronic branches from the Fermi level

to the bottom of the conduction band of the emitter.

For �2 = 10ps the third peak in the transmittance pro-

duces a shoulder in the characteristic curve that can

be seen more in detail in the inset. In �gure 6 we can

see the saser intensity for �2 = 0:05ps. This curve is

obtained by solving the kinetic equations (24) to (28).

Figure 4. Dashed line: the two polaronic peaks when the

lifetime of the fLO is �2 = ��1
2

= 0:05ps. Solid line: if we
assume a long lifetime �2 = 10ps a third peak appears cor-
responding mainly to one electron in the ground state with

a pair (fLO + TA) of phonons.

Figure 5. Dashed line: the electronic current when the life-

time of the fLO is �2 = 0:05ps. Solid line: the current for
a lifetime �2 = 10ps it appears a shoulder corresponding to
the third peak of �gure 4.

Figure 6. The TA phonon population n3 and the saser in-
tensity S = �3n3.



I. C. Rodr��gues et al. 701

VI Conclusions

In this work, a set of kinetic equations was obtained us-

ing a full quantum treatment. This set is di�erent from

those presented in previous works[5] where the kinetic

equations were derived phenomenologically. Also, we

consider for the �rst time all the relevant phonons and

their interactions in the calculation of the current.

It can be seen that, if the decay of thegLO phonons

is very rapid, the current is the same as in previous cal-

culations. Even if we consider a very long lifetime for

these phonons, only small modi�cations are observed

for the current.

In summary, an accurate full quantum calculation

for a DBH phonon laser con�rms the results obtained

using rough phenomenological methods. The Hamilto-

nian presented here is suitable to study the synergetics

of our laser.
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