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Diagrammatic perturbation theory is used to consider the problem of the coupling of a molecular
group libration to the lattice vibrations in solids exhibiting rotational tunneling detected by inelastic
neutron scattering. The technique is applied to a molecular group of symmetry C3 in presence
of the hindering potential of the solid. The spectral density for transitions between rotational
tunneling states in the ground librational level is obtained as a function of temperature. Low
temperature results are presented for di�erent phonon spectrum parameters. They are used to
check the assumption that this coupling is the origin of the peculiar behaviour of the line shifting
and broadening as a function of temperature in the INS spectra of such systems.

I Introduction

The use of high-resolution neutron scattering apparatus
has made possible to detect rotational tunneling states
of molecular groups in solids. They are states arising
from the quantum mechanical tunneling of the group
between equivalent orientations in a hindering poten-
tial. The tunneling lifts the point group symmetry de-
generacy of the librational levels and the neutron scat-
tering process produces transitions among them (The
term libration refers to the oscillation of an angular co-
ordinate characterizing the orientation of the molecule.)

The explanation of the temperature dependence of
the lines in the inelastic neutron scattering (INS) spec-
tra from solids containing methyl and other similar
groups was subject of controversy in the past[1, 2].
From the so called thermometric point of view, the solid
would work simply as a heat bath, and it would be the
random jumps between equivalent orientations of the
group that govern the peculiar temperature dependence
of the lines[3, 4, 5]. In contrast, a microscopic model
has been proposed that accounts for the coupling of the
molecular group to the lattice phonons. This spectro-
metric picture was applied to the problem of a molecu-
lar group of symmetry C3 (like the methyl group) sub-
jected to a deep potential barrier, �rst by considering
the coupling to each potential well independently[6, 7]
and later by expressing the neutron scattering di�eren-
tial cross section in terms of time dependent correlation
functions of standard basis operators for the rotational
tunneling states[8, 9]. These correlation functions were
calculated for a model with a linear coupling of the
group to the lattice modes by using the Green function

equation of motion technique. Low temperature expres-
sions for the shifting and broadening of the lines cor-
responding to transitions between states in the ground
librational level were obtained. The results reproduce
the observed straight line for the broadening and an
approximate straight line with smaller gradient for the
shift when these quantities are plotted in a logarithmic
scale against 1=T .

The low and high temperature regimes were
studied[10] in the spectrometric picture by a path in-
tegral approach, and the results not only predict the
same high temperature behavior as the classical hop-
ping model but also con�rm the low temperature cal-
culations of the perturbation theory approach. More re-
cently, a study using the generalized Langevin equation
(the Nakajima-Zwanzing theory) for the spectral den-
sity projected in the sub-space of the tunneling states,
succeeded to yield expressions for the line shift and line
width from the Laplace transform of the frequency ma-
trix and of the memory function, an approach which
avoids the Random Phase Approximation implied in
the former equation of motion treatment[11]. It is
shown that these expressions reduce to those of ref-
erence [9] in the appropriate limits, and from them it
is discussed how the phonon spectrum a�ects the INS
spectra.

The criticism concerning the spectrometric model
has been based on the fact that, compared with ex-
isting experimental data, their results re
ect too much
the details of the phonon spectrum. More recent ex-
perimental studies[2] of the methyl group in di�erent
environments but with nearly the same hindering po-
tential barriers, show that instead of the coincident low
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temperature behavior of the linewidth expected from
the thermometric picture, one has remarkable quanti-
tative di�erences which do not happen at high temper-
atures. Although a qualitative agreement still persists,
this shows clearly the limitations of the thermometric
picture. Intriguing in this study, however, is the oc-
currence of an e�ective coincidence of the temperature
dependence of the lineshift for some of the samples con-
sidered so that, although microscopically justi�ed and
in spite of its overall success, the spectrometric picture
still has some points to clarify.

Our aim here is to improve the perturbation the-
ory calculation for this problem, using a single molecu-
lar group approach to systems with molecules of sym-
metry C3. We calculate the Green function by a dia-
grammatic perturbation expansion, including the con-
tribution of the vertex part, instead of simply using
the equation-of-motion formalism. This enables us to
consider stronger coupling between rotational and vi-
brational states than in previous works, thus extending
the range of parameter values for which the spectromet-
ric theory can be tested. In particular we are interested
to study the importance of the vertex part to explain
experimental data. The main diÆculty with the use of
the diagramatic perturbation theory is with the lack of
simple bosonic or fermionic commutation rules for the
standard basis operators, implying that there is no such
device as Wick's theorem to allow a direct evaluation of
the diagrams. So we use the contour integral represen-
tation for thermal Green functions, adapting an exist-
ing diagrammatic technique[12]. In the spirit of the so
called non-crossing approximation (NCA) we obtain a
self-consistent set of coupled integral equations involv-
ing propagators, self-energies and vertex parts. From
an iterative solution of these equations we construct the
logarithmic plot of the linewidth and of the lineshift
against 1=T for di�erent phonon spectrum parameters.
The results con�rm previous ones from the spectromet-
ric picture and can be characterized, in view of the
wider range of the parameters we were able to explore,
as rather insensitive to the details of the phonon spec-
trum. At the same time we think that a valuable feature
of this work is the development of the self-consistente

calculation of the Green function with the vertex part
contribution.

As we work here with a schematic form of the
phonon spectrum, we think that any further advance on
this problem will only happen on quantitative aspects
by using phonon spectra corresponding to speci�c sit-
uations. On the other hand, the general problem of
hindered rotation of the methyl group is under inves-
tigation in a variety of situations. A promising area
has been initiated with the observation of rotational
quantum tunneling of methyl in polymers[13]. The
transition from quantum tunneling regime to classical
random jump motion as the temperature is raised is a
point not yet completely understood[14], and the e�ects
of interaction between two or more mehtyl groups, as
interpreted from observed level-crossing Nuclear Mag-
netic Resonance, is a subject under current investiga-
tion [15, 16, 17].

II Description of the Calcula-

tion

The full Hamiltonian for the problem contains a term
describing the interaction of the neutron beam with the
solid which is responsible for transitions of the molecu-
lar groups between librational states split by quantum
tunneling. Expressing this interaction as a superposi-
tion of standard basis operators, the di�erential neutron
scattering cross section in the Born approximation can
be obtained as a linear combination of time correlation
functions of these operators. Using Fourier transform
and integration in the complex plane, the line inten-
sity corresponding to the transition jms >! jm0s0 > is
given in proportion to the spectral density

�ss
0

mm0(w) =
1

2�i

h
Gss0

mm0(w � iÆ)�Gss0

mm0(w + iÆ)
i
;

(1)
where m is the librational quantum number and s is
the symmetry label indicating one of the irreducible
representations A, Ea and Eb of the symmetry group
C3. In the contour integral representation, the Green's
functions are the analytical continuation of[12]

c

Gss0

mm0(iwn) =
1

2�iZ

I
dz exp(��z) Tr

h
R(z)Xss0

mm0R(z + iwn)X
s0s
m0m

i
; (2)

where Z = Tr exp(��H) is the partition function, wn is the Matsubara frequency, and R(z) = (z � H)�1 is

the resolvent. The Xss0

mm0 = jms >< m0s0j are standard basis operator and the contour is chosen to encircles all

the singularities of the integrand. The solid is described in terms of the set of rotational tunneling states of the

moleculatr groups indicated in Fig. 1 coupled to the phonon states, with the Hamiltonian
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X
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s X

ss
mm +

X
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+
q bq +

X
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X
mm0

gmm0(q)(b+q + bq)X
ss
mm0 : (3)
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Figure 1. The energy level scheme corresponding to the two
lowest rotational levels of a molecular group of symmetry
C3.

Here Em
s are the librational energies and b+q and bq

are phonon creation and annihilation operators. The

�rst two terms constitute the non interacting Hamilto-

nian with eigenstates given by the products j m; si j

fnqgi. The third term represents the second quan-

tized form of the coupling V̂ between librational and

vibrational levels which can be shown by symmetry ar-

guments to occur only between librational levels of the

same symmetry. For large enough potential barriers the

coupling is also independent of the symmetry type[8],

as already implicit in expression (03). Then gmm0(q) is

the matrix element gmm0 of V̂ between the states jms >

and jm0s > divided by
p
2wq. The assumption of large

potential barriers implies large separation between ro-

tational states so that for low enough temperatures we

consider the transitions induced by the phonons only

from the ground to the �rst rotational level. We are

thus left with a double two level system, one composed

by the states j0A > and j1A >, with energies E0
A and

E1
A respectively, and the other by the degenerate pairs

j0Ea >, j0Eb > and j1Ea >; j1Eb >, with energies E0
E

and E1
E respectively (see Fig. 1).

We consider here only the absorption line, corre-

sponding to the transitions j0A >! j0E > induced

by the neutron scattering process.With appropriate

changes it is easy to calculate the emission line j0E >!

j0A > and the elastic line j0Ea >! j0Eb >. Evaluating

the trace in the Green function,

GAE
00 (iwn) � G(iwn) =

Zv
2�iZ

I
dz exp(��z) I(z; z0)

(4)

with z0 = z + iwn and

I(z; z0) =
1

Zv

X
k

e��Ek [<0A
kk (z +Ek)<

0E
kk (z

0 +Ek)

+
X
k0 6=k

<0A
kk0 (z +Ek)<

0E
k0k(z

0 +Ek)] (5)

where Zv is the partition function for the vibrational

system. The sum is over vibrational states with ener-

gies Ek and in the matrix elements <ms
kk0 (z + Ek) �<

mskj(z +Ek �H)�1jmsk0 > we have made the energy

shift z ! z +Ek. Now using the identity

c

1

z +Ek �H
=

1

z +Ek �H0
+

1

z +Ek �H0
V

1

z +Ek �H

we obtain

<0s
kk0 (z +Ek)=

1

z +E0
s �=0s

kk(z +Ek)

2
4Ækk0 +

X
k"6=k

=0s
kk"(z +Ek)<

0s
k"k0 (z +Ek)

3
5 ; (6)

where we will use the notation R0s
kk(z +Ek) for the expression before the bracket and

=0s
kk0 (z +Ek) =

X
k
00

< s0kjV jk001s >< s1k00jV jk00s >

z +Ek �Ek00 �E1
s

(7)

is the second order approximation for the self-energy. In the substitution of (06) in (05) we use the truncated form

<0s
kk(z +Ek) = R0s

kk(z +Ek)

<0s
kk0(z +Ek) = R0s

kk(z +Ek)=
0s
kk0 (z +Ek)R

0s
k0k0 (z +Ek)

from which

I(z; z0) =
1

Zv

X
k

exp(��Ek)R
0A
kk (z +Ek)�

0
kk(z +Ek; z

0 +Ek)R
0E
kk (z

0 +Ek) (8)

�0kk(z +Ek; z
0 +Ek) = 1 +

X
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=0A
kk0 (z +Ek)R

0A
k0k0 (z +Ek)R

0E
k0k0 (z0 +Ek)=

0E
k0k(z

0 +Ek): (9)
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The second term in (08-b) represents the vertex correction. The expression (08-a) is an average over vibrational
states of a product of dressed propagators and self-energies. Considering the expansion

R(z +Ek) =
1

z +Ek �H0

1X
n=0

�
=(z +Ek)

z +Ek �H0

�n

in all matrix elements of R(z + Ek), the calculation reduces, term by term in the product of expansions, to the
average of products of free propagators and self-energies. Introducing the occupation number representation, this
transforms into a product of averages over phonon modes, and after some calculation we �nd the set of expressions

I(z; z0) = R0
A(z)�(z; z

0)R0
E(z

0) (10)

Rm
s (z) =

1

z � Em
s �=m

s (z)
(11)

�(z; z0) = 1 +
X

pnp qnq

jgpj
2 e

��npwp

Zp

< n0pjb
+
p + bp)jnp >

z �E1
A + (np � n0p)wp

x � pq x

x

�
1

z0 �E1
E + (np � n0p)wp

+
1

z0 �E1
E + (nq � n0q)wq

�
(12)

with

�pq = jgqj
2 e

��nqwq

Zq

< npjb
+
p + bp)jn

0
p >< nqjb

+
q + bq)jn

0
q >

z �E0
A + (np � n0p)wp + (nq � n0q)wq

x
< n0qjb

+
q + bq)jnq >< n0pjb

+
p + bp)jnp >

z0 �E0
E + (np � n0p)wp + (nq � n0q)wq

=0
s(z) =

X
q

jgqj
2

Zq

X
nqn0

q

e��nqwq
< nq jb

+
q + bq)jn

0
q >< n0q jb

+
q + bq)jnq >

z �E1
s + (nq � n0q)wq

Zq =
X

exp(��nqwq):

d

We are using gq as a shorthand notation for g01(wq).
The expression (11) can be viewed as the lowest order
term in a product of dressed resolvents. With evalu-
ation of the matrix elements it has the diagrammatic
representation showed in Fig. 2, where the dashed and
the full straight lines represent free propagators for the
torsional levels j 0Ai and j 0Ei respectively. The curved
lines represent the phonon propagators with diagrams
for opposite directions of the phonon lines combined
into one. In the NCA approximation we neglect the
second type of diagrams and the remaining one can be
viewed as the second term of a ladder expansion con-
sistent with the NCA. The renormalization procedure
within the NCA corresponds to a partial sum leading
to the diagrams sequence of Fig 3.

Note that the propagators for the librational states
appear renormalized as well. With replacement of the
sum over the phonon modes by an integral over phonon
frequencies, introducing the density of phonon modes
�(wq), the renormalization process corresponds to solve

iteratively the pair of coupled integral equations for the
vertex correction

Figure 2. Diagramatic expansion corresponding to the
expression (11).

Figure 3. Diagramatic renormalization of expression (11)
in the NCA approximation.
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�0(z; z0) = 1 +

1Z
�1

R1
A(z + wq)�

1(z + wq ; z
0 + wq)R

1
E(z

0 + wq)g(wq)dwq ; (13)

�1(z; z0) =

1Z
�1

R0
A(z + wq)�

0(z + wq ; z
0 + wq)R

0
E(z

0 + wq)g(wq)dwq ; (14)

where g(wq) = g2qf(wq)�(wq), with f(wq) = hb+q bqi being the bose function. To reduce the length of the expressions

we have imposed the condition �(�wq) = �(wq) and extended the range of integration to include negative frequencies.

The same reasoning applied to the self energies yields

=m
s (z) =

1Z
�1

Rm
s (z + wq)g(wq)dwq (15)

and with (10) we have the complete set of equations for the problem.

From the same equation (10) we see that the poles of G(iwn) are "
0
A and "0E � iwn satisfying the equation

"ms = Em
s +Re=m

s ("
m
s ): (16)

From the residue theorem and using[12] exp(iwn) = �1, we �nd from equation (04)

G(iwn) =
Zv
Z
[e��"

0

A �0("0A; "
0
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0
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0
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0
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E)S
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with

S0s =

"
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���� dd" Re=0
s(")

����
"0s

#�1
:

Inserting the analytical continuation iwn ! w + iÆ we have from (04) the result

�(w) =
Zv
�Z

fe��"
0

A [X0
E("

0
A + w)V 0

E("
0
A + w) + Y 0
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0
A + w)U0
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0
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0
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E � w)U0
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E � w)]S0Eg (18)

where
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s (x) = Æ0;m +

1Z
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[Xn
s (x+ wq)U
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s (x+ wq)

�Y n
s (x + wq)V

n
s (x+ wq)]R
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0
s0 + wq)g(wq)dwq (19)
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s (x+ wq)V

n
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+Y n
s (x + wq)U

n
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n
s0 ("

0
s0 + wq)g(wq)dwq (20)
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s (x) � iY m

s (x) =
[x� Em

s �Am
s (x)] � iBm

s (x)

[x� Em
s �Am

s (x)]
2 + [Bm

s (x)]2
(21)
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s (x) � iBm

s (x) =

1Z
�1

[Xn
s (x+ wq)� iY n

s (x+ wq)] g(wq)dwq : (22)
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In these expressions, m = 1 when n = 0 and vice-

versa, and also U = Re(�), V = Im(�), X = Re(R),

Y = Im(R), A = Re(=) and B = Im(=). Note that

the input value of x in these expressions when m = 0

is the output value x = x + wq when m = 1, and vice-

versa. In this way, when solving this system by itera-

tion, we are in each step adding a new variable wq to

the argument. According to (16), there are two start-

ing expressions for x: x = "0A + w (s � E; s0 � A) and

x = "0E � w (s � A; s0 � E).

III Solving the Equations: the

Phonon Spectrum

To solve this set of equations we rename the integrands

of (17-a,b) and introduce variables u0 and u1 and func-

tions C and D, doubling the number of equations, and

working with the set

Um
s (um) = Æ0;m +

1Z
�1

Cn
s (un)f(un � um)dun (23)

V m
s (um) =

1Z
�1

Dn
s (un)f(un � um)dun (24)

Cn
s (um) = Xn

s (um)U
n
s (un)� Y n

s (um)V
n
s (un) (25)

Dn
s (un) = Xn

s (un)V
n
s (un) + Y n

s (un)U
n
s (un) (26)

where n = 1 when m = 0 and vice-versa. From the

Lorentzian shape (and of its derivative) of the function

Y m
s (and Xm

s ) we see that each of the functions Cn
s and

Dn
s is di�erent from zero only in a limited interval of its

argument, centered at "0s or "
1
s, each with a characteris-

tic energy scale. We exploit this fact and also that the

phonon density of states, through the function f(w),

introduces a cuto� at w = wc. So, when choosing the

grid of values for the variables to perform the numer-

ical integrations, we are selecting a discrete and �nite

set of values of the functions U , V , C and D, de�ned

at these grid points and corresponding to characteris-

tic energy increments �un. Then the iteration process

begins with a initial set of values for U0 and V 0 (the

natural choice is 1 for all U0 and 0 for all V 0), using

them in (19-c,d) to �nd the set of C0 and D0, which

are substituted in (19-a,b) to �nd now the set of U1

and V 1, then in (19-c,d) to �nd the set of C1 and D1

and then back in (19-a,b) to �nd new set of values of

U0 and V 0. The process continues to any desired order

of approximation and it is its convergence that will val-

idate the assumptions on the behavior of the functions

and the choice of the grid increment of the variables.

At the end, the spectral density is obtained from

�(w) =
Zv
�Z

[e��"
0

AC0
E("

0
A + w) + e��"

0

EC0
A("

0
E � w)]:

(27)

The discrete set of values of the functions X and

Y , de�ned for the same grid points of the variables and

used in the above equations, has to be found previously,

from the corresponding system

Am
s (um) =

1Z
�1

Xn
s (un)g(un � um)dun (28)

Bm
s (um) =

1Z
�1

Y n
s (un)g(un � um)dun (29)

Xm
s (um) =

um �Em
s �Am

s (um)

[um �Em
s �Am

s (um)]
2 + [Bm

s (um)]2

(30)

Y m
s (um) =

Bm
s (um)

[um �Em
s �Am

s (um)]
2 + [Bm

s (um)]2
:

(31)

As above, the index s distinguishes two set of equations,

one for the states A and the other for the states E, and

again we have n = 1 when m = 0 and vice-versa. Note

that the energies "mA and "mE are obtained for each tem-

perature from the maximum of the expression (21-d) for

s � A and s � E, respectively. In this way, contrary to

what is implicit in previous treatments, we do not work

here with approximate expressions for the line width

and the line shift of the tunneling states, but rather de-

termine them self consistently, using the results to �nd

the INS line behavior from the half-width and the point

of maximum of the function �(w).

The function C or D appearing in (19) is simply the

term in brackets in the corresponding expressions (17),

so that the function f(x) in (19) is the product of g(x)

by the corresponding propagator Rn
s0("

0
s0 + wq), which

is real. We use here the approximation Rn
s0("

0
s0 +wq) �

[wq � ("ns0 � "0s0)]
�1 which implies that we can also take

S0s = 1 in (16). In other words, we have

f(un � um) =
g(un � um)

un � um � ("1s � "0s)
:

The problem with the singularity in f(x) is dealt with
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Am
s (um) =

um+wZ
um�w

F (un)
g(un � um)dun
un � um � Æ"

=

um+wZ
um�w

F (un)g(un � um)� F (v)g(u� Æ")dun
un � um � Æ"

+

+F (um + Æ")g(Æ") ln

����w � Æ"

w + Æ"

���� ;
where F represents the function C or D.

We use a schematic form for the phonon spectrum[9] satisfying �(�wq) = �(wq) with a cuto� frequency wc:

g(wq) =

8>>>><
>>>>:

2
�
g1
wc

�2
wq + Cg22wqwq 0 < jwq j < w1,

2
�
g1
wc

�2
wq + Cg22

(w2�jwqj)
nwq

jwq j
w1 < jwq j < w2,

2
�
g1
wc

�2
wq w2 < jwq j < wc,

d

where

n = 2 log(w1)= log(w2 � w1)

C =

"
w3
1

3
+

(w2 � w1)
n+1 wq

n+ 1

#�1
:

With this expression for n, the function g(wq) is

continuous at wq = w1 and the expression for C as-

sures that

u+wZ
u�w

�(wq)

2wq

dwq = 1

is satis�ed separately by the acoustical and the optical

contributions. When g2 = 0 the above expressions cor-

respond to a Debye spectrum from wq = 0 to wq = wc;

g2 6= 0 adds an optical contribution from wq = 0 to

wq = w2 peaked at wq = w1.

IV Results and Discussions

We have taken here E0
A = 0, E0

E = 2t0, E1
A =

E10 + t0 � t1 and E
1
E = E10 + t0+ t1 (see Fig. 1), with

the following values of the parameters E10 = 10meV ,

2t0 = 35�eV , 2t1 = �1meV , w1 = 5meV , w2 = 8meV

and wc = 30meV , and four combinations of the remain-

ing parameters: (a) g1 = 1:5meV and g2 = 1:5meV ,

(b) g1 = 2:0meV and g2 = 1:5meV , (c) g1 = 2:0meV

and g2 = 2:0meV , (d) g1 = 2:0meV and g2 = 2:5meV .

These values of g1 and g2 are signi�cantly greater than

those selected in the reference[9], but are those for

which the vertex part begins to show appreciate e�ects.

To simulate a non-zero instrumental resolution we have

added 1:5�eV to the imaginary part of the self-energies.

The computation were performed with a FORTRAN-

77 program with a typical runtime of 1 hour in a DEC

2000 Alpha-XP workstation. Fig. 4 shows the spectral

density for di�erent temperatures corresponding to the

case (c) with the vertex part already included. The line

intensity has been calculated taking Z = ZrZv, an ap-

proximation which does not a�ect the lineshift or the

linewidth behavior.

Figure 4. Spectral lines for di�erent temperatures(35K, 40K
and 45K for the three lowest lines).

We see the tendency of the absorption line to
broaden (and ultimately it will merge with the elastic
and the emission lines) as the temperature increases.
Fig. 5 shows the typical form of the real and of the
imaginary parts of the functions C1

A(u) and D1
A(u).

Each of these functions reveals two intervals where their
values are signi�cantly di�erent from zero, the two in-
tervals corresponding to quite di�erent energy scales.
At the same time, the height of the maximum of each
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function in the two intervals keeps an inverse relation
with the corresponding energy scale, a fact not re
ected
in the �gure for convenience. Of course, only after an
exhaustive search it was possible to uncover the full
behavior of these functions.

Figure 5. Typical aspect of the functions C1

A(") and D
1

A(")
as discussed in the text.

Fig. 6 to Fig. 9 contain the main results of our cal-
culation, corresponding to the cases (a), (b), (c), and
(d) cited above. They show the graphs of the logarithm
of the lineshift � (dashed lines) and of the linewidth �
(solid lines) as a function of 1=T . The e�ect of the ver-
tex part correction is also shown, and is represented in
each �gure by the piece of solid line that seems to ex-
tend the straight line character of the lineshift behavior.
To construct these graphs we have used the following
procedure: for each temperature we �tted the points
along the curve �(w) near half height at each side of
the maximum and the points near the maximum to a
polynomial function. For each section of the curve we
worked with 50 out of a total of 600 points used to gen-
erate �(w), producing �ttings with standard deviation
always less than 1.5%. By other hand, trying to �t
all the 600 points to a single Lorentzian curve, we al-
ways found standard deviation between 12% and 16%,
this because the actual form of �(w) is of a distorted
Lorentzian.

Figure 6. Plot corresponding to the case (a) (see text).

Figure 7. Plot corresponding to the case (b) (see text).

Figure 8. Plot corresponding to the case (c) (see text).

Figure 9. Plot corresponding to the case (d) (see text).

From Fig. 6 to Fig. 7 we increase the weight of
the acoustical phonons, and from Fig. 8 to Fig. 9 we
increase the weight of the optical phonons. Clearly,
the vertex part changes very little the behavior of the
linewidth, at least in the range of temperatures con-
sidered here. This behavior is of a straight line in the
log � � 1=T plot at low temperatures. If this behavior
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is present also at higher temperatures, as found in the
reference [10], we see here that the corresponding slopes
are much larger than those for low temperatures. In the
case of the lineshift, the vertex part correction begins to
be e�ective only at temperatures beyond which prob-
ably the contribution of higher librational levels than
those corresponding to m=0 and m=1 considered here
becomes important. The correction increases with in-
creasing weight of the optical phonons, and it partially
compensates the tendency of the lineshift to deviate
from a straight line in the log ��1=T plot at higher tem-
peratures. Interesting in the plots of the lineshift is the
systematic occurrence of two straight lines of di�erent
slopes at di�erent temperature intervals. As we checked
also for other values of the parameters, the straight line
at lower temperatures has a smaller slope than that at
higher temperatures when the weight of the acoustical
phonons is greater than that of the optical phonons,
and conversely when the weight of the optical phonons
is greater than that of the acoustical phonons. Such
change of slope in the lineshift behavior is much smaller
and occurs at lower temperatures than the equivalent
one that, according the results in the reference[10], is
possible to take place in the linewidth behavior.

Our results are qualitatively similar to those ob-
tained in previous works [9, 11]. Taking into account
the di�erences in the phonon spectrum, they also reveal
a temperature dependence of the INS spectral lines that
is rather insensitive to the details of the phonon spec-
trum. This is particularly true in our results for the
lineshift behavior, and in remarkable agreement with
the more recent experimental observation[2]. Since we
have not worked with explicit expressions for � nor �;
it is diÆcult to access the physical reason for some of
the results in the present calculation and in particular
to discuss the in
uence of the phonon spectrum. Any-
way, we think that any further advance in this problem
will only happen on quantitative aspects and only with
the use of more realistic phonon spectra. As a �nal
remark, one sees that the vertex part enters as weight
factors to the curves Y 0

A("
0
E � w) and Y 0

E("
0
A + w) in

the expression of � (w). These factors represent correc-
tions to the values U0

A("
0
E�w) = 1 and U0

E("
0
A+w) = 1,

and the fact that they do not contribute signi�cantly to
the linewidth behavior means that this contribution is

proportional to w with nearly the same proportionality
constant for both curves. In fact, we succeeded to simu-
late ours graphs with a weighting of [1 + �(T )w], with
�(T ) as an adjustable parameter that increases with
temperature. This suggests that the �rst order term of
an expansion for the vertex part would be suÆcient.
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