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We present some aspects of the study of quantum integrable systems and its relation to quantum
groups.

I Introduction

The main purpose of this lecture is to present the study
of quantum integrable systems and its interplay with
the study of quantum groups. The history of quantum
integrable systems begins, following a certain histori-
cal path, with the �rst attempts of W. Heisenberg to
develop a microscopic theory that could explain ferro-
magnetism [1]. Later on a method was proposed by
H. Bethe [2] in order to obtain the spectrum of the
isotropic Heisenberg model. This approach is called
the Bethe ansatz and it gives the parameterization of
the eigenvectors through a set of equations, called the
Bethe ansatz equations establishing the solvability of
the model. Since then a steady evolution has taken
place, going through the works of L. Onsager [3], C.N.
Yang and C. P. Yang [4], R. Baxter [5] and many oth-
ers, culminating with the advent of the Quantum In-
verse Scattering Method (QISM)[6]. The time inter-
val between Bethe's solution and the QISM is of al-
most �fty years. The QISM was developed to inves-
tigate integrable systems in quantum �eld theory and
quantum statistical physics and it was largely based on
an algebraic viewpoint. It provided a uni�ed frame-
work for treating the previous approaches used to solve
integrable systems, in theoretical and mathematical
physics. Moreover, it is due to the QISM that quantum
groups made their appearance in the physics scenario.

The study of quantum groups, or quantum alge-
bras [7, 8] is crucial to the understanding of integrable
systems as well as the development of new integrable
models. It also grew as an independent area in math-
ematical physics showing interesting connections with
other mathematical subjects such as knot theory and
non-commutative geometry.

At this point due to space and time limits, inherent
to a lecture, it would be useful to make reference to a
certain number of excellent reviews where one can �nd
a deeper insight into the QISM and quantum groups,
as well as a comprehensive list of references [9].

In the next section the QISM is introduced and
quantum groups are de�ned. The choice of presenta-
tion follows an algebraic approach, giving a quite gen-
eral and model independent framework.

In section III we show how to obtain multiparamet-

ric quantum spin chains still based on algebraic results.
The motivation of that section is related to the study
of the e�ect of boundary conditions in models describ-
ing systems of correlated electrons. In particular we
establish a correspondence between twisted boundary
conditions and multiparametric models [10, 11, 12]

Section IV is devoted to mentioning some other de-
velopments and to draw some indications about future
work.

Before we proceed some acknowledgments are in
order. The present work has much pro�ted from the
discussions with my colleagues from CBPF, Marco R-
Monteiro and Ligia Rodrigues as well as with my col-
laborators and friends, Angela Foerster, Katrina Hib-
berd, Antonio Lima-Santos and Jon Links, whose lec-
ture notes [13] have been extremely useful.

II Quantum Inverse Scattering

Method: a telegraphic ver-

sion

Let us introduce here in a very brief way some of the
algebraic structure de�ning the QISM. Let T i

j (�); 1 �

i; j � n , be n2 generators of an abstract algebra A
and � 2 C is called the spectral parameter. Consider
an invertible operator

R(�) 2 End(V 
 V );

where V is an n-dimensional vector space. R may be
written in component form as

R(�) =
X
ijkl

Rjl
ik(�) e

i
j 
 ekl :

One can set

T (�) =
X
ij

eij 
 T j
i (�);

and impose generalized commutation relations in A via

R12(�� �)T13(�)T23(�)

= T23(�)T13(�)R12(� � �); (1)
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where the subscripts refer to the embeddings in End
(V 
 V )
A. Rkl

ij (�) may be seen to give the structure
constants of the algebra A , if one writes (1) as

R
jl
ik(�� �)T p

j (�)T
q
l (�) = T j

k (�)T
l
i (�)R

pq
lj (�� �):

From (1) and the cyclic property of the trace one can
show that the elements

T13(�)T23(�) = R�1
12 (�� �)T23(�)T13(�)R12(�� �) (2)

�(�) = (tr
 I)T (�) =

nX
i=1

T i
i (�);

of the algebra A commute

[�(�); �(�)] = 0; 8�; � 2 C:

The fact that �(�) provides a one-parameter family
of mutually commuting elements of the algebra A is
deeply related to the de�nition of integrability as we
shall discuss later. A suÆcient condition for A to be
associative and then be able to obtain matrix represen-
tations is that

R12(�� �)R13(�� w)R23(v � w) (3)

= R23(v � w)R13(�� w)R12(�� �);

on the space End (V 
 V 
 V ), which is the celebrated
Yang-Baxter equation. We call the algebra A de�ned
in such a way a Yang-Baxter algebra or a Yangian alge-
bra. The fact that R(�) must satisfy the Yang-Baxter
equation provides us with the adjoint representation,

�
�
T j
i (�)

�
=
X
k;l

R
jl
ik(�)e

k
l :

Furthermore, the Yangian algebra A has a structure
of a bi-algebra which can be seen from the existence of
the following algebra homomorphisms, the co-product

� : A! A
A

de�ned by

�
�
T j
i (�)

�
=

X
k

T j
k (�)
 T k

i (�)

and the co-unit
� : A! C

�
�
T j
i (�)

�
= Æ

j
i :

The signi�cance of the co-product � is that it allows
us to build tensor product representations of A.

If �1; �2 are two representations of A which act on
the spaces V1; V2 respectively then

(�1 
 �2)
�
T j
i (�)

�
= �1

�
T k
i (�)

�

 �2

�
T j
k (�)

�
gives a representation on V1
V2. We may also use the
opposite co-product � given by

�
�
T j
i (�)

�
= T k

i (�)
 T j
k (�)

which is also an algebra homomorphism.

II.1 Quasi-triangular Hopf algebras

In the above we have de�ned the Yangian algebra
A and seen that it has a bi-algebra structure. The dis-
cussed properties are part of the construction of quan-
tum groups, or quasi-triangular Hopf algebras. A Hopf
algebra can be de�ned as a bi-algebra that possesses an
antihomomorphism

S : A ! A;

such that

m(S 
 I)�(a) = m(I 
 S)�(a) = i��(a);

where m and i are respectively the multiplication and
unit element maps on A, de�ned by

m(a
 b) = a � b

and

i(�) = �I;

8a 2 A and � 2 C:

The key ingredient in the de�nition of a quantum
group is the existence of an element that establishes a
relation between the co-product and the opposite co-
product developing an isomorphism between the tensor
product �1
�2 ! �2
�1 of two representations. More
precisely, a Hopf algebra A is quasi-triangular if there
exists an invertible element R 2 A
A, called the uni-
versal R-matrix, that satis�es the following relations,

�(a)R = R�(a);8a 2 A (4)

(I 
�)R = R13R12

(�
 I)R = R13R23

and

(S 
 I)R = (I 
 S�1)R = R�1:

As a result of the above relations the universal R-matrix
is a solution of the Yang-Baxter equation,

R12R13R23 = R23R13R12 (5)

One of best known examples of a quantum group is
Uq(sl2), which is associated to the anisotropic Heisen-
berg model. Much of the above discussion can be ex-
tended to superalgebras and to aÆne (super)algebras.
The universal R-matrixR presented above does not de-
pend on a spectral parameter. A Yang-Baxter equation
that depends on a spectral parameter may be obtained
for quantum aÆne (super)algebras and its solution pro-
vides a spectral parameter dependent R-matrix, by use
of a loop representation, this procedure called Baxter-
ization [14] will not be discussed here. We just notice



Brazilian Journal of Physics, vol. 30, no. 2, June, 2000 359

that through Baxterization it is possible to obtain R-
matrices related to new integrable systems.

II.2 Integrable systems: an overview

Using the representations of a Yangian algebra A
one is in position to construct a one-dimensional ab-
stract integrable quantum system. For this purpose let
us de�ne the Lax operator as the adjoint representation

L
j
i (�) =

X
k;l

R
jl
ik(�)e

k
l :

Where the R-matrix satis�es the Yang-Baxter equa-
tion on V 
 V for a given vector space V . Those Lax-
operators are local matrix operators, meaning that they
act on some internal space at a particular site. On the
(N+1)-fold tensor product space we may construct the
monodromy matrix

T (�) = L0N (�)L0(N�1)(�)::::L01(�);

which gives a representation of A on the space V 
N as

R12(� � �)L13(�)L23(�) = L23(�)L13(�)R12(�� �);

where the subscript 3 refers to the space V 
N and the
space to which the subscript 0 refers is usually called
the auxiliary space. One also de�nes, in this represen-
tation, the transfer matrix

t(�) = tr0T (�) = � (�(�)) = �

 X
i

T i
i (�)

!

and it is easy to verify that the transfer matrices com-
mute.

[t(�); t(�)] = 0;8�; � 2 C:

Let us now expand the transfer matrix in a power series

t(�) =
X
k

ck�
k;

from the commutation relations it follows that

[ck; cj ] = 0 8 k; j;

and one may interpret the operators ck as conserva-
tion laws for some abstract one-dimensional quantum
system acting on the space V 
N . We consider that
a model is integrable when the number of conserved
quantities and the number of degrees of freedom of the
system are equal.

From the intertwining relation for the monodromy
matrix when � = � it is reasonable to expect that R(0)
can be made proportional to the permutation operator
P , with that in mind it may be possible to extract from
the transfer matrix some operators for which one can
give a physical interpretation.

In particular, assuming that the R-matrix can be
normalized so that R(0) = P , one has

t(0) = tr0L(0) = P1NP1(N�1)::::P12:

This operator will act as a shift operator on a periodic
lattice of N sites.

Also usually one de�nes the Hamiltonian as

H = t�1(0)t0(0) = t0(0)t�1(0);

where the prime denotes di�erentiation with respect to
the variable �. Furthermore it is possible to see that

t�1(0)t0(0) =

NX
i=1

hi(i+1);

where

h =
d

d�
(PR(�))j�=0 ;

and N + 1 � 1.
Thus we have de�ned a Hamiltonian that is the

sum of local two-site Hamiltonians acting on a one-
dimensional lattice with periodic boundary conditions.
Most integrable models on one dimensional lattices,
such as the XXZ or anisotropic Heisenberg model
[4], the supersymmetric t-J model [15-19] and the U
model[20, 21], fall into the above description. Within
the framework of the QISM in order to obtain solu-
tions of particular models and get the spectrum of the
commuting family of operators t(�) one uses the alge-
braic Bethe ansatz(ABA) [6, 9]. The ABA provides a
rigorous method for obtaining the Bethe ansatz equa-
tions. As the main interest here is to reveal some of
the interplay between quantum groups and quantum
integrable systems we refer to the excellent literature
available [6, 9] for the details on the ABA.

III Multiparametric Integrable

Systems

Here we show how to obtain multiparametric quantum
spin chains using Reshetikhin's construction [22] for
multiparametric quantum algebras. We also demon-
strate that under appropriate constraints these mod-
els may be transformed to quantum spin chains with
twisted boundary conditions [12].

Let (A; �; R) denote a quasitriangular Hopf al-
gebra where � and R denote the co-product and R-
matrix respectively. Suppose that there exists an ele-
ment F 2 A
A such that

(�
 I)(F ) = F13F23; (I 
�)(F ) = F13F12;

F12F13F23 = F23F13F12; F12F21 = I (6)

Theorem 1 of [22] states that (A; �F ; RF ) is also a
quasitriangular Hopf algebra with co-product and R-
matrix respectively given by

�F = F12�F21; RF = F21RF21: (7)

In the case that (A; �; R) is an aÆne quantum algebra
we have from [22] that F can be chosen to be

F = exp
X
i<j

(Hi 
Hj �Hj 
Hi)�ij ; (8)
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where fHig is a basis for the Cartan subalgebra of the
aÆne quantum algebra and the �ij ; i < j are arbi-
trary complex parameters. For our purposes we will
extend the Cartan subalgebra by an additional central
extension (not the usual central charge) H0 which will
act as a scalar multiple of the identity operator in any
representation.

Suppose that � is a loop representation of the aÆne
quantum algebra. We let R(�), RF (�) be the matrix
representatives of R and RF respectively, which both
satisfy the Yang-Baxter equation

R12(� � �)R13(�)R23(�) = R23(�)R13(�)R12(�� �):

If R(�)j�=0 = P with P the permutation opera-

tor then RF (�)
��
�=0

= P as a result of (6). We may
construct the transfer matrix

tF (�) = tr0

�
�
(N+1)

�
I 
�F

N

�
RF
01

�
= tr0

�
RF
0N (�)R

F
0(N�1)(�)::::R

F
01(�)

�
; (9)

where �F
N is de�ned recursively through

�F
N =

�
I 
 I::::
�F

�
�F

N�1

=
�
�F 
 I::::
 I

�
�F

N�1: (10)

The subscripts 0 and 1,2,...,N denote the auxiliary and
quantum spaces respectively and tr0 is the trace over
the zeroth space. From the Yang-Baxter equation it fol-
lows that the multiparametric transfer matrices tF (�)
form a commuting family. The associated multipara-
metric spin chain Hamiltonian is given by

HF =
�
tF (�)

��1 d

du
tF (�)

����
�=0

=

N�1X
i=1

hFi;i+1 + hFN1; (11)

with

hF =
d

du
PRF (�)

��
�=0

:

Through use of (6) we may alternatively write

JN = GN�1GN�2::::G1;

Gi = FiNFi(N�1)::::Fi(i+1); (12)

we can de�ne a new transfer matrix

t(�) = J�1N tF (�)JN

= tr0

�
�
(N+1) (I 
�N ) (F10R01F10)

�
;

where we have employed the convention to let F denote
both the algebraic object and its matrix representative.
Through further use of (6) we may show that

t(�) = tr0
�
F10F20::::FN0R0N (�)R0(N�1)(�) (13)

:::R01(�)F10::::FN0) ;

and the associated Hamiltonian is given by

H = (t(�))�1
d

du
t(�)

����
�=0

(14)

=
N�1X
i=1

hi;i+1

+
�
FN(N�1)::::FN1

�2
hN1

�
F1N ::::F(N�1)N

�2
where

h =
d

du
PR(�)

����
�=0

:

The above Hamiltonian describes a closed system
where instead of the usual periodic boundary condi-
tions we now have a more general type of boundary
condition. The boundary term in the above Hamilto-
nian is a global operator; i.e. it acts non-trivially on all
sites. However we can in fact interpret this term as a lo-
cal operator which couples only the sites labeled 1 and
N . It can be shown that the boundary term commutes
with the local observables hi;i+1 for i 6= 1; N � 1. This
situation is analogous to the closed quantum algebra
invariant chains discussed in [23].

From the above construction we may also yield mod-
els with twisted boundary conditions by an appropriate
choice of F . Recall that we extend the Cartan subal-
gebra by the central element H0. Let this element act
as cI in the representation � where c is some complex
number. If we now choose �ij = 0 for i 6= 0 in the

expression (8) the matrix F factorizes as F =M�1
1 M2

with

M = exp

 
lX

i=1

c�0iHi

!
;

and l is the rank of the underlying quantum algebra
Uq(g). Using the fact that the R-matrix satis�es

[R(�); I 
Hi +Hi 
 I ] = 0; i = 1; 2; :::; l

tells us that
[R(�); M1M2] = 0:

In this case the Hamiltonian (15) reduces to

H =
N�1X
i=1

hi;i+1 +M2N
1 hN1M

�2N
1 ; (15)

which is precisely the form for a system with twisted
boundary conditions (see [24]).

IV Final Remarks

We are aware that in this short and highly biased review
it is virtually impossible to convey all the richness in-
volved in the study of quantum integrable systems and
quantum groups. Nevertheless it is important to men-
tion some of its highlights as the intersection with con-
formal �eld theories (see [25] and references therein).
In fact from the scaling limit of integrable models it
is possible to obtain information about conformal �eld
theories. In particular, from �nite-size corrections of
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the Bethe ansatz equations of some models it is pos-
sible to calculate such quantities as the central charge
and the conformal dimensions.

Also due to the quest for an appropriate theory ex-
plaining high Tc superconductivity there has been an
increasing interest in integrable models describing cor-
related electrons. Examples of such models are the su-
persymmetric t�J model [15-19], the EKS [26]and the
U model[20, 21] that are generalizations of the Hub-
bard model(see [27, 28]), as well as models related to a
Temperley-Lieb algebra [29-31]. More recently an inte-
grable model of correlated electrons based on an so(5)
algebra and showing o�-diagonal long-range order has
been proposed [32].

The future points towards a multitude of di-
rections some of them being the investigation of
reaction-di�usion models [33],the study of q-vertex
operators[34], the relation of integrable models with
quantum matrix models [35] and the recently proposed
integrable ladder models [36].
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