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The field equations of a proposed nonsymmetric theory of gravitation are derived when electro-
magnetic fields are present, by adopting a nonminimal coupling which ensures the validity of the
equivalence principle. The static and spherically symmetric solution of the field of a charged point

particle is obtained.

I Introduction

In a previous work [1] a theory of gravitation based
on a nonsymmetric metric was formulated (pure grav-
itation with no association of the antisymmetric part
of the metric to the electromagnetic field strength).
The sources of the metric field are the matter energy-
momentum tensor 7}, and the matter fermionic par-
ticle number current density S*. This is a conserved
current with particle number fermionic charge F =
J v/=gS°d*z, a constant which measures the coupling
of the current to the geeometry. The theory was shown
to be free of non-physical radiative negative-energy
modes even when it is expanded about a Riemannian
background, being outside of the class of ill-behaved
nonsymumetric theories analyzed by Damour, Deser and
McCarthy [2]. Only the symmetric part of the connec-
tion is present in the field equations, making the theory
as close as possible to general relativity. A solution of
the field equations for a spherically neutral point parti-
cle has been obtained [3], together with its implications
for the motion of light and test particles. The theory
is shown [3] to be consistent with all four general rel-
ativity solar tests. In the following we shall study the
field equations when electromagnetic fields are present.
The electromagnetic field Lagrangian that we shall use
is the one given by Mann, Palmer and Moffat [4], which
rescues the validity of the weak equivalence principle,
which Will [5] showed to be violated if only a mini-
mal electromagnetic coupling (same form as in general

relativity) were adopted. This is because with such
a minimal coupling the gravitational acceleration a of
an electrically neutral body of total mass m composed
of charged particles turns out to depend on its inter-
nal electrostatic energy E.. Spedifically, the accelara-
tion is related to the one of gravity g by [6] a =g
(14+nE. /mc?), where 1 depends on the metric coefic-
cients. Will then shows that in the case of a nonsym-
metric theory with a minimal electromagnetic coupling
1 is not zero. With the coupling proposed by Mann
et al, as written in Eq. (1) below, 5 turns out to be
null, ensuring then the equivalence principle. The field
equations contain one free parameter, Z. However, the
solution of the field equations for a static and spher-
ically symmetric field turns out to be independent of
Z.

In Sec. IT we establish the expression of the gravita-
tionally modified Maxwell inhomogeneous equation and
of the electromagnetic energy-momentum-stress tensor.
In Sec. III we display the field equations of the theory
when the electromagnetic field is present and in Sec. IV
we determine the solution of the coupled field equations
for the case of a static and spherically symmetric point
particle. We draw our conclusions in Sec. V.

I The electromagnetic field

equations

Mann et al [4] write the electromagnetic Lagrangian
density Ley, = /—9Lem with
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where, as usual, F,, = A, , — A, is the electromagnetic field strength tensor and

f=

V=9
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The matrix g"” is the inverse of the nonsymmetric gravitational field g,, defined by

9" 9u8 = 9" 930 = 03, (3)

detg,, and gs = detg(,,). The minimal coupling would correspond to have f and Z both equal to one. Equation

g =
(2) can also be written as

1
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where round (square) brackets stand for symmetric (antisymmetric) part.
Varying the Lagrangian density with respect with respect to A, of the field plus the interaction Lagrangian density,

Lem = —/—gJ"A,, we get, using Eq. (4)

8, [ /=51 (g(ua)g('/ﬂ) + (27 — 1)glmal g8l 4 (1 — Z)g[amgw) Faﬁ] — —dm=gJ", (5)

which is the inhomogeneous Maxwell equation in the presence of the nonsymmetric field. Next we consider the

variation with respect to g"”. We get

SLm = 5/ =906 By (6)
where
Bu = 3= |1 (Yo~ 25 ) 40" (2B Fos + (L= D)FeyFas + Fia )
dm |4 ogrv
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is the energy-momentum tensor of the electromagnetic
field. This is a traceless tensor, g**E,, = 0, because
we have the relation
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This can be proved by direct calculation from the
relations g7 = €45,69°%9"%9?7¢% and g¢;! =
051590 g8 g2 g(39) " or from the relations g =
£ 900918927935 and gs = €*97° 900 9(15)9(20)9(36)
together with ¢"” (0g,,/09"") = —gps (to obtain this
last relation just write its right hand side as ag,, and
then contract with g#? to obtain a = —1).

III The gravitational field equa-
tions

When the electromagnetic field is present, the gravita-
tional field equations of the theory [1] become

Uty + A(uv) = 87T(T(I;W) + E(u)); 9)

A(g[,uu],a + C-p') = SW(E[HV],C% + T[I + C'p)a (10)
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where T, = Ty, — (1/2)g, T with T = g*T,3, c.p.
stand for the cyclic permutation of the indices u, v and
«, A is the cosmological constant and

&) a &) &) a
r +T F(aﬂ)_r(au) (va) (11)

Uw =T () T L)

B _
(kv),B

involving only the symmetric part of the connection, is
the analogue of the Riemannian Ricci tensor, and

(\/—gg[‘“’]) = 4m\/—gS*". (12)
Since at infinity the field of localized matter tends to
that of flat space-time, gl**! as well as g[uv] must satisfy
the boundary condition of vanishing at infinity.

We also have the relation

1
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where s,,,, symmetric and with determinant s, is the
inverse of g(#) defined by g(‘“’)sw =6k.

It is to be noted that T),,, defined [1] by 6L, =
(vV/—9/2)6¢g"T,,, where L,, is the matter Lagrangian
density, is related to the contravariant matter tensor
T+, defined by L, = —(1/=9)/2)0gasT*® as in gen-
eral relativity, by[1]

THV = guﬂgaVTaB' (14)

This follows from the relation dgog = —09"" gu39av, re-
sulting from the variation of Eq. (3). Therefore, T},
will have a symmetric and an antisymetric part even
for a symmetric 75,

IV  The field of a charged point
particle

The static and spherically symmetric metric tensor in
spherical polar coordinates is of the form

goo = ¥(r),911 = —a(r),
g22 = —7“27933 = _7'2 Sin2 67

gor = —w(r) = —gio0, (15)

and all other components equal to zero. The non-zero
elements components of the inverse matrix are
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Outside the source, in vacuum, the solution of Eq. (12)
is [3], for p =0, wr?(ay —w?) "2 = F , where F is the
conserved number fermionic charge . Then,
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As g = (w2 - a’y)r‘l sin? © and gs = —ayrt sin? 0, we

get from Eq. (2),
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The second way of writing the value of f makes it easier
the calculation of its g"”-derivatives. The electric field

is E(r) = Fo1. Now, outside the source Eq. (5) yields,

for p =0,
r’E
0 =0 19
() w
independently of Z. Upon integration we get
E= @ vV 20
- T'_Z a’, ( )

where the constant of integration has been put equal
to the charge @ of the particle to reproduce the usual
Reissner-Nordstrom (RN) result when F = 0, which
implies, from Eq. (27) below, ay = 1. From Egs. (7),
(18) and (20) we obtain the following non-zero compo-
nents of F,,:

1Q%> v w?
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We see that the energy-momentum tensor is indepen-
dent of Z and, therefore, the same will occur for the
gravitational field equations.

From now on the calculation proceeds as in Ref. [3].
From Egs. (15) and (25) we see that Eq. (10) is iden-
tically satisfied. From Eqs. (9) and (22) we obtain
alUpo + vU11 = 0, as in Ref. [3]. It then follows the
same relation

’ 1

a v 2 F?

a + v rEF?4rt’ (26)
derived in [3], which integrates to
F2 —1/2
ay = (1 + r_4> . (27)

Recalling Eq. (17) we then obtain

Fr

w = ii(Fz +r4)3/4.

(28)

From now one we shall neglected the small contribu-
tion of the cosmological constant in Eq. (9). The Uss
equation gives, after using Eqs. (23) and (17),
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Choosing the constant of integration in such a way that the RN result is obtained when F' = 0, we get
1 F? Mrom Q2
=1+ )—-11 —+ = 31
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where m is the mass of the charged particle and
dr
1) = [ (32)
r(F? + r4)1/4
which goes to —r~! when F vanishes. Then, from Eq. (27) we obtain
F2 1/2 F2 1/4 2m QZ
=1+ — -1+ — —+ = .
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Equation (32) can be put in closed form:
1\ 1/4
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with the term —7/2 to give the right limit, —r~!, when F vanishes.

The electric field is, from Egs. (20) and (27),
F2 —-1/4
E(r) = Q <1 + —> . (35)

At large distances, r >> | F' |2, E(r) goes into the RN

Coulomb field but for small values of r, it behaves as
-1

r—t.

V Conclusions

By adopting a nonminimal coupling that ensures the va-
lidity of the equivalence principle we have derived the
field equations of a proposed nonsymmetric theory of
gravitation [1] when electromagnetic fields are present.
The nonminimal coupling contains one free parame-
ter, Z. However, it is shown that for a static spher-
ically symmetric field the electromagnetic field equa-
tions and the energy-momentum-stress tensor are in-
dependent of Z. Therefore, from this last fact, it fol-
lows that the same will occur for the gravitational field

equations. The solution of the field equations for the
case of charged point particle is obtained. Apart from
de strong deviation of the metric tensor from the usual
Reissner-Nordstrom (RN) solution, the electric field de-
parts strongly from the Coulomb field value obtained in
the RN case, to which it approaches only at large dis-

tances. At small distances it behaves as r—".
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