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The exact solution of the asymmetric exclusion problem with N distinct classes of particles (¢ =
1,2,...,N), with hierarchical order is presented. In this model the particles (size 1) are located at
lattice points, and diffuse with equal asymmetric rates, but particles in a class ¢ do not distinguish
those in the classes ¢’ > ¢ from holes (empty sites). We generalize and solve exactly this model by
considering the molecules in each distinct class ¢ = 1,2,..., N with sizes s. (sc = 0,1,2,...), in
units of the lattice spacing. The solution is derived via a Bethe ansatz of nested type.

I Introduction

The similarity between the master equation describing
time fluctuations in nonequilibrium problems and the
Schrodinger equation describing the quantum fluctua-
tions of quantum spin chains turns out to be fruitful
for both areas of research [1]-[15]. Since many quan-
tum chains are known to be exactly integrable through
the Bethe ansatz, this provides exact information on
the related stochastic model. At the same time clas-
sical physical intuition and probabilistic methods suc-
cessfully applied to nonequilibrium systems give new
insights into the physical and algebraic properties of
quantum chains.

An example of this fruitful interchange is the prob-
lem of asymmetric diffusion of hard-core particles on
the one dimensional lattice ( see [16, 17, 18] for re-
views). This model is related to the exactly inte-
grable anisotropic Heisenberg chain in its ferromagnetic
regime [19] (XXZ model). However if we demand this
quantum chain to be invariant under a quantum group
symmetry U,(SU(2)), we have to introduce, for the
equilibrium statistical system, unusual surface terms,
which on the other hand have a nice and simple inter-
pretation for the related stochastic system [3, 4].

In the area of exactly integrable models it is well
known that one of the possible extensions of the spin-

% XXZ chain to higher spins is the anisotropic spin-S
Sutherland model (grading €; = €2 = ... = €2541 = 1)
[20]. On the other hand in the area of diffusion limited
reactions a simple extension of the asymmetric diffu-
sion problem is the problem of diffusion with particles
belonging to N distinct classes (¢ = 1,2,...,N) with
hierarchical order [22]-[24] . In this problem a mix-
ture of hard-core particles diffuses on the lattice. Par-
ticles belonging to a class ¢ (¢ = 1,..., N) ignore the
presence of those in classes ¢’ > ¢, i.e., they see them
in the same way as they see the holes (empty sites).
In [3] it was shown that for open boundary conditions
the anisotropic spin-1 Sutherland model and this last
stochastic model, in the case N = 2, are exactly related.
The Hamiltonian governing the quantum or time fluc-
tuations of both models is given in terms of generators
of a Hecke algebra, invariant under the quantum group
UySU(3). In fact this relation can be extended to ar-
bitrary values of NV, and the quantum chain associated
to the stochastic model is invariant under the quantum
U,(SU(N +1)) group. In this paper we derive through
the Bethe ansatz the exact solution of the associated
quantum chain, on a closed lattice. Recently [15] (see
also [14]) we have shown that without losing its ex-
act integrability, we can consider the problem of asym-
metric diffusion with an arbitrary mixture of molecules
with different sizes (even zero), as long they do not in-
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terchange positions, that is, there is no reactions. In
this paper we extend the asymmetric diffusion problem
with IV types of particles with hierarchical order, to the
case where the particles in each class have an arbitrary
size, in units of the lattice spacing. Unlike the case of
asymmetric diffusion problem, we have in this case a
nested Bethe ansatz [25]. A pedagogical presentation
for the simplest case N = 2 was presented in [26].

The paper is organized as follows. In the next sec-
tion we introduce the generalized asymmetric model
with N types of particles with hierarchical order and
derive the associated quantum chain. In section 3 the
Bethe ansatz solution of the model is presented. Finally
in section 4 we present our conclusions, with some possi-
ble generalizations of the stochastic problem considered
in this paper, and some perspectives on future work.

II The generalized asymmetric
diffusion model with N classes
of particles with hierarchical
order

A simple extension of the asymmetric exclusion model,
in which hard-core particles diffuse on the lattice, is
the problem where a mixture of particles belonging to
different classes (¢ = 1,2,...,N) diffuses on the lat-
tice.. This problem in the case where we have only
N = 2 classes was used to describe shocks [22]-[24]
in nonequilibrium and also has a stationary probabil-
ity distribution that can be expressed via the matrix-
product ansatz [27]. In [28] it was also shown that
the stationary state of the case N = 3 can also be ex-
pressed by the matrix-product ansatz. In this model we
have ni,ns,...nx molecules belonging to the classes
c=1,2,...,N, respectively. All classes of molecules
diffuse asymmetrically, but with the same asymmetri-
cal rates, whenever they encounter empty sites (holes)
at nearest-neighbor sites. However, when molecules of
different classes, c and ¢’ (¢ < ¢'), are at their minimum
separation, the molecules of class ¢ exchange position
with the same rate as they diffuse, and consequently
the molecules in the class ¢ see no difference between
molecules belonging to the classes ¢ > ¢ and holes.

oP({s}.1)
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We now introduce a generalization of the above
model, where instead of having unit size, the molecules
in each distinct class ¢ = 1,2,..., N have in general
distinct sizes s1, $2,...,SNn (S1,--
spectively, in units of lattice spacing. In Fig. 1 we

sy = 1,2,..)), re-

show some examples of molecules of different sizes.
We may think of a molecule of size s as formed by s
monomers (size 1), and for simplicity, we define the
position of the molecule as the center of its leftmost
monomer. The molecules have a hard-core repulsion:
the minimum distance d,g, in units of the lattice spac-
ing, between molecules a and f, with a in the left,
is given by dog = so. In order to describe the oc-
cupancy of a given configuration of molecules we de-
fine at each lattice site i (i = 1,2,...,L) a variable
Bi (i=1,2,...,L), taking the values §; = 0,1,...,N.
The values 8 = 1,2,..., N represent sites occupied by
molecules of class ¢ = 1,2,..., N, respectively. On the
other hand the value 8 = 0 represents an empty site or
an excluded one, due to the finite size of the molecules.
As an example, in a chain of L = 8 sites, the configura-
tion in which a particle of class 1, with size s; = 2 is at
site 1, and another particle, of class 2, with size s; = 3
is at site 3, is represented by {#} = {1,0,0,2,0,0,0,0}.
Thus the allowed configurations are given by the set
{8:} (i =1,...,L), where for each pair (5;,5;) # 0
with j > 4 we should have j — 7 > sg,.

Figura.l Example of configurations of molecules with dis-

tinct sizes s in a lattice of size L = 6. The coordinates of

the molecules are denoted by the black squares.

The time evolution of the probability distribution
P({B},t), of a given configuration {5} is given by the
master equation

— 5 - Y [FT{BY = {8'HPUBYLH) + T8} = {BHP{B'} 1), ] (1)

{8}
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where T'({5} — {f'}) is the transition rate for configu-
ration {4} to change to {#’}. In the present model we
only allow, whenever the constraint of excluded volume
is satisfied, the particles to diffuse to nearest-neighbor
sites, or to exchange positions. The possible motions
are diffusion to the right

Bi Oix1 — 0; Biy1, (B=1,...,N) (rate I'g)
(2)
diffusion to the left
0i Bix1 = Bi Oiyr, (B=1,...,N) (rate T'p)
(3)

and interchange of particles
Bi /le'-l,-sﬁ - B (B<pB =1,...,N) (rate
Bi Biys, — B B>pB =1,...,N)

As we see from (4), particles belonging to a given class ¢
interchange positions with those of class ¢’ > ¢ with the

/Bi-‘rsBr )

Bitsg s (rate
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same rate as they interchange positions with the empty
sites (diffusion). We should remark however that un-
less the particles in class ¢’ have unit size (s, = 1), the
net effect of these particles in those of class ¢ is distinct
from the effect produced by the holes, since as the re-
sult of the exchange the particles in class ¢ will move
by s. lattice size units, accelerating its diffusion.

The master equation (1) can be written as a
Schrédinger equation in Euclidean time (see Ref. [3]
for general application for two body processes)

opP>
ot

—H|P >, (5)

I'p)if we interpret |P >= P({8},t) as the associated

Fi4))Wauve function. If we represent §; as |f >; the vector
B >1 ®|8 >2 ®---® |8 > will give us the associ-
ated Hilbert space. The process (2)-(4) gives us the
Hamiltonian (see Ref. [3] for general applications)

]
H = D) H,
J
N
Hy = —P{Y_ [er(B° By — BB + e (Bf°E)L, — BB
a=1
N N
a o 0 o
+ 3N ean(BEX EY, - EXEN, B )}P (6)
a=13=1
with r r
R I
D=Tgr+T =, €= —"— =1
rt+lp, eq FR+FL, Tr+Tp (€++€ )7 (7)
|
case where their sizes are unity (s = 1) the model can be
_ 8* @ f A g related to the anisotropic version [21] of the SU(N +1)
€af = . Z;g ) Sutherland model [20] with twisted boundary condi-
- tions.
and periodic boundary conditions. The matrices EF*#
are (N + 1) x (N 4 1) matrices with a single nonzero
element (E*#); ; = 64,103, (o, 8,4, =0,...,N). The .
projector P in (6), projects out from the associated III The Bethe ansatz equatlons

Hilbert space the vectors |{#} > which represent for-
bidden positions of the molecules due to their finite
size, which mathematically means that for all ¢, 5 with
Bi,B; # 0, i —j] > sag (j > i). The con-
stant D in (6) fixes the time scale; for simplicity we
chose D = 1. A particular simplification of (6) occurs
when the molecules in all classes have the same size
.= sy = s. In this case the Hamiltonian
can be expressed as an anisotropic nearest-neighbor in-
teraction spin-N/2 SU(N + 1) chain. Moreover in the

S1 = S9 = ..

We present in this section the exact solution of the gen-
eral quantum chain (6). A pedagogical presentation for
the particular case where N = 2 was presented in [26].

Due to the conservation of particles in the diffusion
and interchange processes the total number of particles
ni,ne,...,ny in each class are good quantum numbers
and consequently we can split the associated Hilbert
space into block disjoint sectors labeled by the numbers
niy,ne...ny (n; =0,1,...;i=1,..., N). We therefore
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consider the eigenvalue equation where
H|ni,na,...,ny >= E|ny,na...,nnN >, (9)

]

ng,n2,...,nN >= Zfolanj' -;mnan)|x17Ql;---;mnaQn >, (10)
{Q} {=}
|
and n = Zfi1 n; is the total number of parti- eigenfunctions are the momentum-k eigenfunctions
cles. In (10) |z1,Q1;...;%n, @ > means the config- .
}1rat10n W.hfare a particle of class @Q; (Q; = 1,2,.. ,N) 10,...,0,10,0,...,0 >= Zf(a:,c)p:,c > e=1,....N
is at position z; (z; = 1,...,L). The summation =
{Q} = {Q1,...,Qn} extends over all permutations of (12)
the n integer numbers {1,2,..., N} in which n; terms with
have the value ¢ (1 = 1,2, ..., N) , while the summation ' 9l
{z} = {z1,...,2,} runs, for each permutation {Q}, in f(z,e) =€, k= I I=0,1,...,L—1, (13)
the set of the n nondecreasing integers satisfying
and energy given by
Tig1 2Tit g, i=1...n-1, E=e(h)= —(cc* 4+ eye™—1).  (14)
5Q, <p—x1 <N —5q,. (11) n =2. For two particles of classes ()1 and 2
(Q1,Q2 = 1,2,...,N) on the lattice, the eigenvalue
Before getting the results for general values of n let us equation (9) gives us two distinct relations depending
consider initially the cases where we have 1 or 2 parti- on the relative location of the particles. The first rela-
cles. tion applies to the case in which a particle of class 1
n = 1. For one particle on the chain, in any class (size s@,) is at position z; and a particle Q2 (size sq,)
c=1,2,...,N, as a consequence of the translational is at position z», where z2 > x; + sg,. We obtain in
invariance of (6) it is simple to verify directly that the this case the relation
|
Ef(z1,Q1572,Q2) = —eif(z1 —1,Q1322,Q2) —e—f(21,Q1322 + 1,Q2)
—e f(x1+1,Q1522,Q2) — eyf(21,Q1372 —1,Q2) +2f(x1, Q1;72,Q2), (15)
where we have used the relation e; + e_ = 1. This last equation can be solved promptly by the ansatz
flz1,Q1522,Q2) = ZA%;gjei(kPlzl*kF’Z“)
P
— A1Q7§7Q26i(k1x1+k2w2) +A2Q&7Q2ei(k2x1+k1w2) (16)
with energy
E =e(k1) + e(ko), (17)

where k1, kQ,A1Q§7Q2 and AQI’Q2 are free parameters to be fixed. In (16) the summation is over the permutations
P =P, P of (1,2). The second relation applies when z» = x1 + s@, . In this case instead of (15) we have

Ef(x1,Q1; 21 +50,,Q2) = —erf(r1 — 1,Qu;21 + 50,,Q2) — e f(21,Q1;71 + 50, +1,Q2)
_€Q27Q1f('r17 Q2;'T1 + 5Q., Ql) + (1 + thQz)f(xlan; T+ SQ17Q2)- (18)

If we now substitute the ansatz (16) with the energy (17), the constants A%’QZ and A2Qll’Q2, initially arbitrary,
should now satisfy
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> {[Dp.p + €7 (1= &g, q.)] €m0 =D ARIE 4 &, o efFrataz AR B} = 0 (19)
I
where
Dy = —(e; + e _elFrthm)y, (20)
At this point it is convenient to consider separately the case where @)1 = @2 from those where @1 # Q2. If
Q1=Q2=Q (@ =1,...,N) eq. (19) gives
> (Dpip, +et) eifre=ARY =0 (21)
P

and the cases Q1 # Q2 give us the equations

Z |: Dp,,p, + eiki: €Q2,Q1 €Q27Qleikp2 " :| szQ(SQl_l)AZhlgz =0.
P €Q1,Q.€" "2 DPth + €Q,,0."" ethra(5a:=1) 4 1277 21

Performing the above summation we obtain, after lengthy but straightforward algebra, the following relation among
the amplitudes

AQ17Q2 le(SQl—l) DLQ +€ik1
AQ27Q1 ik2(sQy —1) _D172+eik2

x {1—¢(k1,k2){ Q1.Q2 Q2 ]}

T€Q1,Q2 €Q2,1

AQ17Q2 ik1 (s, —1)
AQ27Q1 ik1(s@y—1) |7

where
ikt _ piks ’
O(ky, ko) = ————.
( 1, 2) D172 + etk1 ( )
Equations (21) and (22) can be written in a compact form
1,Q2 , Q5,Q)
AREY = ~Epp, Z Sgr ez (ke k) AR, (Q1,Q:=1,...,N) (23)
Q1,Q5=1
with ) )
= _ D+ etk _ et e,ef(’””f) - el"“ (24)

= = : )
J DL] + ezk €y + 6,61(k1+kJ) _ esz )

where we have introduced the S matrix. From (21) and (22) this S matrix has only N(2N — 1) non zero elements,
namely

Soui6: (k1 k2) [1— €Qu,u®(k1, ko)] 1R~ (@1, Q5 = 1., N),
SELE (ki k) = €ququ @k, ka)e (0@ Vel Q) Qy = 1,...,N;Q1 # Qo). (25)

Equations (23) do not fix the “wave numbers” ki and k». In general, these numbers are complex, and are fixed due
to the cyclic boundary condition

f(x1,Q1;72,Q2) = f(2,Q2;71 + N,Q1), (26)
which from (16) give the relations

A?é@z — eianAg?j,Ql, A2Q&,Q2 — €ik2NA§2j’Q1. (27)
This last equation, when solved by exploiting (23)-(25), gives us the possible values of k; and k2, and from (17) the
eigenenergies in the sector with 2 particles. Instead of solving these equations for the particular case n = 2 let us

now consider the case of general n.
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General n. The above calculation can be generalized for arbitrary occupation

{n1,na,...,nn} of particles in classes 1,2,..., N, respectively. The ansatz for the wave function (10) becomes

f('rla Ql; s 3 Ty Q Z AQl: Qn Z(kplzl+ ke, ") (28)
where the sum extends over all permutations P of the integers 1,2,...,n, and n = Zi\il n; is the total number of
particles.

Application of the translation operator to the above wave functions implies that (10) are also eigenfunctions of
the momentum operator with eigenvalues

- 2ml
p:ij:%, (1=0,1,...,L—1). (29)

For the components |z1,Q1;...;%n, @n > where ;41 — x; > sg, for i = 1,2,...,n, it is simple to see that the
eigenvalue equation (9) is satisfied by the ansatz (28) with energy

E=Ye(k;). (30)
i=1
On the other hand if a pair of particles of class @Q;, Qi1 is at positions z;, x;11, where z;41 = z; + sg,, equation
(9) with the ansatz (28) and the relation (30) give us the generalization of relation (23), namely

Qi Qig1y e Qi,Q: < Q5,Q0
AR = —Ep py, Z Saian (ke kp  DATEE L Qi Qi = 1,2, N), (31)
7Q2

with S given by eq. (25). Inserting the ansatz (28) in the boundary condition

f(xlanvvwnaQn) = f(x27Q2;"';w’n7Qn;m1 +N7Q1) (32)

we obtain the additional relation

Agf,,......’,gnn — zkplNAQm : ,gnn’g% (33)

which together with (31) should give us the energies.

Successive applications of (31) give us in general distinct relations between the amplitudes. For example
Azlﬁkzkg relate to Akagkl by performing the permutations afy — fay — pfya — vyBa or afy —
ayf — yaf — vBa, and consequently the S-matrix should satisfy the Yang-Baxter [19, 29] equation

N
ST SO (ki k) ST (kisks) S (Ko ks) =
’Y,’Y’,’Y”:l
N
Z ’Y 'y” (k27 k3) ¥, B” (kl, kS)SB B (kl, kg) (34)
FY7’YI7’Y” 1

for a, o/, 0", 38,8',8" = 1,2,...,N and S given by (25). Actually the relation (34) is a necessary and sufficient
condition [19, 29] to obtain a non-trivial solution for the amplitudes in Eq. (31).

We can verify by a long and straightforward calculation that for arbitrary number of classes N and values of
the sizes s1, 59, ..., sy, the S matrix (25), satisfies the Yang-Baxter equation (34), and consequently we may use
relations (31) and (33) to obtain the eigenenergies of the Hamiltonian (6). Applying relation (31) n times on the
right of equation (33) we obtain a relation between the amplitudes with the same ordering in the lower indices:

n
1=2 Q15 Q QYL QY
Q1,Q% Q2,Q% Qn-1,Q,, Qn,QY Q- Q0
SQ’;Q’? (k:P17kP1)SQ’22,Q§ (kPQ?kpl) S " ;,Q:_ (k'Pn—17kP1)SQ’n7Qi{ (kP 7kP1)AP11 P (35)

where we have introduced the harmless extra sum
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N
Q1.Q4
1= Y dopeidero = Z S5 qn (ke kp,)
1117Q/2/:1 1117fo 1

(36)
(see [26] for illustrations of the above equations). In
order to fix the values of {k;} we should solve (35), i.e
we should find the eigenvalues A(k) of the matrix
N

{Q}Y _ Q1,Q; 1
Tk)oh = D (HSQ“Q”Jr kp,,k)>, (37)

/1/7 ,Q” 1 —

with periodic boundary condition
Qn,Qn Qn,QY
SQr Q”+1 (kpn,k) = SQ;,Q',I: (kpn,k). (38)

The Bethe-ansatz equations which fix the set {k;} will
be given from (35) by

em kN = (—1)n—! (H El,j) A(kj), j=1,...,n.

I=1

(39)
The matrix T'(k) has dimension N™ x N™ and can be
interpreted as the transfer matrix of an inhomogeneous
N(2N — 1)-vertex model in a two dimensional lattice
with periodic boundary conditions in the horizontal di-
rection (n sites). Due to the special form of the S matrix
(25) the eigenvalues of (37) are invariant under a local
gauge transformation where for each factor S(kp,, k) in
(37):

O]

Qu.Qi'4y Qu.Qi'4 Qi1
Sarar (kpy k) = S5 g (ktpl,k)(b(—l), (40)
QY

the special choice

(1+1)
Pa — ¢ ikp, (sa—1) (l =23,..

W ) '7N)7 (41)

the equivalent transfer matrix to be diagonalized is
given by

T(h){g) = e * Ll (42
where
N Q1,Q
Dok)gh= 3 (HSQ;’,’Q;’f“<kP,,k>>, (43)
Q=1 \I=1

with the twisted boundary condition
GO 5Qn.QY
Sorai " (kp k) = 5o gp (ke K) gy (44)

with twisted phase

PG DD S 4 (45)
The matrix S in (43) and (44) is obtained from those in
(25) by taking the size of all particles equal to unity. In
this way the problem is transformed into the evaluation
of the eigenvalues of a regular (all particles with size 1)
inhomogeneous transfer matrix Tp with n(2N — 1) non-
zero vertex and twisted boundary condition.
Diagonalization of Ty (k)

The simplest way to diagonalize Ty is through the in-
troduction of the monodromy matrix M (k) [25], which
is a transfer matrix of the inhomogeneous vertex model
under consideration, where the first and last link in the

where ¢£f) (l=1,...,L; a=1,...,N) are arbitrary horizontal direction are fixed to the values p; and pi,,41
functions. If we perform the transformation (40) with (1, o1 = 1,2,...,N), that is
|
N ~
MG M = & 3 S RSG L ke k)
|- TN T
SerT (ki R)SE I (kp, k) (46)
Q' Hn—1 Prn_1> Q' n Py lv)-

{Q}nun-i—l

The monodromy matrix M{Q’}m

(k) has coordinates {@Q},{Q'} in the vertical space (N™ dimensions) and coor-

dinates g1, ftny1 in the horizontal space (N2 dimensions). This matrix satisfies the following important relations

Z S,l,’ll:;fll k’ M{’Yl #n+1(k)M{5z},un+1

{n}.v]

{al} “1
vi,uy=1

{7!}7 n
Z 'A/l{cn},l/1+1

!
Vyg1bn 1 =1

(k) =

( ) M{Bl}#ln+1 (k)sun+1,un+1 (kl k) (47)

{’Yl},ﬂl n+1,#n+1
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for p1,v1, nt1,Vn+e1 = 1,2,..., N.This relation fol-
lows directly from successive applications of the Yang-
Baxter equations (34) (see [26], for a graphical repre-
sentation of these equations).

F. C. Alcaraz and R. Z. Bariev

where a, 8 = 1,2,..., N — 1. Clearly the transfer ma-
trix To(k) of the inhomogeneous lattice with twisted
boundary conditions, we want to diagonalize, is given
by

In order to exploit relation (47) let us denote the N—-1
components of the monodromy matrix in the horizon- = Z A% (k) + D(k). (49)
tal space by a=1
As a consequence of (47) the matrices AY, B*, C* and

AR = {n}b (L B {v}a
(Fa M (k), (k)® = My, k), D in (48) obey some algebraic relations. By setting

{a1},

Ck)™ = MEIIN(k), D(k) = MIEN(K),(48) (1,1, Vs ptngr) = (N, 0,7, ) i (47) we obtain
|
SNk K N-L§ME (K k), ,
A (k)BY(K') = —%Bﬁ(kmz(k') + > %Ba (k") AZ' (k), (50)
SNk k) oo SN (K k)
with (o, 8 =1,...,N —1). By setting (v1, 1, Vn+1, tint+1) = (N, N, N, a) we obtain

SN (ke k')
SNa(k, k')

SNk, k)

D(k)B* (k') = SV k)
N,o\™

B*(K')D(k) — B*(k)D(k"), (51)
where (« = 1,..., N —1). The diagonalization of To(k) in (49) will be done by exploiting the above relations. This
procedure is known in the literature as the algebraic Bethe ansatz [25]. The first step in this method follows from
the identification of a reference state | >, which should be an eigenstate of A%(k) and D(k), and hence Ty(k), but
not of B¥(k). In the present case a suitable reference state is | >= [{oy = N} >;=1,... n, which corresponds to a

state with N-class particles only. It is simple to calculate

AmIQ> = ai(k)IQ> Dk )|Q >=d(k)[2 >,
cok)Q> = 0, k)|Q >= Zba k) QD >, (52)
where
) = bup® [[SNIGrR) ) = O [ 5NN kb,
i=1 i=1
i—1 B no
bp(k) = @ [[SVN ke k) [TSV0 (kR k), (53)
=1 I=i
and |Q£f) >= {auzi = N},a; = a >. The matrices B*(k) act as creation operators in the reference (“vacuum”)

N) in a sea of particles of Nth class |2 >. We then expect that
n) particles, belonging to classes distinct from N, can be

state, by creating particles of class a (1,2,...,
the eigenvectors of Typ(k) corresponding to my (1,2,...,
expressed as
k5 F >=" Fp,. s, B? (k) B (KY) -
{8}

m1} and Fp, 5, are variables to be fixed by the eigenvalue equation

B (k)| >, (54)

where {kl(l),l =1,...,
To(k)|k", F >= A0 (k) kD, F > . (55)

Using (50) successively, and (52),(53) we obtain
N

N
BPm (k)= > >

{O"17"'70‘;n1:1} {6117---767”,11:1}

Ag(k)Bﬁl (kP)BBQ (kél)) .

, sBmy =180, =Bmy By
SabG (Y RS G S R ST R k) 8L (R
nSNY ki k) , ,
[Lj=1 Swia (ks K) B* (kgl))B"‘2 (kél)) -« B%m (k%mﬁ > + “unwanted terms”, (56)

T, SNa kst k)
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where the “unwanted terms” are those ones which are not expressed in the “Bethe basis” produced by the Ba(kj(-l))
operators. Similarly, using (51) successively and (52)-(53) we obtain

D(k)Bﬁl(k§1))...BBM1( |Q >= &y (H % (ki k) )

m SNk, k)
X (H Imi) Bﬂl(kgl)) ... BPm (kﬁ,{f)m > + “unwanted terms”. (57)
Sns, (K k! )
The relations (56) and (57) when used in (54)-(55) give us

[0, Sy (kj, k) ) W N
T, SY 0y 2 2 T B T YY) B RO >
J ok {6}{cY
mq NN
NN NN(k k )
+<I>NHSNN kiok) Y <5Nm e
{B} 1= NBI )

To(k) |k, F >=

) Fyy B (K0 - B (B0 >
1

+”unwanted terms”, (58)
where
{5} = — &8 ! &BiB; (1) &Bm 1P (1)
1, is m1Pmy—1
Z > S%Bl H S, (ki R) | Sort T (k) K) (59)
a=1 617"'7647:,1:
is a (N —1)"t-dimensional transfer matrix of a inhomogeneous vertex model, with inhomogeneties {kml, 23 1r- ..,k%l)}

(notice the reverse order of the inohomogeneties, when compared with (43)) and twisted boundary conditions
(boundary phases ®,,a=1,...,N —1).
In order to proceed we need now to diagonalize the new transfer matrix T} (k), that is we must solve

> Ti(k) {a F{B} A (K)Fran (60)
{8}
and then (58) give us
To(k) |k, F >= A k)|, F > + “unwanted terms”, (61)

where, using the fact that SN N(kl, k) =1,

T, Sno(kj, QN

H;'n:l1 5'1]:;11(7% =1 Nl(k k )

AO(k) =

In order to prove that A(®) and |KC(,1), F > are the eigenvalues and eigenvectors of Ty(k), we should fix {k%l), ce k,ﬁi}}
by requiring that the “unwanted terms” in (61) vanish. Although for N = 2 this calculation is not complicated [26]
for arbitrary N it is not simple. Since the expression (62) for the eigenvalues should be valid for arbitrary values
of k we can obtain A(l)(kj(-l)) in an alternative way from the following trick [31]. At k = k](-l) (j=1,...,mq) the
denominators of the factors in (62) vanish (S (k(-l) k ) =0,l # N), and since we should have a finite result, we
have the conditions

m1 ~]\7,1(

AD (&) <I>NH [ 2o’
i— 15%11 i, K )l’ 11 5%7’11( )

vy

,j:l,...,ml. (63)

Notice that our result in (63) does not depend on the particular ordering of the additional variables kj(-l) (j =

1,...,mq). This means that if instead of the ordering chosen in (54), we chose the reverse order, namely,
KD, B >= 3" Fa,,..oo, BO™ (K0 BP (i) ) - BY (k) IO > (64)
{B}

we would obtain the same results (61)-(63), but now T is the transfer matrix, with boundary condition specified by
the phase ®,, of a problem with (N — 1) species and inhomogeneities k;l), ceny kgi (notice we have now the same
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order of the inhomogeneties as in (43)). This means that the eigenvalue A(k)
the problem with NV classes and inhomogeneities (k%o) k
AM (k) of the problem with (N — 1) classes and inhomogeneities k§ ), k(l) oLk

F. C. Alcaraz and R. Z. Bariev

= AO)(E) of the transfer matrix of
..,k( ) = (k1, ko, ..., ky) is related to the eigenvalue
%3 Iterating these calculations we

obtain the generalization of the relation (62) and the condition (63)

I'=1

mi41

(I)NIH

=1 Sna

k' klll+1 )

mi41 1

_ L ) aemgy s
11 ﬁﬁ#”ﬁm)

I'=1

miq1 lel( gD k(l+1))

A(z+1)(k](l+1)) (

which connects the eigenvalues of the inhomogeneous
transfer matrix Tlgk) and Tj41(k), with inhomogeneities
{k](.l)} and {k](.lJrl }, related with the problem with
(N —1) and (N —1—1) classes of particles, respectively.

However from (39) and (42)-(43), in order to obtain
the Bethe-ansatz equations for our original problem we
need the eigenvalues of the transfer matrices evaluated

(}) k(l+1))> H

l l
I'=1,I'#j Sﬁll( kY k( +1))

since H] 1 SNa(kJ,kp ) = 0. The conditions that fix
the variables (kj( ),] =1,...,

the left side of this equation we have A(l)(kj(-l)), which
are the eigenvalues of the transfer matrix 77 of the
model with gN — 1) classes of particles and inhomo-

,7=1,...,my}, evaluated at the partcu-

my) are given by (63). In

geneities {kj(l
lar point k§1). This value can be obtained from (65)
which gives a generalization of (67)

N —1). (68)

at kj (j =1,...,n), i.e,, A9 (k;), which are given by
AO(kp) =By (67)
H B Ukp, ,k(l))
]
0 l T
1
AOED) =an T T
=1

The condition (63) is then replaced by

‘1>N1H

A(l)(k(l)
J e 15%11 (1) k(2)

z k z+1))

1;[ (1) D) 11

(1=0,1,...
ll

n SN )

=N D~ (69)
1 1
I'=1,I'#j Sﬁll( kY k( ))

where now we need to find the relations that fix {kJ@)}. Tterating this process we find the generalization of (69)

mi41

1
oy H & 0 (1
=1 SNk k)

Tt Sva (ke K)

AL sy
joo

U'=1,I'#j °N,

=on-a-n [] 3

(j:1727"‘7ml;

mip—1

1
o1 SN kDY

L N—2). (70)

Equations (67) and (70) give us the eigenvalues of the transfer matrix Ty(k) evaluated at the points {k;}, i.
A (k;). Inserting the above results in (42) and then in (39) we obtain the Bethe-ansatz equations of our orlglnal

problem.

The eigenenergies of the Hamiltonian (6) in the sector containing n; particles in class i (i = 1,2, ...
,L — 1) are given by

Z;.VZI n;) and total momentum p = 2% (1 =0,1,...

E=- Z(e,eik?)

j=1

N (n =

ik$®)

+ere _1)7 (71)



Brazilian Journal of Physics, vol. 30, no. 4, December, 2000 665

where {kj(.o) =kj,j=1,...,n} are obtained from the solutions {kj(-l),l =0,...,N—1;5=1,...,my} of the Bethe

ansatz equations

. N
eij(L+n_Zi:1 n;s;)

(_l)n—le—ip(sN—l)

:07.(0) 4 7.(0) )
ik +ky") ki

ﬁ €4 +e€_e
ik k') eik;?)

J'=1(3"#5) €+ +€-e

my ik ik
er(e™ —ei .
x + — ) = ji=12,...,n, (72)
ik kS ik
I=1 €4 +€_e™ i —e
and

my ik (+D ik mit2 k() ik UFD
€+(6 * —€ ﬂ) _(_1)m1+1eip(sN,l—sN,l,1) €+(6 é —ere )

IO T
5ot ey + etk kg _ oiky

mi41 (1 (+1) (I+1) 2 .(141)
ey +e_eltha TR _ ikl

X
(RUFD (D) D
a'=1(a'#a) €+ T e_ell Tha) — gtk

and m; = E;-V:_llnj, 1=0,...,N (mg = N,mny = 0).
It is interesting to observe that in the particular case
where no = n3 = ... = ny = 0 we obtain the Bethe-
ansatz equations, recently derived [15] (see also [14]),
for the asymmetric diffusion problem with particles of
= sy = 1 gives
us the corresponding Bethe ansatz equations for the
standard problem of N types of particles in hierarchi-
cal order. The Bethe-ansatz solution in the partic-
ular case of N=2 with a a single particle of class 2
(ng = n—1,ny = 1) was derived recently [32]. The
Bethe-ansatz equations for the fully asymmetric prob-
lem are obtained by setting in (72)-(73) e = 1 and
e- =0.

size s1. Also the case s1 = sy = ...

IV~ Conclusions and generaliza-
tions

We obtained through the Bethe ansatz the exact solu-
tion of the problem in which particles belonging to N
distinct classes with hierarchical order diffuse as well
interchange positions with rates depending on their rel-
ative hierarchy. We show that the exact solution can
also be derived in the general case where the particles
have arbitrary sizes.

Some extensions of our results can be made. A first
and quite interesting generalization of our model hap-
pens when we allow molecules in any class to have size
s = 0. Molecules of size zero do not occupy space
on the lattice, having no hard-core exclusion effect.
Consequently we may have, at a given lattice point,
an arbitrary number of them. The Bethe-ansatz solu-
tion presented in the previous section is extended di-

1=0,1,...,N —2;

U+, L+ o (1+1)
s—1 €+ + e_eilks T Hka ) _ piky

rectly in this case (the equations are the same) and the
eigenenergies are given by fixing in (71)-(73) the appro-
priate sizes of the molecules. It is interesting to remark
that particles of a given class ¢ (2,3,...,N), with size
se = 0, contrary to the case s > 1, where they “accel-
erate” the diffusion of particles in classes ¢ < ¢/, they
now “retard” the diffusive motion of these particles.
The quantum Hamiltonian in the cases where the par-
ticles have size zero is obviously not given by (6) but
can be written in terms of spin S = co quantum chains.
Another further extension of our model is obtained by
considering an arbitrary mixture of molecules, where
molecules in the same hierarchy may have distinct sizes.
The results presented in [15] correspond to the particu-
lar case of this generalization where N = 1 (simple dif-
fusion). For general N the S matrix we obtain in (25)
is also a solution of the Yang-Baxter equation (34), but
the diagonalization of the transfer matrix of the associ-
ated inhomogeneous vertex model is more complicated.
The Bethe-ansatz equations in the case of asymmetric
diffusion, with particles of unit size [10, 11], or with
arbitrary size [15], were used to obtain the finite-size
corrections of the mass gap Gn of the associated quan-
tum chain. The real part of these finite-size corrections
is governed by the dynamical critical exponent z, i. e.,

Re(Gy) ~ N2 (74)

The calculation of the exponent z for the model pre-
sented in this paper, with particles of arbitrary sizes, is
presently in progress [30].
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