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We study the e�ect of random bonds and �elds on the dynamical behavior of the one-dimensional
transverse Ising model with four-spin interactions. We consider �nite chains of increasing size to
determine the time-dependent correlation function and the longitudinal relaxation function of the
in�nite chain. In this fully disordered system we observe a crossover from a collective mode type of
dynamics to that of a central regime.

The dynamical behavior of pure quantum spin sys-

tems has been the subject of much research activity in

the past decades[1]. Only recently, more attention has

been devoted to the investigation of the time evolu-

tion of disordered systems. A number of studies about

the phase diagram and thermodynamic functions has

demonstrated that the behavior of magnetic materials

may be drastically a�ected by the presence of random-

ness. Among the systems studied, the transverse Ising

model (TIM) has attracted considerable interest in re-

cent years[2, 3, 4, 5] and is regarded as one of the sim-

plest models with non-trivial dynamics.

In this work we are interested in the time evolution

of the one-dimensional TIM with four-spin interactions.

The model Hamiltonian is

H = �8
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where S�i (� = x; y; z) is the spin-1/2 operator at

site i and L is the number of sites of the lattice.

The four-spin interactions Ji and the magnetic �eld

Bi are uncorrelated variables chosen at random from

the probability distributions P (Ji) and P (Bi), re-

spectively. There have been several studies on the

model with uniform exchange interaction and zero mag-

netic �eld[6] by using mean-�eld theories[7, 8], renor-

malization group[9], series expansions[10] and Monte

Carlo simulations[8, 11]. The resulting phase dia-

gram has a tricritical point which separates regions

of �rst and second-order transitions. The pure TIM

was also employed to describe the phase transition

in poly(vinylidene 
uoride-tri
uoroethylene) [P(VDF-

TrFE)] copolymers[12]. More recently, some studies on

the dynamics of this model in the presence of disor-

der showed that the system undergoes a crossover from

a collective mode excitation regime to a central mode

type of dynamics as a function of the bond and �eld

energies[4, 13]. Di�erently from the usual two-body

model [14, 15], the four-spin interaction model does not

allow a Gaussian decay for the correlation function.

The problem of disorder in magnetic systems is a

fascinating phenomenon that has become the object of

intense study. In most materials, the presence of mag-

netic and nonmagnetic ions leads to a distribution of

exchange couplings between pairs of spins. In the ideal

case, the random interactions Ji for di�erent pairs are

totally uncorrelated. The simplest case occurs when all

the couplings are of the same sign but vary in strength.

Other interesting behavior occurs when the model in-

cludes random magnetic �elds. In this case, there is

a competition between the di�erent energies with the

spins tending to align under the exchange interactions
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Ji or to follow the local �eld Bi. The interaction en-

ergies can be quite smaller than the thermal energy

even, say, at room temperature. In those cases where

Ji=kT << 1 and Bi=kT << 1 the dynamics can be

studied in the in�nite-temperature limit. In that limit,

it is a well known fact that the dynamics is insensitive

to the sign of the interaction, since only even powers

of the interaction coupling and �eld come into the mo-

ments of the autocorrelation function [4,15,16].

The dynamics of the four-spin TIM can be obtained

through the time-dependent autocorrelation function of

Szi de�ned by

C(fJig; fBig; t) =
< Szi S

z
i (t) >

< Szi S
z
i >

: (2)

In the high temperature limit it takes the following

form,

< Szi S
z
i (t) >=

1

2L
TrSzi e

iHtSzi e
�iHt: (3)

We shall peform our calculations in �nite rings, i.e.,

linear chains with periodic boundary conditions. The

exact behavior of the thermodynamic systems, at short

times, is inferred from the dynamics obtained for sys-

tems of several sizes (L=7, 9 and 11). Numerical results

will be presented only for the largest ring (L=11), which

shows signs of having attained the asymptotic behavior

of the thermodynamic system at large times.

In the general problem of quenched disorder, the

physical properties of a system are obtained by perform-

ing a con�gurational average in the statistical ensemble

of realizations of the random variables. Formally, the

averaged autocorrelation function is de�ned as,

C(t) =

Z Z
C(fJig; fBig; t)P (Ji)P (Bi)dJidBi: (4)

In our approach the mean autocorrelation function C(t)

is obtained as follows. We �rst diagonalize the full

Hamiltonian to determine the energies �n and eigen-

vectors jn > for a large number of realizations in the

statistical ensemble of energy coupling randomness. We

employed 1000 to 10000 con�gurations to obtain aver-

ages over the random variables; so that the error bars

fall within the thickness of the curves presented. The

results are then used to determine the mean autocor-

relation function, which is cast in the following form

[17],

C(t) =
4

2L

X
n;m

cos(�n � �m)tj < njSzi jm > j2; (5)

where the con�gurational average is also performed.

Another quantity of interest is the averaged longi-

tudinal relaxation shape function, de�ned as

	(!) =

Z
1

0

C(t)e�i!tdt; (6)

where C(t) is given by Eq. (5). The real part of 	(!)

gives directly a physically accessible quantity, the lon-

gitudinal relaxation function, F (!) = Re	(!), which

can be measured directly in nuclear magnetic resonance

(NMR) experiments |the so-called NMR line shape

[18]. The longitudinal relaxation function is also very

useful in the understanding of the dynamics of the sys-

tem, since di�erent dynamic behaviors have distinct sig-

natures in that quantity [19].

We investigated the four-body TI model chain con-

sidering bimodal probability distributions for the ex-

change coupling and magnetic �eld,

P (Ji) = (1� p) Æ(Ji � J1) + p Æ(Ji � J2); (7)

and

P (Bi) = (1� p0) Æ(Bi �B1) + p0 Æ(Bi �B2); (8)

where p is the concentration of couplings of type J2,

and p0 is the concentration of magnetic �eld of type

B2. We determined the time-dependent autocorrela-

tion function and the longitudinal relaxation function

for the set (Ji, Bi) with several values of p and p0.

In our calculations we considered the values J1 = 1

and J2 = 0:5 in the bimodal probability distribution

for the exchange interaction, and several values of the

concentration p of J2-couplings. The coupling J1 = 1

is kept �xed and sets the energy and time scales. As

to the �eld probability distribution we considered the

cases where B1 = 1:5 and B2 = 0:5, also with several

concentrations p0. For simplicity, we will present here

only the particular case where p = p0. The convergence

of our results as the chain size increases is reached with

the L = 11 chain in the time domain shown in the �g-

ures, 0 � t � 8. In all cases studied, our calculations

also recover the results for the pure TI model with four-

spin interactions (p = 0) [4].

The results for the time-dependent correlation func-

tion are shown in Figs. 1 and 2. The energy couplings

are J1 = 1 and J2 = 0:5 with probability p, and the

�elds are B1 = 1:5 and B2 = 0:5, the latter with prob-

ability p0 = p = 0, 0:2, 0:5 and 0:8. The curves for

p = 0 corresponds to the pure case dominated by the

stronger �eld energy. The correlation function is os-

cillatory and damped, falling o� quickly towards zero.

The longitudinal shape function shows a peak at a non-

zero frequency. Hence, at p = 0 the system is at the

collective mode regime, where the dynamics is mostly

due to the precession of the spins about the external
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�eld axis. As we increase p from 0 to 0.2, the cor-

relation function still oscillates. However, the peak in

the longitudinal shape function has now moved towards

lower frequencies. When p = 0:5, the correlation func-

tion decays monotonically to zero. The shape function

is now peaked at zero frequency, and all the system has

undergone a crossover to a central mode behavior. As

p is increased further, the correlation function decays

more slowly, and the central peak is enhanced, as can

be seen from the case p = 0:8.

Figure 1. Time-dependent correlation function for the four-
body transverse Ising model with random bonds and �elds.
The couplings and the magnetic �elds are distributed ac-
cording to bimodal probability distributions, and can as-
sume the values J1 and B1 with probability (1� p) and J2
and B2 with probability p. The energy and time scales are
set by the coupling J1 = 1:0. The curves represent the cases
J2 = 0:5, B1 = 1:5 and B2 = 0:5 for various values of the
probability p.

Figure 2. Longitudinal relaxation function (in arbitrary
units) vs frequency. The system undergoes a crossover from
collective mode behavior to a central mode as p is increased.

In conclusion, we have studied the dynamical be-
havior of the transverse Ising model with four-spin in-
teractions in the presence of random bonds and �elds

via exact diagonalization of �nite chains. We have cal-
culated the time-dependent correlation functions and
the longitudinal relaxation functions for system of sizes
L = 7, 9 and 11. We present the results only for the
size L = 11, for which the dynamic correlation func-
tions have already converged to those at the thermody-
namic limit. Our results show that disorder induces a
crossover from a collective mode type of dynamics to a
central mode behavior as a function of disorder.
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