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We study the two dimensional quantum Heisenberg antiferromagnet on the square lattice with easy-
axis exchange anisotropy by the semiclassical method called pure-quantum self-consistent harmonic
approximation. In particular, we focus on the problem of the existence of a �nite-temperature
transition in such a model, and study the corresponding critical temperature as the spin value and
the anisotropy vary. We �nd that an Ising-like transition characterizes the model even when the
anisotropy is of the order of 10�2J (J being the intra-layer exchange integral). The good agreement
found between our theoretical results and the experimental data for the compounds Rb2MnF4,
K2MnF4, and K2NiF4 shows that the insertion of the easy-axis exchange anisotropy, with quantum
e�ects properly taken into account, provides a quantitative description and explanation of the real
system's critical behaviour.

The easy-axis quantum Heisenberg antiferromagnet
on the square lattice (EA-QHAF) is de�ned by the fol-
lowing Hamiltonian:
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where i = (i1; i2) runs over the sites of a square lat-
tice, d connects each site to its four nearest neigh-
bours, J > 0 is the antiferromagnetic exchange in-
tegral and the anisotropy parameter � takes values
� 2 [0; 1) for easy-axis models. The spin operators Ŝ�

i
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The anisotropy parameter � measures the strength
of the easy-axis character of the model: For � = 0 the
Ising-limit (equivalent to the Ising model if S = 1=2) is
recovered; in the opposite limit, Eq. (1) with � = 1 de-
scribes the fully isotropic QHAF. At a classical level the
EA-HAF is known to share its critical behaviour with
the Ising model [1], with a �nite-temperature second-
order phase transition corresponding to the onset of
N�eel antiferromagnetic order. The critical temperature
T cl
c is a decreasing function of �, and vanishes logarith-

mically in the isotropic limit [2].

When quantum e�ects are considered, one expects
the critical behaviour of the model to remain the
same, as the universality class of the system cannot
be changed by short-ranged quantum 
uctuations [3];
however, these may be responsible for an evident low-
ering of the critical temperature, as quantum disorder
opposes the onset of Ne�el order. In principle, this e�ect
could be strong enough to push the critical temperature
down to Tc = 0, thus destroying the transition itself; the
parameter region where such a scenario could possibly
occur is that of low critical temperatures (� ' 1) and
strong quantum e�ects (S = 1=2) [4].

To address the problem of the existence of a �nite
temperature transition in the EA-QHAF, one needs to
analyse the �-dependence of the critical temperature
for di�erent spins; results relative to precise spin and
anisotropy values, typical output of quantum numerical
simulations, are hence insuÆcient, albeit useful. The
main goal of this paper is in fact to determine the criti-
cal temperature of the EA-QHAF as a function of both
� and S, and compare our theoretical results with the
available experimental data.
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There exist several real compounds whose mag-
netic behaviour [5] is well described by the Hamilto-
nian Eq. (1); most of them, despite being characterized
by a very weak easy-axis anisotropy (� ' 1), show a
�nite-temperature phase-transition. Whether the tran-
sition is due to the anisotropy-driven onset of two-
dimensional Ne�el order or to some other e�ect (such
as the inter-layer exchange interaction), is not eas-
ily detectable experimentally, but strong indications in
favour of the �rst possibility derive from the analysis of
several thermodynamic quantities. This work con�rms
such a picture, as the critical temperatures relative to
the compounds Rb2MnF4 [6] (S = 5=2, � = 0:994),
K2MnF4 [7] (S = 5=2, � = 0:995) and K2NiF4 [8]
(S = 1, � = 0:996) agree nicely with the theoretical
results for the two-dimensional EA-QHAF.

In order to study the thermodynamic and critical
behaviour of the model described by Eq. (1), we use
the pure-quantum self-consistent harmonic approxima-
tion (PQSCHA) [9]: this approximation allows one to
take into account exactly the full classical, and the
linear quantum contributions to the thermodynamics
of the system, thus approximating (one-loop level) the
non-linear pure-quantum contribution only. As the lat-
ter plays a secondary role in determining the critical
properties of models with a not-too-strong quantum
character, the PQSCHA is an ideal tool to study the
thermodynamic and critical behaviour of many quan-
tum systems, as shown by its many successful appli-

cations [10], in particular to low-dimensional magnetic
systems [11, 12].

The method, based on the path-integral formula-
tion of quantum statistical mechanics, allows one to
write statistical averages of quantum operators in the
form of classical-like expressions: These may then be
evaluated by classical (possibly numerical) techniques,
like the transfer-matrix method in one dimension, or
classical Monte Carlo simulation in two dimensions. In
greater detail, the PQSCHA expression for the statisti-
cal average of a of quantum operator Ô, for a magnetic
system N spins, reads

hÔi =
1
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Z
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N
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R
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R
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Quantum e�ects come into play via the spin and
temperature dependence of He� and Oe� : this depen-
dence relates the original quantum system to an in�nite
class of classical easy-axis models, each de�ned by dif-
ferent parameters. This means that the PQSCHA re-
duces the study of quantum statistical averages to the
evaluation of classical-like e�ective averages de�ned by
Eq. (2), for to e�ective models which are di�erent for
di�erent temperatures and spin values.

The speci�c PQSCHA expression for the e�ective
Hamiltonian of the EA-QHAF is found to be
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where, eS = S + 1=2, and t = T=J eS2 is the reduced
temperature used hereafter.

The renormalization parameters are
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are self-consistently determined by solving Eqs. (4) and
(5), with
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and
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k being the wave vector in the �rst Brillouin zone.
The temperature and spin dependent uniform term

G(t; eS) = 2J eS2(1� �2k�
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does not enter the expressions for the statistical av-
erages, but contributes to the free energy and to the
related thermodynamic quantities.

If one de�nes the e�ective exchange integral and ef-
fective anisotropy,

Je� = J �2k�
2
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Eq. (3) can be written in the form

c

He� = �
1

2
Je� eS2

X
i;d

h
�e�

�
sxi s

x

i+d + sy
i
sy
i+d

�
+ szis

z

i+d

i

+ G(t; eS) ; (7)

d

showing that the thermodynamic behaviour of the EA-
QHAF is that of a classical EA-HAF with exchange
integral Je�(t; S) and anisotropy parameter �e�(t; S).
As Je� < J and �e� > � we see that quantum 
uctua-
tions induce a softening of both the energy scale and the
anisotropy, thus inducing a higher degree of disorder in
the system.

In Fig. 1 we show je� = Je�=J as a function of t,
for di�erent spin and anisotropy values: Quantum ef-
fects are markedly stronger for lower spins, while the �-
dependence of the energy scale renormalization is seen
to be extremely weak.

Figure 1. Renormalized exchange integral je� = Je�=J vs.
t for S = 1=2, 1, and 5=2; di�erent values of the anisotropy
parameter � = 0:9, 0:5, and 0 are also shown by the dashed,
full and dotted curves, respectively.

In Fig. 2, the ratio (�e� � �)=� is plotted against
� for di�erent spin and temperature values: the quan-
tum renormalization is here seen to more strongly a�ect
the most anisotropic models, due to the fact that, when
forced to align along the easy axis, each spin reacts with
larger quantum 
uctuations perpendicular to the axis
itself.

Figure 2. Ratio (�e� � �)=� vs. � for S = 1=2, 1, and 5=2;
di�erent temperature values t = 0:001 and 0:1 are shown by
the full and dashed curves, respectively.

From Eq. (7) we see that the symmetry properties
of the original quantum Hamiltonian are preserved by
the renormalization procedure leading to the e�ective
Hamiltonian: this means that the critical behaviour of
the EA-QHAF can be directly related to that of its ef-
fective classical counterpart. In particular, if tclc (�) is
the reduced critical temperature of a classical EA-HAF
with anisotropy parameter �, then, for the quantum
system, it is

tc(S; �) =
tclc
�
�e�(tc)

�
je�(tc)

: (8)

For �xed S and �, the t dependence of je� and �e�
make Eq. (8) rather complicated. Its solution, how-
ever, can be obtained iteratively, once tclc (�) is available
as an analytical function of �. To obtain such a func-
tion we used the classical Monte Carlo data reported in
Refs. [13] and [14]: these data are well distributed over
the interval 0 � � < 1 and an accurate interpolating
function � may hence be determined. In particular we
have used

�clc (�) = a =
�
1 + b �2 + c �4 � d ln(1� �2)

�
; (9)

with a = 0:917, b = 0:068, c = 0:097, and d = 0:0636.
The logarithmic dependence upon (1 � �2) is required
in order to properly describe the logarithmic drop of
tclc for � ! 1; �clc has been set an even function of �
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to ensure the ferro- and antiferromagnetic models to
be equivalent, as required for the static behaviour of
classical magnetic systems.

Figure 3. Critical temperature tc(S; �) of the EA-QHAF
vs. � ln(1 � �) for S = 1=2, 1, 5=2, and 1 (classi-
cal model). Large symbols indicate the experimentally
determined critical temperatures for Rb2MnF4 (triangle),
K2MnF4 (square), and K2NiF4 (circle). Small symbols are
classical Monte Carlo data from Refs. [13] and [14], upwards
and downwards triangles, respectively. The dotted curve is
the interpolating function � clc (�) (see text).

In Fig. 3 the resulting solution of Eq. (8) is plotted
against � ln(1 � �) to expand the � ' 1 region, where
data for real compounds are available; the agreement
between our curves and the experimentally determined
critical temperatures is very good for both S = 1 and
S = 5=2, given also the fact that no best-�t procedure is
involved in the comparison. On the other hand, the ex-
actly known [15] critical temperature of the Ising model
tc(1=2; 0) = 0:567, not represented in Figure, is not well
reproduced in view of the large values of the renormal-
ization coeÆcients Eq. (5), and we expect our results to
be only qualitatively signi�cant in the extreme S = 1=2
quantum case. This respect, we cannot give a de�nite
answer to the problem, recently addressed in Ref. [4],
of the existence of a �nite �-interval, near the isotropic
limit � = 1, where tc(1=2; �)=0, i.e. where the EA-

QHAF shows no �nite-temperature transition.
In conclusion, we have studied the EA-QHAF in

terms of the e�ective Hamiltonian determined by the
PQSCHA method; by analyzing the critical tempera-
ture dependence on the anisotropy parameter �, the
Ising-like phase-transition characterizing the model has
been found to occur at �nite temperature 8� < 1 and
8S � 1; a qualitative indication in favour of the validity
of this result for S = 1=2 has also been obtained.
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