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The Ising model is known widely for studying equilibrium behavior. We show that the model is also
useful for studying nonequilibrium behavior in some special situations. The method of recurrence
relations has been applied to obtain the time evolution of a non-commuting spin operator. Also
obtained are the structure functions and their time dependent behavior. It is shown that the
transverse component of the static susceptibility can be obtained from the dynamic results.

I Introduction

As is well known, the Ising model has been traditionally
studied for a variety of equilibrium properties. Can it
be used to study nonequilibrium properties also? Is the
Ising model as useful perhaps for studying nonequilib-
rium behavior?

Our model consists of spin-1/2 operators, localized
at D dimensional lattice sites. The internal energy is
limited to pairwise coupling of the z-components of the
spins which are nns. This is a quantum mechanical
version of the standard Ising model.

Since the z components of spins commute with one
another, all the spin states of the energy are stationary.
Thus they do not evolve in time. This is well known as
a basic property of the Ising model.

If a transverse external �eld (better yet just in the
x-direction) is turned on momentarily, it will couple
with the x-components of the spins imparting an exter-
nal energy to the system. If the �eld is turned o�, it
is as if a state of the x-components of spins has been
\created" carrying an extra energy.

The situation that has been created is much like a
dynamical picture that is described by linear response
theory [1]. Since there is no longer an external �eld,
the averaging is done with respect to the internal en-
ergy only.

What happens now to this state of the x compo-
nents of the spins? Let us consider the spin at just one
lattice point (say at 0) since they are all equivalent by
translational invariance. Evidently [H;Sx

0 ] 6= 0. Hence

the state of this spin is nonstationary and must now
evolve in time unlike the state of Sz

0 .

The time evolution here means that this spin state
is attempting to restore itself to a stationary state by
giving o� the acquired energy to its neighboring spins
to which it is coupled by the exchange interactions. It
attempts to do so by pushing the neighboring spins into
a nonstationary state. Since the neighboring spins are
already in a stationary state, they resist accepting this
energy and return it to the source at site 0. This process
goes on inde�nitely. What happens is a localization of
the energy, trapped about site 0. This is unique to the
Ising model. In the XY model, for example, the energy
would become delocalized.

The time dependent spin-spin correlation function
will thus be periodic, never decaying. The trajectories
(see Sec. II) will be closed. The nonequilibrium behav-
ior will not be ergodic in the sense of the usual mean-
ing of that term. The localization may be described in
terms of dynamic modes of di�erent frequencies, much
like the normal modes of vibration. The complexity of
these modes evidently will increase with the coordina-
tion number.

How can one study the time dependent behavior in
this quantum Ising model? Clearly we must solve the
Heisenberg equation of motion. Since the model is Her-
mitian, this can be done most simply by the recurrence
relations method [2-4].

Ordinarily one requires static properties to obtain
dynamic behavior. It is thus of interest to note that
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for localized problems such as in this Ising model some
static properties are implied by dynamic properties as
we shall demonstrate. We shall concentrate on the 1D
model. The dynamics is basically similar to that in 1D.

II Recurrence relations method

In this section we shall brie
y review the recurrence re-
lations method for solving the Heisenberg equation of
motion if a system is Hermitian. This general method
was introduced in the early 1980s and there have been
a number of applications made since to study the time
evolution in a variety of Hermitian many-particle sys-
tems [5-16].

We are interested in obtaining the time depen-
dent behavior of a transverse spin-spin correlation func-
tion < Sx

0 (t)S
x
0 (0) >, where S�

i is the � component
(� = x, y, or z) of the spin-1/2 operator at the ith

lattice site, the brackets denote the canonical ensem-
ble average with respect to the Ising Hamiltonian H =
�J
P

(ij) S
z
i S

z
j , where (ij) denotes nn pairs in a lattice.

A more general time dependent correlation function is
the relaxation function (Sx

0 (t); S
x
0 (0)), where the inner

product means the Kubo scalar product. Note that if
t = 0, this inner product de�nes the xx component of
the susceptibility. As noted in Section I, [H;Sx

0 ] 6= 0.
Hence Sx

0 (t) = exp(iHt)Sx
0 (t = 0) exp(�iHt) 6= Sx

0 (t =
0), where we have set ~ = 1. The time evolution of the
operator Sx

0 can give a complete picture of the time de-
pendent behavior. Hence we shall concentrate on this
quantity rather than the structure functions.

Let us denote by A the dynamical variable at t = 0,
i.e., Sx

0 (t = 0) = A. Since we are interested in t � 0
only, we can de�ne A(t) = 0 if t < 0. According to
the recurrence relations method A(t) at t � 0 may be
regarded as a vector in a realized Hilbert space of d di-
mensions provided that H is Hermitian (as is for the
Ising Hamiltonian). Thus, A(t) may be given an or-
thogonal expansions in this space as

A(t) =

d�1X
k=0

ak(t)fk: (1)

Here ffkg is a complete set of basis vectors which span
the realized space. That is,

(fk; fk0) = 0 if k0 6= k; (2)

where the inner product means the Kubo scalar prod-
uct [3]. Also fak(t)g is a complete set of linearly inde-
pendent functions of time. They represent the magni-
tudes of the projection of A(t) on to the basis vectors
at time t. The Hermiticity requirement implies that
jjA(t)jj = jjA(0)jj for all t > 0, known as the Bessel
equality. It means that the magnitude or the length of
the vector is a constant of motion. This is a useful prop-
erty, e.g., for the veri�cation of the result. The space

on which we are operating is not abstract but realized.
Hence d may be �nite as we shall see in this problem.

Since there is always one degree of freedom in choos-
ing one basis vector initially, we choose f0 = A. This
choice yields boundary conditions on ak(t)'s:

ak(t = 0) =

�
1 if k = 0
0 if k = 1; 2; : : :

(3)

Observe also that the orthogonality property gives

a0(t) =
(A(t); A)

(A;A)
; (4)

sometimes known as the relaxation function, the most
basic time dependent function as we shall see.

Given Eqs. (1), (2) and (3), the recurrence relations
method rests on the following fact: If the inner product
means the Kubo scalar product, both fk and ak satisfy
certain unique recurrence relations. They are three-
term recurrence relations except the basal ones (k = 0)
which have only two terms. They are given below: For
k = 0; 1; : : : ; d� 1,

fk+1 = _fk +�kfk; (5)

�k+1ak+1(t) = � _ak(t) + ak�1(t); (6)

where �k = jjfkjj=jjfk�1jj, f1 = a�1 � 0, �0 � 1.
Here jjf jj = (f; f). These ratios of successive norms are
called recurrants . Notice that our de�nition of a norm
is nonstandard but more convenient for our purposes.
There will be no confusion by this usage. Equations (5)
and (6) are referred to in the literature as the RR1 and
RR2, respectively.

Observe that given f0, the other or higher fk's can
be obtained quite systematically. The basis vectors are
thus hierarchic, successively representing increasing di-
mensions of the realized space. The projection coeÆ-
cients cannot enjoy this property since the basal one
a0(t) is not known.

The recurrence relations methods means that Eqs.
(5) and (6), or RR1 and 2, are to be solved. Their solu-
tions are then the solutions for Eq. (1). This has been
already demonstrated in numerous examples [5-15].

There is one particularly important relation, which
follows from Eq. (6),

�1 a1(t) = � _a0(t): (7)

This is one of the basal relations, which follows from
Eq. (6) by setting k = 0. The right hand side (rhs) of
Eq. (7) denotes the relaxation function (see Eq. (4)).
The left-hand-side (lhs) of Eq. (7) denotes the response
function or 
uctuations, e.g., < A(t)A >. The connec-
tion between these two physical quantities is central to
dynamic theory, known as the 
uctuation dissipation
theorem [17].
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Let us de�ne ~ak(z) = Lak(t), where L is the Laplace
transform operator. If L is applied to Eq. (6), we ob-
tain

~a0(z) = 1=z+�1=z+�2=z+: : :+�d�1=z � 1=z+�1
~b1(z);
(8)

a continued fraction of order d � 1. The second term
on the rhs of Eq. (8), a continued fraction of order
d � 2, is known as the memory function in the gener-
alized Langevin equation [18]. There is a convolution
relation between a1 and b1.

III Application to the Ising

model

Henceforth we shall adopt the notation Sx
i = xi, S

y
i =

yi, and Sz
i = zi, which will simplify our presentation.

We caution that the subscripts on fk (k = 0; 1; 2; : : :)
are not to be confused with the subscripts on, e.g., xj .
There are no relations between the two.

In this section we will consider the Ising model in
1D (linear chain) with periodic boundary conditions
imposed. This 1D model is found to contain the basic
structure of the Ising dynamics. Hence we will show
explicit details of our calculation. Afterward we will
remark how the conclusion is generalized to higher D's.

III.1 Recurrence relations analysis for 1D
Ising model

In terms of our new notation, for 1D

H = �J
X
i

Sz
i S

z
i+1 = �J

X
i

zizi+1; (9)

f0 = A = Sx
0 = x0: (10)

Using the RR1 (Eq. (5)),

f1 = J(y0 z1 + z�1 y0): (11)

Hence,

jjf1jj =
J2

2
[(x0; x0) + 4(x0; z�1x0z1)]; (12)

�1 =
jjf1jj

jjf0jj
=

J2

2
(1 + 4	); (13)

where

	 =
(x0; z�1x0z1)

(x0; x0)
: (14)

Note that the xx component of the susceptibility �xx �
� = N (x0; x0), where N is the total number of spins in
the system. We can also calculate Eq. (13) by Kubo's
theorem [1],

jjf1jj = (f1; f1) = i��1 < [f1; f0] >=
2J

�
< z0z1 >;

(15)

where

< z0z1 >=
1

4
tanhK; (16)

where K = �J=4 and � = 1=kBT [19]. We shall later
exploit the equality between Eqs.(12) and (15) to ob-
tain an explicit form for 	, an important quantity for
the dynamic analysis.

Given �1 by Eq. (13), we are now in the position
to obtain f2 by the RR1,

f2 = _f1 +�1f0: (17)

Using Eqs. (11) and (13) in Eq. (17), we obtain

f2 = 2J2(	x0 � z�1x0z1); (18)

jjf2jj =
J2

4
(1� 16	2); (19)

and

�2 =
J2

2
(1� 4	2): (20)

Continuing this way we next look at f3 by the RR1

f3 = _f2 +�2f1: (21)

Using Eqs. (11), (18), and (20) in Eq. (21) we �nd that

f3 = 0; (22)

hence also �3 = 0..

Thus we have arrived at an essential result that the
realized Hilbert space for A(t) = x0(t) has but three di-
mensions, spanned by f0, f1, and f2 only. The shape of
the space is determined by the two recurrants �1 and
�2. The trajectory of this vector, which is constrained
to the surface of this space, is closed.

Given the two recurrants, we can now obtain a0, a1
and a2 by the RR2 (Eq. (6)) or also ~a0 by Eq. (8) and
then by inverse transform L�1. They are

a0(t) =
1

!2
(�2 +�1 cos!t); (23)

a1(t) =
sin!t

!
; (24)

a2(t) =
1

!2
(1� cos!t); (25)

where ! = J=~ (but ~ = 1), and �1 and �2 given up
to the function 	 by Eqs. (13) and (20), respectively.
Observe that Eqs. (23) to (25) satisfy the boundary
conditions (see Eq. (3)). In addition, Eqs. (23) and
(25) satisfy the basal RR2 (see Eq. (7)).

Finally we can write down the total time evolution

x0(t) = a0(t)f0 + a1(t)f1 + a2(t)f2; (26)
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where for each term on the rhs we have found an ex-
plicit expression. The validity of Eq. (26) can be fur-
ther tested through the Bessel equality jjx0(t)jj = jjx0jj.
Noting the orthogonality, we obtain

jjx0(t)jj

jjx0jj
= (a0)

2 + (a1)
2�1 + (a2)

2�1�2 = 1; (27)

where the �nal result is obtained by substituting vari-
ous identities already obtained above.

III.2 Dynamical implications

Using Eq. (26) we can obtain a number of dynami-
cal results. For example, we can immediately determine
the dynamic structure function < x0(t)x0 > as follows:
From Eq. (26)

S(t)

N
=< x0(t)x0 >=

1

4
a0(t)� iJ < z0z1 > a1(t)+

J2

2
(	� < z1z2 >)a2(t); (28)

where we have used < f1x0 >= �iJ < z0z1 > and
< f2x0 >= J2=2 (�� < z0z2 >). If we de�ne

~S(z) = LS(t) = ~R(z) + i ~I(z); (29)

the real and imaginary parts ~R and ~I (which can be
read o� from Eq. (28)) are related through Kramers-
Kronig relations [1].

As a scattering problem, the term ~I(z) would denote
the absorptive part. Thus the dynamic susceptibility
~�(z) is contained in ~I(z) which we shall prove below:
From the recurrence relations theory [10]

�1 ~a1(z) =
~�(z)

�
; (30)

where � = N (x0; x0). Now

�1 =
J2

2
(1 + 4	) =

2J

�

< z0z1 >

(x0; x0)
; (31)

where the second equality is obtained by applying the
Kubo theorem to jjf1jj (see Eq. (15)). Hence,

2J < z0z1 >= ��1(x0; x0): (32)

Observe that the lhs of the above is the static term con-
jugate to a1(t), the second term in the rhs of Eq. (28),
thus together corresponding to �(t) = L�1 ~�(z).

One can also obtain the dynamic susceptibility us-
ing Eq. (26) in the de�nition [1]: For t > 0,

�(t) = i < [x0(t); x0] >= ia1(t) < [f1; x0] >= �jjf1jja1(t);
(33)

where jjf1jj = (2J=�) < z0 z1 >= (J=2�) tanhK.
Hence,

~�(z = 0) =
�

J
jjf1jj: (34)

We shall see in Section IV that ~�(z = 0) < �T , where
�T means the isothermal susceptibility.

III.3 Higher dimensions [20]

The time evolution of x0 in higher dimensions may
be obtained in a similar manner as for 1D. The essen-
tial aspect in 1D is that the realized Hilbert space has
d = 3. As alluded in Section I, the Hilbert space dimen-
sions turn out to be simply related to the coordination
number. For the Ising model in D lattice dimensions
the Hilbert space dimensions are:

d = q + 1; (35)

where q is the coordination number [20]. Thus, for ex-
ample, in the honeycomb lattice there is but one more
basis vector than in the linear chain. The correlation
functions that enter depend on the lattice dimensions
D. Otherwise the dynamic structures are determined
solely by q alone.

If q ! 1, the model is known as the spin van der
Waals model [21]. At this limit the dynamical picture
changes drastically. As d ! 1, the time correlation
functions are no longer periodic. It has already been
found through a recurrence relations analysis that if
T > Tc

ak(t) =
tk

k!
e�ct

2

; (36)

where c > 0 is a constant.

IV Statics from Dynamics

To obtain dynamic properties one ordinarily needs
static properties as for example Eq. (26). Thus to
think that static properties can be deduced from dy-
namic properties would seem quite unusual if not likely.
But if the Hilbert space dimensionality d is �nite as in
the Ising model (see Section III), we can in fact obtain
certain static properties from dynamic results as we will
illustrate here.

Consider the xx component of the static suscepti-
bility �,

� = (
X

xi;
X

xj) = N(x0; x0): (37)

(Note that � = ��1 �T , where �T is the isothermal sus-
ceptibility.) The susceptibility has this form, di�erent
from the zz component, since [H; x0] 6= 0. The inner
product appearing in Eq. (37) is a kind of temperature
integral, i.e.,

(x0; x0) = ��1
Z �

0

< x0(�)x0 > d�; (38)

where

x0(�) = exp(�H)x0 exp(��H): (39)
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Hence if we know the \temperature" evolution of x0,
the rhs of Eq. (38) may be evaluated. But we al-
ready know the time evolution of x0 (see Eq. (26)).
If t! �i� therein,

x0(�) = a0(�i�)f0 + a1(�i�)f1 + a2(�i�)f3; (40)

where a0, a1 and a2 can be immediately obtained from
Eqs. (23), (24) and (25). If Eq. (40) is substituted in
Eq. (38), we obtain

� (x0; x0) =
1

4
I0 + i < f1x0 > I1+ < f2x0 > I2; (41)

where I0, I1 and I2 are \temperature" integrals, eas-
ily evaluated. Using < f1x0 >= �iJ < z0z1 > and
< f2x0 >= J2=2(	� < z0z2 >) (see Section III), we
obtain

� (x0; x0) =
1

8
[(1 +

sinhu

u
+ 8

(1� coshu)

u
< z0z1 >

� (1�
sinhu

u
) < z0z2 >]; (42)

where u = �J . Observe that the rhs does not con-
tain 	. Using the results < z0z1 >= 1=4 tanhu=4,
< z0z2 >= (1=4 tanhu=4)2, and after some rearrange-
ments we obtain

8 (x0; x0) = sech2K +
tanhK

K
; (43)

where K = u=4. We have recovered the known result
[22].

The above result may be used to obtain an expres-
sion for 	. From the de�nition, Eq. (13) or (32),

1 + 4	 =
2 tanhK=K

tanhK=K + sech2K
: (44)

Hence,

	 = (x0; z�1x0z1) =
1

4

1� 2K csch2K

1 + 2K csch2K
: (45)

Finally comparing with the zero-frequency limit of the
dynamic susceptibility ~�(z = 0) (see Eq. (34)), we note
the inequality [23]

�T > ~�(z = 0): (46)

In higher dimensions one can obtain, e.g., the sus-
ceptibility. But since the static correlation functions
are not known except in 2D, these new results may not
be as interesting as in 1D. However they can yield,
e.g., high temperature expansions much more simply
than the standard method [20].

We ought to mention that the static susceptibility
�(K) (see Eq. (43)) satis�es the bounds due to Falk
and Bruch [24],

tanh p=p �
�(K)

Y (K)
� 1; (47)

where

Y (K) = N < x22 >= N=4 (48)

and

p0 tanh p0jp = 2K tanhK: (49)

The lhs of Eq. (47) is known as a stronger lower bound.
Our solution, Eq. (43), suggests that the stronger lower
bound of Falk-Bruch may not be strong enough.

V Discussion

That the time evolution of x0 = Sx
0 requires a �nite

number of the basis vectors is perhaps most remark-
able. It implies dynamically that if energy is imparted
to this spin by some external perturbation, it does not
become delocalized. This energy goes back and forth
between its neighbors, describing in e�ect a periodic
motion. From the perspective of the Hilbert space, it
delineates a closed trajectory. We must conclude there-
fore that the time evolution in this case is not ergodic
in the sense of the usual meaning of this word.

If the interactions contained other terms (e.g., XX
interactions), the dynamics would change [25]. The
energy would become delocalized as there are numer-
ous other nonstationary spin states. The dimensions of
the realized Hilbert space would become in�nitely large
and the trajectory would be no longer closed, but open.
In certain static limits some exact solutions have been
found by the recurrence relations method [5-16].

We have demonstrated in some detail for 1D that
the recurrence relations method is a powerful yet sim-
ple technique for obtaining very profound descriptions
of dynamics for Hermitian systems. There are other
properties such as the memory function, subspaces, not
explored in this paper, which are of special signi�cance
to dynamical processes [26].
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