
748 Brazilian Journal of Physics, vol. 30, no. 4, December, 2000

The Ising Model as a Playground for the Study of

Wetting and Interface Behavior

D. P. Landau1, Alan M. Ferrenberg1;2, and K. Binder3

1Center for Simulational Physics, The University of Georgia,

Athens GA 30603, U.S.A.
2University computing and Networking Services,

the University of Georgia, Athens, GA 30602 U.S.A.
3Institut fuer Physik, Johannes Gutenberg Universitaet Mainz,

D-55099 Mainz, Germany

Received on 8 December, 2000

Computer simulations have played an important role in the elucidation of wetting and interface
unbinding phenomena. In particular, use of the Ising-lattice-gas model in a �lm geometry and
subject to diverse surface and bulk magnetic �elds has permitted extensive Monte Carlo simulations
to reveal new features of the phase diagrams associated with these phenomena and to provoke
new theoretical studies. The status of our knowledge about the nature of wetting and interface-
delocalization transitions which has resulted from these Ising model simulations will be summarized.

I Introduction

The study of surface wetting phenomena has a long his-

tory with much experimental and theoretical research

having been carried out to examine the nature of the re-

sultant behavior. In comparison, computer simulations

studies have been rather limited, largely because of the

technical diÆculties in dealing with realistic models of

liquids and liquid-wall interactions. A major advance

in this area was made by Nakanishi and Fisher[1] who

drew the analogy between wetting phenomena and sur-

face critical behavior in the Ising model. Consequently,

a powerful approach to the study of wetting with short

range interactions is to use an Ising-lattice-gas model

and to take advantage of all of the \technology" which

has been developed for performing Monte Carlo simu-

lation of Ising models.

Within the context of the Ising-lattice-gas model

we can best examine wetting behavior by considering a

semi-in�nite Ising model with a simple interaction be-

tween \spins" and between \spins" and the walls. The

simplest aqpproach to the realization of this geometry

on a �nite computer is to use a very thick Ising slab for

which the top and bottom surfaces are so widely sepa-

rated that each acts as thoough it is the boundary to

a semi-in�nite system. On the other hand, thin 
uid

�lms that are adsorbed on substrates or con�ned in

slit-like capillaries pose challenging fundamental ques-

tions due to a subtle interplay between �nite size and

surface phenomena. The recognition of this situation

has resulted in great activity which has attempted to

elucidate various features of these phenomena [2]-[17].

(Such systems can easily be simulated using the same

slab geometry described ealier for the study of semi-

in�nite systems by merely reducing the thicknes of the

system being simulated.) Of particular interest is the

case where the two surfaces of the 
uid �lm favor di�er-

ent phases: e.g., in the case of a 
uid near a gas-liquid

coexistence in the bulk, one wall favors high-density

liquid and the other wall prefers low-density gas. Simi-

larly, for a binary mixture (A;B) undergoing phase sep-

aration in the bulk, one surface favors an A-rich phase,

the other favors a B-rich phase. In the latter case, a

situation equivalent to such \competing walls" is also

often realized when the mixture is on a substrate and

the other surface is \free" (i.e., against air [16]). In

the following sections we will review the rich variety of

behavior that has been found using Monte Carlo stud-

ies of these Ising-lattice-gas models in con�ned geome-

tries of various kinds with di�erent interactions with

the wall(s).

II Background

The generic model for the study of wetting and inter-

face behavior is an Ising (or lattice gas) model, where

the local order parameter of the corresponding phase
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transition is a pseudospin variable si = �1 at lattice

site i. The geometry of the system plays an essential

role in the application of the model to problems in wet-

ting and interface formation. A slab geometry is used

in which periodic boundary conditions are used in both

directions parallel to the surfaces, and the top and bot-

tom have free boundary conditions. A bulk �eld may

be applied, playing the role of a chemical potential dif-

ference, or a surface �eld may act on the surfaces alone.

Restricting the spin-spin interactions to nearest neigh-

bor pairwise interactions J in the bulk and Js in the

surface planes, we �nd that the Hamiltonian for this

model is

c

H = �J
X

<i;j>

(b)
sisj � Js

X

<i;j>

(s)
sisj �H1

X

<i2n=1>

si �HD

X

<i2n=D>

si (1)

d

where the sum
P

<i;j>

(b)
runs once over all pairs of neigh-

boring spins where at least one site is not in a surface

plane, while the sum
P

<i;j>

(s)
is limited to pairs with

both sites in one of the same (two) surfaces. It is

possible to study wetting in this model by examining

very thick geometries with identical �elds at each sur-

face. The system is initially magnetized in one direc-

tion and an applied surface �eld attempts to overturn

spins at the surface. It is important, however, that

the thickness of the system is suÆciently great that

any overturned layers of spins at the two surfaces are

far from each other so that the system appears to be

semi-in�nite. The schematic wetting phase diagrams

predicted by Nakanishi and Fisher[1] are shown in Fig.1

for three di�erent strengths of surface layer coupling Js.

These show wetting transitions below Tc(1) that may

be of �rst order or second order, depending upon the

temperature, surface �eld and surface layer coupling.

In addition to the wetting transitions, pre-wetting sur-

faces are predicted to appear in the presence of a bulk

�eld. For di�erent enhancement of the surface layer

coupling the tricritical wetting transition may disap-

pear completely.

Figure 1. Schematic phase diagrams for wetting transitions in the Ising-lattice gas model. Views as a function of temperature,
�eld and surface �eld are shown for three di�erent values of the surface exchange enhancement.

A quite di�erent picture is expected for simple in-

terface unbinding studies for which competing surfaces

at lattice planes n = 1 and n = D are described by

surface �elds of opposite sign, H1 = �HD. At high

temperatures the interface is in the middle so the mean

value of M , the order parameter, is zero. For temper-

atures below the critical temperature Tcb in the bulk,

but suÆciently above the wetting transition Tw of the

corresponding semi-in�nite system (D ! 1), this ge-

ometry stabilizes a coexistence between two phases of

opposite sign of the order parameter, with a freely 
uc-

tuating interface in the middle of the �lm, and mean

order parameter is still zero. However, a phase tran-

sition appears at Tc(D) [7]-[10],[12]-[14] such that for

T < Tc(D), the interface becomes localized at one of

the walls, and then the average order parameter of

the �lm is nonzero. Since Tc(D ! 1) ! Tw rather

than Tcb, unlike the more familiar situation of non-
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competing walls where \capillary condensation" [6],[11]

occurs, this unconventional phase transition has evoked

great interest [7]-[10],[12]-[14]. Most work, however, ad-

dresses the issue of critical wetting for the correspond-

ing semi-in�nite geometry [18],[19], and the transition

in a thin �lm is also 2nd order [8],[10],[12]-[14]. Even

with short range forces, one can obtain pronounced 1st

order wetting transitions in semi-in�nite geometry by

choosing a suitable enhancement of the pairwise inter-

action near the wall[18] such as in Eq.(1). A mean

�eld theory [9] which treated the corresponding thin

�lm case suggested that 1st order interface localization

transitions would be found as the thickness varied.

It is well known that in real 
uids the long range of

the van der Waals forces exerted by walls on the 
uid

molecules has the consequence that the wetting tran-

sition is almost always 1st order [5] in a semi-in�nite

geometry. Thus, it is likely that under many circum-

stances the interface localization-delocalization transi-

tion in thin �lms is 1st order as well. Nonetheless

the rich variety of pheonmena uncovered via Monte

Carlo simulations could be valuable in describing cer-

tain physical situations[16],[20].

III Results of Monte Carlo Sim-

ulations

If very thick slabs with equal walls are studied, Monte

Carlo simulations[18] reveal wetting transitions that

generally substantiate the picture envisoned by Nakan-

ishi and Fisher. If the slab is magnetized up and a

surface �eld is applied in the opposite direction, a well

de�ned interface forms between a layer of overturned

spins at the surface and the magnetized bulk. (Far

from the surface the magnetization reaches the value

that it has in a system with periodic boundaries and is

essentially that for an in�nite system.) Pro�les, such

as those in Fig.2, show that the interface moves away

from the surface as the magnitude of the surface �eld

H1 increases. Furthermore, these pro�les show that

even when the interface is far from the surface there is

a small variation of the magnetization in the vicinity

of the surface that is described by a length scale that

is distinct from the distance from the interface to the

wall. At low temperatures the transition is 1st order,

and as the temperature is increased the magnitude of

the discontinuity at the transition decreases until a tri-

critical point is reached beyond which the transition is

2nd order. This behavior, complete with hysteresis for

the �rst order transition, is demonstrated in the insert

to Fig.2. At very low temperatures, i.e., below the

roughening transition, layering occurs; and as the sur-

face �eld is varied, the thickness of the �lm increases

one layer at a time instead of via a single wetting tran-

sition. We will not discuss this layering further except

to say that there are still interesting questions to be

answered regarding the manner in which the layering

gives way to wetting.

Figure 2. Pro�les of magnetization in a thick Ising �lm as a
function of distance from the surface for a 128 � 128 � 160
with Js=J = 1:33.. The inset shows the variation of the sur-
face layer magnetization with surface �eld for two di�erent
values of enhanced surface coupling.

The nature of the critical behavior associated with

the 2nd order wetting transition had been predicted

by a renormalization group treatment[21] to be non-

universal. The quantities that enter the dimensionless

parameter that was expected to control the critical be-

havior were all measureable for the Ising model so a

�rm prediction was possible. Surprisingly, when data

from simulations on systems covering a wide range of

sizes were carefully analyzed for both the surface layer

magnetization and the surface layer susceptibility, the

conclusion was that the critical behavior was indeed

mean �eld like! This �nding inspired a number of new

theoretical studies culminating in the introduction, by

Boulter and Parry[23], of a second length into the the-

ory that described the variation of the magnetization

in the vicinity of the wall with the result that the the-

oretical prediction was modi�ed. Although we do not

yet have a �nal resolution, it is clear that in this case

simulation was instrumental in encouraging additional

theoretical work with substantial new physics resulting

from the e�ort.
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Figure 3. Schematic view of the comparison between capillary condensation and interface delocatization in a thin slit
geometry.

Wetting behavior in thin capillaries is quite di�erent

from the scenario just described for thick systems, and a

schematic view of the two possibile kinds of characteris-

tic behavior is shown in Fig.3. In thin capillaries with

equal walls the entire volume �lls up with 
uid more

easily than wetting would occur in the semi-in�nite sys-

tem, and capillary condensation results. Monte Carlo

simulations[22] showed that the qualitative features of

the phase diagram remain similar to that for the bulk,

but the entire boundary is shifted in chemical potential-

�eld space. The resultant phase diagram, shown in

Fig. 4, has no trace of any unusual behavior at the wet-

ting transition in thick systems, but the critical temper-

ature is depressed relative to that in the in�nite system.

This means, of course, that the density-temperature

(i.e., magnetization-temperature) phase diagram also

acquires an asymmetry, and the critical point is shifted

away from 50% density. Thus, in the end, the capillary

condensation in thin slits is relatively straightforward

to understand.

In thin capillaries with opposite walls the Ising-

lattice-gas model provides a laboratory for the study

of interesting interface behavior. In this geometry the

phase transition occuring in the bulk at a temperature

Tcb is supressed and instead an interface forms between

coexisting phases that are determined by the surface

�elds. Typical pro�les, such as those shown in Fig.5

for L = 12, reveal that above the transition when the

interface is in the center of the �lm, the overall mag-

netization is zero. At a temperature Tc (D) < Tcb the

interface becomes bound to one wall or the other and

an interface localization transition takes place. The

results of the simulations show that the transition is

shifted below the wetting transition in a semi-in�nite

system and belongs to the universality class of the two

dimensional Ising model. In addition, between this

transition and Tcb the maximum value of the layer sus-

ceptibility varies exponentially with the thickness D of

the �lm and is governed by a new length l that char-

acterizes the interface. In contradiction to theoretical
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expectations[5], l is di�erent than the bulk correlation

length.

Figure 4. Phase boundary for capillary condensation in
a capillary of thickness D = 16 and wall potential H1 =
�0:75. The arrows show the location of the wetting transi-
tion in the bulk Tw and the bulk critical temperature Tcb.

Figure 5. Pro�les of the layer magnetization plotted vs layer
number for a thin �lm (L=12) with unlike walls. On the
left are pro�les for T > Tc(D); and on the right are pro�les
for T < Tc(D) with the system initially magnetized with all
spins up or all spins down. Curves are only a guide to the
eye.

To add still further to the range of intriguing be-

havior that can occur when the capillary has unlike

walls, we turn to the case when the surface coupling

is enhanced. Then, as the thickness of the capillary

is modi�ed, the transition can change from 1st order

to 2nd order[29]. Using Monte Carlo simulations with

well over 106MCS per data point we examined the be-

havior for several values of Js � 1:3J , where the wet-

ting transition at the surface of a semi-in�nite system

would be very strongly �rst order at J=kBT = 0:25.

In a thin �lm we found that the tricritical point, i.e.,

the ratio Jst=J where the transition changes from 2nd

order to 1st order, is enhanced. This also implies that

at a �xed ratio of Js=J there might be a 2nd order

transition for thin �lms and a 1st order transition for

thick �lms; i.e., the order of the interface localization-

delocalization transition can be modi�ed by changing

the thickness of the �lm. Thus, a tricritical point oc-

curs at �xed Js=J at some critical thickness Dt. Sim-

ulations were limited to very thin �lms (D = 4; 6; 8)

since for thick �lms, slow interfacial 
uctuations made

runs impossibly long. Multiple quantities, such as the

average order parameter < jM j > and the logarithmic

derivative of < jM j >;were examined. For Js=J = 1:3

and D = 6 the variation of the order parameter near

Kc = J=kBTc is very smooth and strongly rounded by

�nite size: The data have exactly the same features

as corresponding data for Js=J = 1 [13],[14] and all

related evidence [26] (e.g. pro�les of order parameter,

energy etc. across the �lm) support the conclusion that

the transition is still 2nd order (although it is 1st or-

der for D ! 1 [18]). For Js=J = 1:5, however, a

steep variation of < jM j > with K indicates that this

is already a rounded 1st order transition. This inter-

pretation is supported by the positions of the maxima

of other quantities that have characteristic divergencies

at the transition. Monte Carlo data also showed that

the tricritical point could also be reached by varying

the thickness D while holding the surface coupling con-

stant. (This approach is more likely to be realized in

an experiment.) For example, a �nite size scaling anal-

ysis of the data for the logarithmic derivative of jM j

shows that the positions of the peaks are compatible

with the characteristic behavior Kmax(L) �Kc / L�2

for 1st order transitions [27] while in the 2nd order case

Kmax(L)�Kc / L�1 [13],[14] (at a 2nd order transition

the extrapolation should vary as L�1=� , where � = 1

for the 2-d Ising-like delocalization transition). Lee

and Kosterlitz' [28] analysis of the free energy barrier

to determine the order of a phase transition produces

the same result. For Js=J = 1:45 the energy distribu-

tion for D = 4 shows only a single peak for all lattice

sizes (i.e., the transition is 2nd order), but for D = 8

the distribution is double peaked and the resulting free

energy barrier increases rapidly with L (i.e., the transi-

tion is strongly 1st order). Additional strong evidence

for the change of the order of the transition comes from

a study of the variation of the maxima of the speci�c

heat, susceptibility, as well as the logarithmic derivative

of jM j with L.

IV Conclusion

In conclusion, we have presented evidence that the

Ising-lattice gas model provides the opportunity to in-

vestigate a rich variety of behavior involving wetting

and interfaces. Data for thick �lms revealed the sur-
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prising result that critical wetting is mean-�eld in na-

ture, in contradiction to the prevailing theory. This

simulational work prompted further theoretical e�ort

which revised the prevailing view by observing that a

potentially critical element had been left out of the the-

ory. In thin Ising �lms with opposing walls one can

change the order of the transition from 2nd to 1st order

by increasing the thickness, keeping the surface �elds

and exchange couplings near the wall constant. The oc-

curence of such a tricritical point can be inferred from

the mean �eld treatment of Swift et al [9], but Monte

Carlo simulations provide evidence that this new type

of tricritical point persists beyond mean �eld theory.

The critical behavior of this special tricritical point still

remains to be investigated [26]. It is also interesting to

ask which features of our results will carry over to real

systems. For liquid-gas transitions, one expects that

the van der Waals forces imply �rst order wetting [5],

and it is not clear whether second order interface lo-

calization transitions become possible in a thin �lm ge-

ometry. On the other hand, for \symmetrical" binary

polymer mixtures it is conceivable that the di�erence

between the van der Waals forces of the two species is

very small, and an e�ectively short-range interaction

dominates [16]. Recent experiments on interfaces in

con�ned geometry are consistent with such a picture,

but experimental evidence for an interface localization

transition is still lacking. Clearly, more experiments on

related systems are needed to resolve these issues.
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