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Instabilities of long-range order are observed in samples of the d = 3 dilute uniaxial antiferromagnet
FexZn1�xF2 with x = 0:56 and 0.41, under strong random �elds. The onset of instability, mapped
in the (H;T ) phase diagrams of the samples, reveals that the H, T and x dependence of the e�ective
random �eld is in qualitative agreement with a mean-�eld expression predicted in the weak-�eld
limit for site diluted antiferromagnets.

The in
uence of random impurities and random

�elds on the phases and phase transitions of Ising sys-

tems has attracted considerable attention, both from

the theoretical and experimental sides [1]. More than

two decades ago, energetic arguments of domain forma-

tion were used by Imry and Ma to demonstrate [2] that

long-range order (LRO) is not destroyed by arbitrarily

weak random �elds in more than d = 2 dimensions in

Ising systems. A rigorous proof of this latter assertion

was established years later [3]. If the magnitude of the

random �eld exceeds the �eld of neighboring spins, it

is expected that the spins follow the random �eld, de-

stroying LRO. Experimentalists have been attracted to

the random �eld Ising model (RFIM) problem after the

realization [4] that the application of a uniform mag-

netic �eld (H) in a diluted antiferromagnet generates

local random staggered �elds.

In this paper we explore the instability of LRO

in samples of the highly anisotropic diluted antifer-

romagnet FexZn1�xF2, with x = 0.56 and x = 0.41,

due the presence of strong local random �elds. The

magnetization measurements have been performed in

a wide range of magnetic �elds 0 < H < 18T , ap-

plied parallel to the easy magnetization direction, in

the T range 2 < T < 50K: Measurements were made

using a vibrating sample magnetometer adapted to a

20 Tesla superconducting magnet at the National High

Magnetic Field Laboratory, Los Alamos Facility. The

FexZn1�xF2 system is recognized as the best experi-

mental realization of the random-�eld Ising model in

three dimensions (d = 3). Neutron scattering studies

performed in samples of FexZn1�xF2 with Fe concen-

trations in the range 0:3�0:9, have shown that the AF

LRO, e�ective at H = 0 for T < TN(TN is the N�eel

temperature), is stable against the presence of weak

random �elds. In other words, when a weak external

�eld is applied parallel to the easy axis of the com-

pound, AF LRO is maintained. The instability of AF

LRO, characterized here by the time dependence of the

magnetization, occurs beyond a given magnitude of the

local random �elds. For both samples, the line mark-

ing onset of this instability in the (H;T ) plane reveals

that the magnitude of the e�ective random �eld is in

qualitative agreement with Cardy's expression[5], ob-

tained by a mean-�eld approach in a site- disordered

Ising antiferromagnet, in the weak-�eld limit:

< h2RF >a�=
x(1� x)[TMF

N (0)=T ]2(H=�BT )
2

[1� �MF (x)=T ]2
; (1)

where x is the concentration of magnetic ions, �B is

Boltzmann's constant, �MF
N is the mean-�eld N�eel tem-
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perature andMF is the mean-�eld Curie-Weiss param-

eter (see Ref.5).

For Fe0:56Zn0:44F2, the time dependencies of the

magnetization, normalized by the initial magnetization

M0 � M(t = 0), are displayed for increasing �eld (FI)

in Figs. 1 and 2 for T = 10K and 4K, respectively. In

the FI procedure, the sample is �rst zero-�eld cooled

(ZFC) from the paramagnetic phase to a given T < TN .

Then the �eld is increased to the value at which the

time dependence is measured. For T = 10K, our mag-

netization data indicates the stability of the AF LRO,

at least for H � 10T . For higher values of H , the local

random �elds become stronger than the �eld produced

by the neighboring spins, inducing a time dependent

spin 
ipping, characterized as a glassy phase in earlier

works [6-9]. The rate of 
ipping is strongly dependent

on the magnitude of the random �elds. This rate, how-

ever, decreases in the proximity of the paramagnetic

phase, as illustrated in Fig. 1, by comparing the curve

for H = 17K with the ones at lower �elds. The inset

shows the �eld dependence of the initial magnetization

M0. A similar behavior is found in the M=M0 versus t

curves displayed in Fig. 2, for T = 4K. In this case,

however, AF LRO is no longer stable at H = 10T , con-

trasting with the behavior at the same value of H for

T = 10K: This re
ects the higher magnitude of the lo-

cal random �elds at lower temperatures, for �xed x and

T , as theoretically predicted by equation (1). The time

dependencies studied in Figs. 1 and 2 are mapped by

the asterisks in the phase diagram of Fig. 3. The criti-

cal, Tc(H), and equilibrium, Teq(H), phase boundaries

are represented by full and dashed lines, respectively.

These boundaries have been obtained by M vs T and

MvsH cycles, as reported in Ref. 9. Tc(H) was deter-

mined in the high-H experiments by the �eld position of

the peak in the �eld derivative ofMFI (dMFI=dH); for

each value of T (see data with vertical error bars). In

the low-H regime, due to the shape of the (H;T ) phase

diagram, it is convenient to determine Tc(H) from the

position of the peaks in dMFH=dT; which appear at low

H when the sample is heated in the presence of a �xed

H , after it has been zero-�eld cooled from the paramag-

netic phase to a given T < TN (see data with horizontal

error bars). These curves are not shown here (see Refs.

8 and 9), but it is noteworthy that the positions of

the dMFI=dH peaks in the (H;T ) phase diagrams of

Fig. 3 correlate quite well with the customary peaks in

dMFH=dT . Similarly, the upper equilibrium boundary,

Hu
eq(T ), is in good correlation with the previously de-

�ned Teq(H) for the low-H experiments. We would like

to stress here the signi�cance of the novel lower equi-

librium boundary, H l
eq(T ): For H < H l

eq ; �M = 0 and

the system recovers its AF minimum-energy con�gu-

ration by decreasing H from the paramagnetic phase.

The H l
eq(T ) boundary tends to reach the H = 0 line at

a temperature T �(x). For T < T �, the H = 0 AF LRO

is not recovered by FD in the time scale of the experi-

ments. On the other hand by increasing T , the H l
eq(T )

line approaches a singular region in the (H;T ) phase di-

agram. A multicritical (or possibly end-critical) point

separates a low-H line of phase transitions, governed

by the universal REIM-RFIM crossover scaling, from a

pseudo-critical boundary at high-H , where strong ran-

dom �elds induce a glassy behavior.[7]

Figure 1. Time dependence of the magnetization M(t)
following the FI procedure (see text) at T = 10K up to
H = 10T , 14T , 16 T and 17 T . The measurement begins as
soon as the �eld reaches the above values. The magnetiza-
tion is normalized by the initial value M0, which is plotted
versus H in the inset.

Figure 2. The same as in Fig. 1, but for T = 4K and
H = 10T , 15T and 18 T .
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Figure 3. Critical and irreversibility phase boundaries in
Fe0:56Zn0:40F2. Full symbols, with horizontal (or vertical)
error bars, represent Tc(H) originating in the position of
the peaks in the MvsH (or MvsT ) plots (see Ref. 9) for
zero-�eld-cooled Fe0:56Zn0:44F2. The asterisks represent the
positions where time dependence of the magnetization were
presented in Figs. 1 and 2.

Figure 4. Time dependence of the magnetization M(t) fol-
lowing the FI procedure in T = 10:0K up to H = 2:5T ,
5.0 T and 7.5 T and by �eld decreasing (FD) the �eld from
the paramagnetic phase to H = 5:0T and 2.5 T . The mag-
netization is normalized by the initial value M0, which is
plotted versus H in the inset.

From equation (1), the magnitude of the random

�eld increases as x decreases, for �xed T and H . So,

it is expected that for Fe0:41Zn0:59F2 the random-�eld

induced spin 
ipping occurs for lower H , for the same

values of T used in the study of Fe0:56Zn0:44F2. This

corresponds, indeed, to the scenario of the time depen-

dencies of Fe0:41Zn0:59F2, depicted in Fig. 4 and 5, for

T = 10K and 4K, respectively. The �eld dependence

of the initial magnetization M0 is plotted in the inset

of Fig. 4, for T = 10K and in Fig. 6, for T = 4K: For

T = 10K, the time dependence of M is e�ective

Figure 5. The same as in Fig. 4 but for T = 4:0K and
several values of H, both FI and FD procedures.

Figure 6. The initial magnetization M0 plotted versus H
for T = 4:0K in the FI and FD procedures.

Figure 7. Critical (full symbols) and irreversibility (open
symbols) phase boundaries in Fe0:41Zn0:59F2. The aster-
isks represent the positions where time dependence of the
magnetization are presented in Figs. 4 and 5.
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for �eld as low as H = 2:5T , in the FI procedure. The

relaxation rate increases for H = 5T for the same T .

The (H;T ) position of the latter point lies a little above

the virtual line of the destroyed AF-paramagnetic tran-

sition Tc(H), as seen in the phase diagram of Fig. 7.

For H = 7:5T the system is stable in the paramagnetic

phase. The time dependencies of M when the �eld is

decreased (FD) from the paramagnetic phase are also

presented in Fig. 4, for the same T values. In the latter

procedure the relaxation rates are dramatically di�er-

ent from the ones observed in the FI protocol, as easily

seen comparing, for instance, the FI and FD curves for

Fe0:41Zn0:59F2 at H = 2:5T in Fig. 4.

In conclusion, we presented magnetization measure-

ments on the diluted antiferromagnets Fe0:41Zn0:59F2

and Fe0:56Zn0:44F2, which show that the instability

of AF LRO, observed in the upper part of the phase

diagrams of these samples, shows relaxation e�ects

strongly dependent on the magnitude of the local ran-

dom �elds, and also on the �eld and temperature cy-

cling protocols. To the best of the our knowledge, a

theoretical study of the dynamics in diluted antiferro-

magnets submitted to strong local random �elds is still

lacking. So, a comparison of the relaxation e�ects pre-

sented in this work with theoretical results is not feasi-

ble at the moment. We hope that the presented results

motivate further theoretical and experimental e�orts on

this subject.
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