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Recent studies of the e�ects of geometric 
uctuations, associated with aperiodic exchange inter-
actions, on the critical behavior of ferromagnetic Ising models on hierarchical lattices, were the
motivation to investigate some properties of two-letter sequences generated by uniform substitu-
tions. We rigorously identify the substitutions that generate either periodic or aperiodic (almost
periodic or not) sequences. For instance, two known substitutions, the Thue-Morse and the period-
doubling rules, generate aperiodic sequences of almost periodic type.

I Introduction

The aperiodic character of structures such as sequences
generated by substitution rules de�ned on a �nite al-
phabet has been investigated by several authors in re-
cent years. In the realm of physics, this is related to the
discovery, in the late 1980's, of new structures called
quasicrystals [1]. There are several theoretical stud-
ies of aperiodic structures associated with in�nite se-
quences generated by successive juxtapositions of let-
ters of a �nite alphabet according to some substitu-
tional rule. For example, the Fibonacci rule,

� :

�
a 7! ab
b 7! a

(1)

generates an in�nite sequence by successive applications
of the rule on the letter a,

a! �(a) = ab! �2(a) = �(a)�(b) =

= aba! �3(a) = abaab! �4(a) = abaababa : : : (2)

Although these substitutional sequences have been
studied by mathematicians mainly, in the context of
algebra [2] and dynamical systems [3], there is also a
close link between substitutional sequences and physi-
cal systems [4]. For example, they have been used to

construct aperiodic electronic systems and spin models
whose exchange couplings Ji are de�ned by a substi-
tution rule. Consider a one-dimensional Ising model,
with nearest-neighbor exchange interactions Ja and Jb,
according to the rule (1). In the thermodynamic limit,
this \Fibonacci chain" corresponds to the kth power
of �(a), from Eq. (2), for k ! 1. It is certainly in-
teresting to investigate the role of aperiodicity on the
properties of these model systems.

The e�ects of geometric 
uctuations on the critical
behavior of spin models with aperiodic exchange inter-
actions is an important topic of equilibrium statistical
mechanics. There is a heuristic criterion, proposed by
Luck [6], in analogy with the Harris criterion for fer-
romagnetic disordered systems [5], to account for the
relevance of the geometric 
uctuations. According to
Luck's criterion, if the exchange interactions of a ferro-
magnetic Ising model obey a substitution rule, the crit-
ical behavior changes with respect to the pure periodic
model (for Ja = Jb) if the 
uctuations are unbounded.
These 
uctuations are related to the di�erence between
the number of occurrences of a certain letter on a �nite
generation and the expected number if we consider the
frequency in the in�nite word [7].

Some recent publications [8] refer to a ferromag-
netic Ising model on a generalized diamond hierarchi-
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cal lattice (DHL) [9]. The exchange interactions along
the branches of the DHL lattice are chosen according
to suitable binary (two-letter) substitutional rules (see
Figure 1). Note that, to preserve the topology of the
DHL (each branch has the same number of bonds `),
the substitutions have to be uniform (each letter gen-
erates words of the same length `).

a

a

b

b

a

a

b

b

a

m bonds

l-m bonds

Q branches

Figure 1. The de
ation rule associated with a substitu-
tion (in
ation) rule that transforms the coupling constant

of type a such that a 7! a
m
b
`�m in a generalized (` bonds

by branch) diamond hierarchical lattice (DHL). This rule is
applied for each branch of the DHL.

Some of these uniform binary substitutions generate
aperiodic sequences (which may or may not be almost
periodic). Also, there are some of those substitutions
that generate just periodic sequences. In this work, we
identify classes of periodic, almost periodic, and ape-
riodic in�nite sequences, associated with these substi-
tutions, and present some rigorous results related to
their periodic/aperiodic character. Most of these re-
sults may be extended to some classes of substitution
with any number of letters. Section II presents the ba-
sic concepts and results of the theory. Our results and
proofs related to periodicity, aperiodicity, and almost
periodicity of the sequences are presented in Section
III. Finally, in Section IV we present some concluding
remarks and a discussion of some important aspects of
these results for the analysis of spin models.

II Basic Concepts

Most of the concepts presented in this Section can be
found in the works of Que�elec [3] and Cobham [10].

Let A be a �nite set, called the alphabet, whose
elements, x, are letters. The juxtaposition of ` let-
ters, not necessarily di�erent, is called a �nite word
of length `. An in�nite (right) word results from the
juxtaposition of an in�nite number of letters with an
initial one (on the left). The set of all �nite words

with letters in A is called A�; we note by AN the

set of all in�nite words, since an element of AN is
an application of the set of the natural numbers N

in A, i.e., a mathematical sequence. For A = fa; bg,

we have A� = fa; ab; aa; bb; aab; abb; : : :g and AN =
fabaaa : : : ; aabba : : : ; : : :g

De�nition II.1 A substitution � on an alphabet A is
a map

� : A ! A� (3)

x 7! �(x) ;

which associates with each letter x, in A, a �nite word
�(x) in A�.

De�nition II.1.1A substitution � is binary if the num-
ber of letters of A, jAj, is 2.

De�nition II.1.2 A substitution � is uniform of mod-
ulus ` if, to every x in A, the number of letters in �(x)
is `, in symbols, j�(x)j = `.

De�nition II.1.3 A uniform substitution � is modular
if �(x) = X , for all x in A and X is a �nite word.

De�nition II.1.4 A uniform binary substitution � is
alternated if �(a) = abab : : : a or abab : : : b and
�(b) = baba : : : b or baba : : : a, respectively.

The Fibonacci substitution (1) is binary but is not
uniform. The Rudin-Shapiro substitution is uniform
but is not binary, since it is de�ned on A = fa; b; c; dg
by �: a 7! ac, b 7! dc, c 7! ab, d 7! db. An example of
a class of uniform binary substitutions of modulus ` is
given by

� : A ! A� (4)

a 7! amb`�m ;

b 7! bqa`�q ;

where ` > 1 and m 6= 0 or q 6= 0. The Thue-Morse
and period-doubling substitutions are particular cases
of (4) with ` = 2, where m = q = 1 and m = 1, q = 0,
respectively.

It is obvious that a substitution � : A ! A�

may be extended by concatenation to � : A� ! A�

and to � : AN ! AN. By concatenation we mean
�(a1a2 : : : aj) = �(a1)�(a2) : : : �(aj) and �(a1a2 : : :) =
�(a1)�(a2) : : : . By successive applications of a substi-
tution �, starting, for instance, from letter a, it is gen-
erated a sequence of �nite words (a; �(a); �2(a); : : :); we
may observe this process for the Fibonacci substitution
in (2).

De�nition II.2 The substitution matrixM associated
with the substitution � : A ! A� is an n � n ma-
trix, where n = jAj, whose elements mij are the num-
ber of occurrences of letter xi in �(xj), in symbols
mij = j�(xj)jxi

.
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For the class of substitutions (4), we have

M =

�
m `� q

`�m q

�
; (5)

whose eigenvalues are the integer values: �1 = ` and
�2 = m + q � `. We may observe that substitutions
�, such that a 7! aY , b 7! W with jY ja = m � 1,
jY jb = `� (m� 1), jW jb = q and jW ja = `� q have the
same associated matrix M. For example, the modular
binary substitution (a 7! ab , b 7! ab) has the same
matrix of Thue-Morse substitution whose eigenvalues
are �1 = 2 and �2 = 0.

It is easy to show that the eigenvalues of the as-
sociated matrix of any modular binary substitution of
modulus ` are �1 = ` and �2 = 0, since the matrix
elements are such that m11 = m12 and m21 = m22 .
Note that, even in case jX jb = 0 (or jX ja = 0), we have
�1 = ` and �2 = 0.

Analogously, the eigenvalues of the associated ma-
trix of an alternated substitution of odd modulus ` are
�1 = ` and �2 = 1, since the matrix elements are such
that m11 = m22 and m12 = m21 = m11 � 1.

De�nition II.2.1 A substitution matrix M is prim-
itive if there exists a positive integer r such that all
elements of Mr are strictly positive..

De�nition II.3 Let � be a substitution; an element �

of AN is a substitution sequence of � if � is a �xed
point of �, i. e., �(�) = �.

Remark I If � is a substitution sequence, it is easy to
demonstrate that

�(�1) = �1Y;

where �1 means the �rst letter of � and Y is a �nite
word.

Reciprocally, for successive applications of � start-
ing, for instance, from a, if the �rst letter of �(a) is
a, that is, �(a)j1 = a, then �k+1(a) = �k(a)W , for all
k, where W is a �nite word (see (2) for a Fibonacci
rule). In this sense, we say that the sequence of pow-
ers �k(a) is self-similar. This property guarantees, in
case j�(a)j > 1, that the substitution � determines a
substitution sequence � that may be denoted by the
symbol

� = lim
k!1

�k(a)

and, obviously, �1 = a.

De�nition II.3.1 A substitution sequence is periodic
with no radical if it is generated by in�nite successive
occurrences of a block T (which is called period) with
length t = jT j (� = TTTTT : : :). If the periodic substi-
tution sequence � has a radical R, it may be expressed

by � = RTTT : : :. A substitution is aperiodic if it is
non-periodic.

De�nition II.3.2 A substitution sequence is almost
periodic if, for all block (�nite word) Y , occurring in �,
there exists, at least, a positive integer n such that Y
occurs in each word of length n contained in �.

In other words, the distance between any two suc-
cessive occurrences of any block is limited. For a pe-
riodic sequence, this distance is zero; so, we may say
that, in a certain sense, periodic sequences are almost
periodic as well.

Theorem II.1 Let be a uniform substitution � that
generates a substitution sequence �. If its substitution
matrix M is primitive, so � is almost periodic.

The demonstration of this theorem is presented in
reference [10]. This result may be generalized for a non-
uniform substitution [11].

III Results

In this Section, we analyze substitutions � that are bi-
nary (A = fa; bg), uniform (j�(a)j = j�(b)j), and de-
termine a substitution sequence �, i. e., �(�) = �;
thus the �rst letter, �1, in the sequence �, is such that
�(�1) = �1Y (see Remark I). We now assume that this
�rst letter is a. Therefore, we write

� : A ! A� (6)

a 7! aY ;

b 7! W ;

with jY j = `� 1, jW j = ` and ` > 1.

Most of the results of this section are based on the
following general de�nition:

DEFINITION III.1 Let � 2 AN, � = �1�2 : : :;
the letter ak 2 A = fa1; a2; : : :g is co-�nal in � if, for
any natural number r, there exists a natural number s,
greater than r, such that ak = �s. We write ak 2 1.

We may notice that, if a letter ak is co-�nal in �, it
appears in�nitely often in �.

III.1 Periodicity

We have two trivial periodic substitution sequences
determined by (6), that will be called of simple period;
these are related to the pure case of the spin model.
Let us prove the following theorem.

THEOREM III.1 If one of the two letters of the al-
phabet A = fa; bg is not co-�nal in �, then the sequence
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� is periodic, with period T such that jT j = 1, and it
presents only two types:

(I) � = aaaa : : :, if b is not co-�nal in �;

(II) � = abbb : : :, if a is not co-�nal in �.

Demonstration: Let us suppose that b =2 1: since
� is in�nite, then a 2 1; if b 2 Y , inasmuch as
�(a) = aY , then b 2 1. So, we conclude that b =2 Y ;
since � = limk!1 �k(a), it follows that � = aaa : : :.

Now, let us suppose that a =2 1. Then, analogously,
b 2 1. If a 2 W , then a 2 1, because �(b) = W ; so
a =2 W . If a 2 Y , since �(a) = aY , �2(a) = aY �(Y ),
and so on, we would have a 2 1. So, we conclude that
a =2 Y , and it is easy to see that � = abbbb : : :.

2

The next theorem is a cornerstone to many results
that follow.

THEOREM III.2 Let � be a periodic substitution
sequence; the �rst letter a is co-�nal in � if, and only
if, � does not have radical.

Demonstration: Suppose that � = RTTTT : : : and
jT j = t. Since a is co-�nal in � and � is periodic, then
a 2 T . Take a 2 T for a �xed block T ; it is pos-
sible to consider a �nite number n of iterations such
that the block generated from a is �n(a) = RTX where
X is a �nite word. But �n(a) is also in the periodic
part of �; so R also occurs in the periodic part of �.
If we count t = jT 0j letters from the �rst a, we have
� = T 0T 0T 0T 0 : : : , in other words, � does not have a
radical.

For the converse, if � does not have radical, it is
periodic from the �rst letter a of the sequence and it is
obvious that a is co-�nal in � since � = TTTT : : : .

2

In view of the last results, we will always assume
that the substitution � in (6) is such that the number of
letters b in �(a) is non-zero, or, in symbols j�(a)jb > 0.
Moreover, we may also assume that both letters a and
b are co-�nal in �.

LEMMA III.1 Consider a substitution sequence �
generated by the substitution �, where both letters are
co-�nal in �. If � is modular, then � is periodic with-
out radical and the length of the period, jT j, is equal or
smaller than the modulus `. Conversely, if � is peri-
odic without radical and such that jT j = `, then � is a
modular substitution.

Demonstration: If � : a 7! X and b 7! X , then
�2(a) = �(X) = X : : :X with j�2(a)j = `2. By �nite
induction, since � = limk!1 �k(a), we conclude that
� = XXXX : : :; obviously, jT j � jX j.

For the converse, if � is periodic with no radi-
cal and jT j = `, then �(a) = T . Since both let-
ters are co-�nal in �, they belong to the period and
�2(a) = �(T ) = T : : : T . So, we also have �(b) = T ;
therefore, the substitution is modular.

2

LEMMA III.2 If the modulus ` of an alternated sub-
stitution � is odd, then the substitution sequence is pe-
riodic with period T = ab:

Demonstration: Since ` is odd, � : a 7! ab : : : a,
b 7! ba : : : b. By concatenation,

�2(a) = �(a)�(b) : : : �(a) = ab : : : aba : : : b : : : : : : ab : : : a;

and so on. Thus, by induction, we have, for any k,
�k(a) = TT : : : TT , with T = ab. Therefore, the sub-
stitution sequence is periodic with T = ab.

2

III.2 Almost periodicity

We divide the substitutions described in (6) into two
classes:

(a) jW ja = 0;
(b) jW ja > 0:

LEMMA III.3 Sequences associated with substitu-
tions of type (a) are not almost periodic.

Demonstration: Since j�k(b)j = k` for any k, it is
easy to see that there are arbitrarily large blocks in �
without the letter a. So the block Y = a may be ar-
bitrarily far from another such block. In other words,
the substitution sequence is not almost periodic.

2

LEMMA III.4 Sequences associated with substitu-
tions of type (b) are almost periodic.

Demonstration: It is easy to prove that the substi-
tution matrix is primitive. Let Y and W such that
jY ja = m � 1, jY jb = ` � (m � 1), jW jb = q and
jW ja = ` � q. Since ` > q (even when q = 0), the
matrix (5) is primitive because both elements of the
second diagonal, m21 = ` � m and m12 = ` � q, are
non-zero. Therefore, for any positive integer r, all ele-
ments ofMr are strictly positive. Using Theorem II.1,
it is proved that the sequence is almost periodic.

2

Let us generalize LEMMA III.4 for non-uniform
binary substitutions whose eigenvalues are irrational
numbers. For this purpose, consider the substitution
matrix such that a 7! aY and b 7! W , with jY ja =
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m�1, jY jb = n, jW ja = p and jW jb = q; if its eigenval-
ues are irrational numbers, it is easy to prove that p 6= 0
and n 6= 0. By an argument analogous to the previous
demonstration, M is primitive. Using the generaliza-
tion of Theorem II.1 for non-uniform substitutions, the
sequence is also almost periodic. These sequences gen-
erated by substitutions with irrational eigenvalues (as,
for example, the Fibonacci substitution) may be called
quasiperiodic since they have a strong relation to the
quasicrystals.

Aperiodicity

Using the previous results, we obtain the following
theorems about aperiodicity:

THEOREM III.3 Sequences associated with substi-
tutions (6) such that W = b` (jW ja = 0) are aperiodic.

Demonstration: Since a 2 Y and b 2 Y , a and b are
co-�nal in �. Suppose that the substitution sequence is
periodic; using THEOREM III.2, the sequence has no
radical. Since W = b`, there are blocks of b arbitrarily
large. However, the period is �nite and � = TTTT : : :,
so T is just formed by b's. Therefore, there is a contra-
diction because there exist a's in �.

2

THEOREM III.4 Sequences associated with substi-
tutions (6) such that Y = Xb and W = Za, with X
and Z 2 A�, are aperiodic.

Demonstration: Since A is �nite and the sequence
� is in�nite, some letter is co-�nal in �. If this letter
is a, the letter b is also co-�nal in � because a 7! aXb.
Analogously, for b, the letter a is also co-�nal in �, since
b 7! Za. So, the letters a and b are co-�nal in �. Sup-
pose that the sequence � is periodic. Using THEOREM
III.2, inasmuch as both letters are co-�nal in �, the se-
quence is � = TTTT : : :, where T is the period. Since
the substitution is uniform of length `, the last letter of
the period T , in a k-iteration, must be the same as the
last letter of the ` periods T generated from the period
T in the (k + 1)-iteration. However, for this class of
substitutions, �(a) = aXb and �(b) = Za. So, we have
a contradiction; thus, the sequence is aperiodic.

2

IV Discussion and Conclusions

For sequences generated by binary substitutions, the
geometric 
uctuations are related to the smallest eigen-
value �2 of the substitution matrix. For any substitu-
tion which generates a simple periodic sequence with
jT j = 1, we have �2 = 0 (this is a particular case of a
modular substitution as discussed in Section II). This
means that there are no geometric 
uctuations in the

pure model. Even for modular substitutions (whose
words �(x) have the letters a and b), �2 = 0 (see Sec-
tion II), and the substitution sequence is periodic with
T = �(a) = �(b) (see LEMMA III.1 in Section III). In
this sense, in view of Luck's criterion, the non-pure pe-
riodic models (for Ja 6= Jb), with jT j > 1, are similar
to the pure models (for Ja = Jb). Also, the aperiodic
models, generated by substitutions with the same ma-
trix as a modular one, present irrelevant geometrical

uctuations.

For alternated substitutions of odd modulus, we
have seen in Section II that �2 = 1. In LEMMA III.2,
we proved that these substitution sequences are peri-
odic. For one-dimensional ferromagnetic Ising models
whose couplings obey these substitution rules, this cor-
responds to a marginal case (�2 = 1), according to
Luck's criterion. However, for the Ising model on the
generalized DHL, we may prove (see reference [12]) that
the geometrical 
uctuations are also irrelevant. This is
also the case for aperiodic substitution sequences with
the same matrix as an alternated one of odd modulus.

Relevant 
uctuations only occur for aperiodic mod-
els. In other words, aperiodicity is a necessary condition
for changing the critical behavior. It is then necessary
to prove the aperiodic character of the substitution se-
quences. However, aperiodicity is not a suÆcient con-
dition. If the 
uctuations are bounded, the aperiodic
model belongs to the same universality class as the cor-
respondent pure model.

Analogously, for almost periodic sequences, the 
uc-
tuations may be relevant or irrelevant. However, for a
one-dimensional Ising model whose couplings are cho-
sen according to a uniform binary substitution, it is
easy to see that, if the sequence is not almost periodic
(` = q), the 
uctuations are always relevant, because
�2 = m > 1. It is interesting to point out that, for the
Ising model in the generalized DHL, this condition does
not guarantee the relevance of 
uctuations.

In reference [8], two examples of aperiodic and also
almost periodic models on hierarchical lattices are pre-
sented. While the 
uctuations are relevant for one of
them, they are irrelevant for the other one. The rele-
vance of the 
uctuations depends on the substitution
rule (through the eigenvalues of the substitution ma-
trix), on the topological characteristics of the lattice
(the results may di�er for a DHL and a one-dimensional
lattice) and also on the model (see references [7], [14]
for the analyses of the Potts model on a DHL).

In this work, we present some results, with rigorous
proofs, for uniform binary substitutions used for gen-
erating aperiodic exchange couplings of ferromagnetic
spin models on a generalized DHL. Most of our results
are based on THEOREM III.2, which is the cornerstone
of our work. We prove the periodic character of the se-
quence generated by modular substitutions (LEMMA
III.1) and by alternated substitutions of odd modulus
(LEMMA III.2). We obtain a classi�cation for almost
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periodic sequences (LEMMAS III.3 and III.4). We also
demonstrate the aperiodic character of the substitution
sequence associated with two classes of substitutions
(THEOREMS III.3 and III.4). Most of the concepts
and results of Section II are valid for alphabets with
any �nite number of letters. We conjecture that most
of our results might be generalized for substitutions of
any number of letters.
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