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We study the non relativistic limit of a model of fermions interacting through a Chern-Simons
�eld, from a perspective that resembles the Wilson Renormalization Group (WRG) approach. The
main di�erence of our approach to WRG is that instead of working in the Euclidean space, we
directly work in Minkowski space. For the nonrelativistic limit this procedure admits a more direct
interpretation of the results. As we will see, this modi�ed WRG approach solves some diÆculties,
and gives a new understanding of non relativistic models that are not clear in the usual \classical"
nonrelativistic (CNR) limit found in most text books. The method is general and our choice of the
Chern-Simons as the gauge �eld is only for the sake of simplicity of illustration.

Models of a Chern-Simons [1] �eld interacting with
non relativistic bosons [2] or fermions [3] have being
studied in the literature both for its interest in gen-
eral understanding of �eld theory by itself, as for its
application to Condensed Matter Physics [4]. The use
of these models face in general, the diÆculties of their
non renormalizability. This fact is the main reason for
the interest, on the results of Bergman and Lozano [2],
�rst in one loop, and later extended to three loops [5],
that we pass to brie
y reproduce. Their model consists
of a non-relativistic boson �eld � of mass m, with a
quartic self interaction and minimally interacting with
a Chern-Simons �eld A�, described by the Lagrangean
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By explicitly writting the many n-point Green functions
we can see that the only primitively divergent is the bo-
son 4-point function. Up to one loop, the model can be
made �nite by the choice of a renormalized coupling
constant � through the equation
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�
ln (
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where � is an ultraviolet (UV) cut-o� and M an ar-
bitrary constant (the renormalization scale) with di-
mension of mass. Their main observation is that at
the critical value, �� = j 2 e

m�
j, the one loop contribution

vanishes and no renormalization of � is needed. At this
choice of � the model regains the scale invariance that
it has at classical level, and the relative wave function
of two bosons reproduces the Aharonov-Bohm scatter-
ing amplitude [8] up to the second Bohr order. So, even
being nonrenormalizable the model results to be �nite.

The model of non relativistic fermions interacting
with the Chern-Simons �eld was also shortly discussed
in [2] and studied in more details in [3]. In this last
paper it is shown that the one loop scattering of two
fermions with spins of the same sign (in 2+1 dimensions
the spin is a pseudo-scalar that assumes the values plus
or minus 1=2 ) is �nite in one loop. This is due to the
contact interaction represented by the Pauli interaction,
that is already present in the minimal interaction of
the fermions with the gauge �eld, and that has a role
similar to the contact interaction induced by the �ne
tuned ���4 term in the model discussed in the previ-
ous paragraph. As for the scattering of two fermions of
opposite spins the Pauli interaction does not have any
role and the amplitude is divergent [3] unless a quartic
fermionic interaction of the form c(�) � ��� where
 and � represent respectively fermions with spin plus
and minus 1=2, and c is a constant that depends loga-
rithmically on the UV cut o� �. Nonrelativistic models
are in general non renormalizable and the necessity of
adding new monomials in the lagrangean at any new or-
der of approximation is not unexpected. But from the
relativistic point of view it poses a diÆculty. If this non
relativistic model is thought to be the low energy en-
ergy limit, in the way it is generally taken in most texts
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[9], of a model of relativistic Dirac fermions interacting
with a Chern-Simons �eld, this monomial should come
from a similar quartic interaction in the Dirac fermions
that is non renormalizable! We will show that this is,
in fact, a false problem. No quartic non renormalizable
self interaction is needed in the \parent" relativistic
model if a new perspective on the non relativistic limit
in �eld theory is taken. Before going to the description
of this new limit, lets us brie
y resume, in an exam-
ple, the \Classical Non Relativistic Limit", and discuss
why it is not always correct. Let us consider, in 2+1
dimension, a 2 component Dirac fermion �eld 	, that
represents a spin plus fermion and its anti-fermion, in-
teracting with an external electromagnetic �eld A�, as
described by the Lagrangean density (the gamma ma-
trices are 
0

:
= �0 ,
1

:
= i�1 and 
2

:
= i�2 where �� are

the Pauli matrices)
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The corresponding equation of motion is:�
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Let us now consider a positive energy solution 	 of this
equation. To make contact with the non relativistic de-
scription, in which the rest energy m of the particles
is not included in the solution, lets make in the above

equation of motion, the substitution
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2m
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�
: (5)

The result is the pair of one component equations�
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where �� = �1��2 , and �i = �i d
dxi

� eAi. If
we make the assumptions that: ejA0j << m and that
the momentum space components of  and � are non
null only for low momenta and energies, that is for
( j~pj; E ) << m , then the second equation can be ap-
proximately solved for � , and inserted in the �rst, giv-
ing:�
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where B = ~r^ ~A is the magnetic �eld. The one com-
ponent spinor  represent a fermion with spin plus.
The last term is the Pauli magnetic moment{magnetic
�eld interaction term. The Lagrangian density corre-
sponding to this equation of motion is the so called
Pauli Schr�odinger (PS) lagrangean of non relativistic
fermions in an external electromagnetic �eld
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d

The essential facts behind the above \classical"non rel-
ativistic limit are the asumptions on the strength of A�

and the momentum space support of the �eld 	 (this
second assumption is not meaningfull without the �rst,
since a low energy initial state of 	 can be driven to
a relativistic state by the action of a strong A� �eld ).
Suppose now that A� is not an external, controllable
�eld, but is a dynamical �eld with dynamics given by a

Maxwell or Chern-Simons term (that must be thought
as a new monomial added to the Lagrangean (3)). Let
us now consider in this new theory, the scattering of two
low energy fermions, their energy and momenta given

by
�
p0 = m+ j~pj2

2m
;�~p

�
with j~pj << m. On Fig. 1 we

draw a possible one loop contribution (among others)
to this process. The corresponding amplitude is given
by a Feynman integral in the loop momentum k�:
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Figure 1. Vacuum polarization. The double line represent
Dirac fermion propagators, and the wavy line the CS prop-
agator.

The main observation on this equation is that, even
if the process we are treating is a low energy one, the
amplitude receives contributions of high energy inter-
mediate states, represented by propagators whose dy-
namics is essentially relativistic, and so, not coming
from the Feynman rules of the non relativistic La-
grangian (9). The bigger or lower suppression of the
contribution of these high energy states to the whole in-
tegral above, depends on the dynamics of the exchanged
A� �eld. As we will explicitly see in one example below
for the Chern-Simons �eld, they e�ectively give a con-
tribution that can not be understood as coming from
the non relativistic Lagrangean (9). What about the
description of this same scattering process starting from
the non relativistic theory given by (9) with a dynam-
ical Amu �eld? The amplitude for the same process of
Fig. 1 is of the form

Aclassnonrel = � � �
Z 1

d3k
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(k0 + p0)� (~k + ~p)2=2m

!
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(11)
where now p0 = j~pj2=2m. Here also, the integral ex-
tends up to in�nity momenta. High energy intermedi-
ate states also contribute to the amplitude, even with a
bigger weight than toArelativlowenergy , as seen from the worse
UV behavior of the Pauli-Schr�odinger(PS) propagator.
It must yet be observed, that from the view point of the
Special Relativity, the PS propagator misses to repre-
sent the propagation of high energy intermediate states.
Due to these facts, some authors in Field Theory [10]
take the view of a Non Relativistic Field Theory as a
Cuto� theory. This means that instead of considering,
in a wrong way, the contribution of the high energy in-
termediate states, they prefer to decouple them from
the theory, by limiting the integration in the Feynman
integrals up to a maximal energy-momentum compat-
ible with the newtonian description provided by the
Pauli-Schr�odinger propagator. This is also a view taken
by some authors in Optics [11]. There, the typical en-
ergy involved in the scattering processes are of the order
of the ionization energy of the atoms, that is, of order
�2m, where � is the �ne structure constant and m is

the electron mass. The assumed cut o� is � = �m, of
the order of the inverse of the Bohr radius of the atom,
much bigger than the typical energies involved in op-
tical processes, but much smaller than the rest energy,
m of the electron.

We will take a slight variation of these ideas, suited
for understanding the results on non relativistic mod-
els with a CS �eld in the Coulomb Gauge, as treated
in the literature [2, 3]. We will consider a non rela-

tivistic cuto�, only in the spatial momentum ~k, of the
Feynman integrals; that is, we will calculate the Feyn-
man integrals, �rst freely integrating the k0 momentum
component up to in�nity, and then restricting the inte-
gration in j~kj to the region (0 ; �) with � chosen so that
j~pj << � << m, where ~p is a characteristic momen-
tum of the low energy process in which of interest, and
m is the mass of the fermion �eld. This choice has the
additional technical advantage of not breaking the lo-
cality in the time direction and avoiding the appearence
of higher order derivatives in time in the Lagrangean.
The way, we are proposing these Cuto� (or E�ective)
non relativistic models are related to originally rela-
tivistic ones, is akin to the ideas of the Renormaliza-
tion Group of Wilson [12]. Let us �rst outline the main
ideas in a one dimensional toy model.

Consider a relativistic �eld theory in one space-
time dimension, with dynamics given by a Lagrangian
Lrel(�). Its functional generator is given by

Z(j) =
Z
D�(p) exp

�
i

Z
dp
�Lrel(�) + j�

��
(12)

where j is an external source for the �eld �, and
D�(p) :

=
Q1

0
d�(p). Suppose that we are only inter-

ested in describing \non relativistic" processes involv-
ing external particles with momenta p smaller than a
certain value � << m, where m is the mass of the �eld
�. This limitation can be implemented in the func-
tional generator by choosing the external source to be
non null only for the momentum region (0 ; �). The �
�eld can be separated in �(p) = �(p) + h(p) where �
represents the low momenta modes and has support in
(0;�) and h has support in (�;1) and represent the
high momenta modes. The integration measure goes in
D� = D�Dh, the Lagrangean separates in Lrel(�) =
Lrel(� + h) = Lrel(�) + L2(h) + Lint(� ; h), where
L2(h) is the quadratic part of Lrel(h), and Lint (�; h)
represents the interaction terms that depend on � and
h. As j only have support in ( 0 ; �), the term j� gets
reduced to j �. The functional generator becomes

c

Z(j) =
Z
D� exp i

Z �Lrel(�) + j �
� Z Dh exp i

Z
(L2(h) + Lint(�; h)) (13)
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and can be written in the form

Z(j) =
Z
D� exp i

Z �Leffect(�;�) + j �
�

(14)

where Leffect(� ; �) = Lrel(�) + ÆL(� ; �) with

exp i
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Z
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�
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d
The e�ects of the high momenta modes h are in-

corporated in the e�ective dynamic of the low energy
ones, through the additional term ÆL(� ; �). It is the
e�ective Lagrangian, Leffect , in which the only remain-
ing free momenta modes are the non relativistic ones,
and not the original Lrel, that will give through the
approximations called Classical Non Relativistic Limit
(exempli�ed above), the same results as the original rel-
ativistic model, when calculating low energy processes.

The integration in h in (15) can in general be done
by expanding the exponential in a series of powers ofR Lint(�; h), as indicated in the second line of the last

equation above. The result will be a series of Feynman
graphs with the propagator of h in the internal lines
and the �eld � in the external legs. This means that
the integrations in the loop momenta are restricted to
the interval ( � ; 1 ). The result is in general � depen-
dent (as we will see the result of Bergman and Lozano
is an exception) giving an E�ective Lagrangian Leffect
that is dependent on �.

Let us now return to the models that we want to
treat in 2+1 dimensions. We will start with the rela-
tivistic Lagrangean
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d
where 	 (�) is a 2 component Dirac �eld representing
a fermion and anti fermion of spin plus (minus). In the
Coulomb Gauge, the CS propagator is (indices �; �; : : :
runs from 0 to 2 and indices i; j; : : : runs over 1 and 2)

���
:
= < TA�(p)A�(�p) >=

1
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���i
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~k2
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(18)

and will be represented by a wavy line. The Dirac prop-
agators of the relativistic fermions will be represented
by double straight lines. Through the same steps that
led (3) to (9) we get the Classical Non Relativistic limit
of this model
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where  (�) are anti commuting one-component �elds
representing a spin plus(minus) fermion (nonrelativis-
tic PS fermions). The fermionic PS propagator will be
represented by a single straight line. This model has
several di�erent vertices : F �FA0, F �F ~A, F �FA�A�
and F �FB, where F stands for � or  . The F �FB
vertices (Pauli interactions) give a local interaction be-
tween two fermions, mediated by the the propagator

�B
:
= < TB(k)A0(�k) >= i

�
(20)

that we will represent by an dashed straight line.
We will leave the result above for future use, and

return to the construction of the E�ective Non Rela-
tivistic Model. This will be done by calculating di�er-
ent low energy processes in the Relativistic Theory and
identifying the contributions that come from the low en-
ergy intermediate states (and are the same that come
from the Classical Non Relativistic Model (19) with a
cut o� �) and the contributions that come from high
energy intermediate states, and that must be incorpo-
rated in the E�ective Non Relativistic Model, through
new terms in the Lagrangian. We will restrict the cal-
culations to the one loop order. The sum of Feynman
graphs, written as a loop integral can be separated as

c

Arelativlowenergy =

Z 1

d3kI
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k0; ~k; w(p); ~p
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d2k
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d

In the low momenta part, both j~pj and j~kj are smaller
than � << m, and we can safely make the approxima-

tion w(~q) = m + ~q2

2m
, for both p and k. The propa-

gators and vertices collapse in the correspondent ones,
gotten from the Lagrangean 16. In the high interme-
diate energy part this approximation can be taken for
w(p) but not for w(k). As j~pj << � and the integral is

for j~kj > �, the result, H(p;�), is analytic in p and can
be expanded in a power series in p. Every term of this
expansion is a contribution to the process, that can be

represented by a (new) local term in the Lagrangean
of the E�ective Non Relativistic Model. The three pro-
cesses that require renormalization are the Vacuum Po-
larization Tensor (Fig. 2) the Fermion Self energy (Fig.
3) and the Vertex Correction (Fig. 4). The calculation,
of these quantities in covariant gauges are presented in
many papers in the literature ([13]). In the Coulomb
Gauge it was obtained in [6, 7]. The results, separating
the contributions of the low (�rst bracket) and of the
high (second bracket) intermediate momenta contribu-
tions are respectively

c
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As indicated in these formulas, all the contributions
to these functions come from the high momenta inter-
mediate states. In fact it is well known that these same

functions are zero when calculated in the classical non
relativistic model [2]. As consequence the whole con-
tribution to these functions, come only from the high
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momenta intermediate states and are independent of
the cut o� �. The e�ects of these terms in correcting
the low energy dynamics of the fermions and the CS

�eld are simulated by adding to the Lagrangean (19)
the terms

c

ÆL = �1

4

e2

6�m
F��F

�� +
e

2m

e2

2��
B � +

e

2m

e2

2��
B���: (25)

d

From (25) and (19) we see that the CS �eld becomes
a dynamical propagating �eld, the so called Maxwell-
Chern-Simons �eld ([1]). We can also see that the mag-
netic momenta of the spin plus and minus fermions are
corrected to [7]

� or� =
e

2m

�
�1 + e2

2��

�
(26)

(these results where obtained previously in the litera-
ture in covariant gauges in [13]).

Figure 2. Fermion self energy.

Figure 3. Contributions ( in the Coulomb Gauge) to the
scattering of a fermion by an external �eld A�

ext. The ac-
tion of the external �eld is represented by a cross.

Figure 4. Example of a one loop graph contributing to the
scattering of two fermions.

Let us now look at the elastic scattering of two low
energy fermions. For simplicity we will work in the Cen-
ter of Momentum Reference Frame in which the incom-
ing fermions have energy and momenta: (m + ~p2

2m
; ~p )

and (m + ~p2

2m
;� ~p ) and the outgoing fermions have

(m+
~p0
2

2m
; ~p0 ) and (m +

~p0

2m
;�~p0 ) with j~pj = j~p0j << �.

The amplitude is a function of j~pj and the angle be-

tween ~p and ~p0. We prefer to write it in terms of ~p and
the two vectors ~s

:
= ~p+ ~p0 and ~q

:
= ~p0� ~p. In Fig. 5 are

shown the non null graphs contributing to this process.

Figure 5. Non null graphs contributing to the scattering
of two Dirac fermions. On the right of the diagrams are
represented the correspondent graphs in the classical non
relativistic model.

For the scattering of one fermion of spin plus and
other of spin minus, the contributions of these graphs
are listed below, separated in two rows. In the �rst
are the contributions of the low intermediate momenta
states, A(0;�), and in the second row, the local (inde-
pendent of p) contributions of the high momenta inter-
mediate states, A(�;1).
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Some observations are in order: 1. The A(0;�)

parts of each graph ( of the Relativistic Model ) are
the same as calculated from the Classical Non Rela-
tivistic Model (19) with a cut o� �, through the graphs
drawn on Fig. 5, at the right of the corresponding rel-
ativistic ones. 2. The A(0;�) part of each graph can
depend on the non relativistic cut o� � (see 5e) but
the whole graph is independent of � ,as can be seen by
adding , for each graph, the terms of the �rst and the
second row. 3. Had we interpreted � as an UV cut o�
in the usual way, i.e. � �! 1, and A(0;�) would be
a divergent amplitude. 4. The A(�;1) non null con-
tributions of the graphs 5b and 5c could also be get by

calculating 5a, starting from the already corrected Ef-
fective Lagrangian given by (19) plus (29). 5. The non
null A(�;1) part of diagram 5e instead, is a new term
that must be incorporated in the E�ective Lagrangian
as a local quartic interaction of the form  � ���. It
must be stressed that this term comes from the integra-
tion over the high momenta intermediate states of the
Renormalizable Relativistic Model; no quartic term of
the form 	�	��� is needed in the \parent"Relativistic
Model to generate this quartic term in the E�ective Non
Relativistic Lagrangian. The E�ective Non Relativistic
Model incorporating all these terms can be written
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The calculation of the magnetic moment of the fermions, the propagator of the (Maxwell) Chern-Simons, and of
the low energy scattering of two fermions, in this theory, using a cut o� � (up to one loop), give the same results
as the calculation of the same quantities starting from the Relativistic Model (16). For example, the amplitude of
scattering of one spin plus and one spin minus fermion ( the sum of the two rows in equation (27)) gives [14]

A++ eff
nonrel

:
= A++ rel

lowene = i
e2

m�

~s ^ ~q
~q2

+
2e4

3�m�2
+

e4

4�m�2
ln

 
�4m2

~p2

!
: (29)

d

The calculation starting from the classical Non Rel-
ativistic Model, (the sum of terms in the �rst row in
equation (27)) would instead, give the \divergent" re-
sult [3]

A++ class
nonrelat = i

e2

m�

~s ^ ~q
~q2

+
e4

4�m�2
ln

 
��2

~p2

!
: (30)

These results exemplify our main point: taking the
non relativistic limit in the Lagrangian and equations
of motion (Classical Non Relativistic Limit) and then
calculating a process gives in general, a result di�erent

than, �rst calculating the same process in the relativis-
tic theory and later taking the non relativistic limit of
the result.

To �nish this talk I will turn to the problem that
motivated this study: the �nite result for Aclassnonrel got
in [2] for the scattering of two bosons and its extension
[3] to the scattering of two spin plus fermions (we will
think that the two fermions are not identical and we
don't need to anti symmetrize the amplitude with re-
spect to the outgoing particles). The non null graphs
contributing to this process are the same of Fig. 5. The
result is
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lowene(�;1)

Graph 5a =

"
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�
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~q2

#
+

"
0

#

Graph 5b =

"
0

#
+

"
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#

Graphs 5c =
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#
+

"
e4

2�m�2

#

Graph 5d =
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�2
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Graph 5e =

"
� e4

4�m�2
ln �

2

~q2

#
+

"
e4

4�m�2

 
ln 4m2

�2 � 2

! #

(31)

The di�erences of these results to the ones in (27) come from the Pauli interaction of the magnetic �eld of each
fermion with the magnetic moment of the other fermion. The e�ects of these interactions cancel in the scattering
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of a spin plus and a spin minus fermion and add in the case of two spin plus fermions. The results for Aeffect and
Aclassnonrel are now

A�+ eff
nonrel

:
= A�+ rel

lowene =
e2

m�

 
1 + i

~s ^ ~q
~q2

!
+

e4

6�m�2
(32)

A�+ class
nonrelat =

e2

m�

 
1 + i

~s ^ ~q
~q2

!
: (33)

d

The unexpected fact that this last result is �nite, in-
dependent of �, is in the literature [2] related to the
preservation at quantum level, of the scale invariance
that the classical non relativistic model presents. In
the model of bosons interacting with the CS �eld this
only happens for the special value of the quartic self
interaction discussed in the introduction. For fermions
the same fact is provided by the Pauli interaction which
already appear in the minimal interaction with the CS
�eld; no �ne tuning of coupling constants is needed.
We here showed another aspect of this independence
of �. Unusually, not only Arelatlowen is independent of �:
their high and low momenta intermediate energy con-
tributions are separately independents of �. So the dif-
ference of the amplitudes got from the Classical or the
E�ective Non Relativistic Models is a �nite constant
independent of �. If the fermions are identical we must
anti symmetrize the amplitudes (32) and (33) in the
outgoing particles. In this case no di�erence at all ap-
pears in the �nal result. The amplitude got from both

(32) and (33) is : i 2 e
2

m�
~s^~q
~q2

, and gives the Aharonov
Bohm scattering amplitude for two identical fermions.

To �nish the talk I should mention that one of the
main utility of the e�ective non relativistic theory is
in the calculation of low energy bound states, what is
in general a very involved problem starting from a rela-
tivistic formulation, due to the mixing [10] of the several
scales of energy involved.
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