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In this paper we review some important aspects of the global monopole spacetime and present how
this manifold modi�es, at classical and quantum points of view, the movement of a charged particle.
The explicit calculations of the renormalized vacuum expectation values of the energy-momentum
tensors, hT��(x)iRen:, associated with massless bosonic and fermionic �elds are also presented.
Moreover the e�ect of the nonzero temperature in this previous formalism is analyzed. Finally, we
brie
y present other applications of this manifold in the topological in
ation and condensed matter
system.

I Introduction

It is well known that di�erent types of topological ob-
jects may have been formed during Universe expansion,
such as domain walls, cosmic strings and monopoles[1].
The basic idea is that these topological defects appeared
due to breakdown of local or global gauge symmetries.
Suppose that we have the Higgs �eld �a (a = 1; :::; N),
whose potential is

V (�) =
�

4
(�2 � �20)

2 ; �2 = �a�a; (1)

where �0 is the vacuum expectation value and � a cou-
pling constant. This model gives rise to di�erent types
of topological defects: Domain wall for N = 1, cosmic
string for N = 2 and monopoles for N = 3. The scalar
matter �eld plays the role of an order parameter which
outside the defect acquires a nonvanishing value.

In this review we present the �eld equations for the
global monopole in section II, using a speci�c model
coupled to the Einstein equations. In section III, we
analyze the classical and quantum motion of a charged
particle in the spacetime of an idealized pointlike global
monopole, considering the induced electrostatic self-
interaction. In section IV, we calculate the Green func-
tions associate with massless scalar and fermionic �elds
and obtain the renormalized vacuum expectation val-
ues (VEV) of their respective energy-momentum ten-
sors, hT��(x)iRen:. The e�ect of the temperature in
the scalar massless Green function and consequently
its in
uence on the calculation of hT��i is evaluated in
section V. In section VI, we brie
y present other ap-
plications of this formalism. Finally we left for section
VII our concluding remarks.

II Field Equation for a Global

Monopole

A. The Model

A global monopole is a heavy object formed in
the phase transition of a system composed by a self-
coupling iso-scalar triplet �a, whose original O(3) sym-
metry is spontaneously broken to U(1) [2].

L =
1

2
g��(@��

a)(@��
a)� �

4
(�2 � �20)

2 : (2)

The �eld con�guration describing a monopole is

�a = �0f(r)x̂
a; (3)

where xaxa = r2. The most general static metric tensor
with spherical symmetry can be written as

ds2 = �B(r)dt2+A(r)dr2+ r2(d�2+sin2 � d�2) : (4)

The Euler-Lagrange equation for the �eld f(r) in the
metric (4) is:

(r2f 0)0

Ar2
+

1

2B

�
B

A

�0
f 0 � 2f

r2
� ��20f(f

2 � 1) = 0 ; (5)

where the prime denotes di�erentiation with respect to
r. The energy-momentum tensor associated with the
matter �eld is given by

T t
t = ��20

�
f2

r2
+
(f 0)2

2A
+
�

4
�20(f

2 � 1)2
�
;

T r
r = ��20

�
f2

r2
� (f 0)2

2A
+
�

4
�20(f

2 � 1)2
�
; (6)

T �
� = T�

� = ��20
�
(f 0)2

2A
+
�

4
�20(f

2 � 1)2
�
:
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In 
at space the monopole has size Æ � 1p
��0

. Its mass

is M � �0p
�
.

Outside the core f � 1 and the energy-momentum
tensor can be approximated as

T t
t � T r

r � ��
2
0

r2
; T �

� = T�
� � 0 : (7)

B. Einstein Equations

Computing the Ricci tensor for the metric tensor
(4) one �nds [3]:

Rrr = �B
00

2B
+
B0

4B

�
A0

A
+
B0

B

�
+
A0

rA
;

R�� = 1� r

2A

�
B0

B
� A0

A

�
� 1

A
; (8)

Rtt =
B"

2A
� B0

4A

�
A0

A
+
B0

B

�
+
B0

rA
:

We also have R�� = sin2 � R��:
Combining conveniently these equations we get

Rrr

2A
+
Rtt

2B
+
R��

r2
=

A0

rA2
+

1

r2
� 1

Ar2

=
1

2

�
Rr
r �Rt

t

�
+R�

� ; (9)

and consequently

(r=A)
0
= 1� r2

�
1=2

�
Rr
r �Rt

t

�
+R�

�

�
: (10)

With the aid of the Einstein equations

R�� = 8�G

�
T�� � 1

2
g��T

�
; (11)

we obtain

(r=A)
0
= 1 + 8�Gr2T t

t : (12)

To �nd the other component of the metric tensor we
write

Rrr

A
+
Rtt

B
=

1

rA

�
A0

A
+
B0

B

�
= Rr

r �Rt
t : (13)

Integrating with the condition

A(r)B(r)jr=1 = 1 ; (14)

we obtain

B(r) =
1

A(r)
exp

�
8�G

Z r

1

�
T r
r � T t

t

�
rA(r)dr

�
: (15)

The general solution of (12) is

A(r)�1 = 1� 8�G�20 � 2GM(r)=r ; (16)

where M(r) is given by

M(r) = 4��20

Z r

0

�
(f 0)2

2A
+
f2 � 1

r2
+
��20
4

(f2 � 1)

�
r2dr :

(17)
Because T t

t � T r
r outside the core of the monopole, in

this region we have

B(r) = 1=A(r): (18)

Also we can analyze the behavior of the function f .
Introducing news variables de�ned as[4]

x =
p
��0r ; � = 8�G�20 ;

one �nds the asymptotic expansion

f(x) = 1� 1

x2
� 3=2� �

x4
+O(1=x6) : (19)

Now let us go back to the metric tensor. Neglecting the
mass term and rescaling the t variable we can rewrite
the monopole metric as

ds2 = �dt2 + dr2

�2
+ r2d
2 ; (20)

where �2 = 1� 8�G�20 = 1� � < 1. The above metric
tensor describes an idealized pointlike global monople
(G-M) defect.

The spacetime described by (20) has the following
interesting features:

i) It is not 
at: the scalar curvature R = R�
� = 2 (1��

2)
r2 :

ii) There is no Newtonian potential: gtt = �1.
iii) The surface � = �=2 has geometry of a cone, with
de�cit angle Æ
 = 8�2G�20 .
iv) The solid angle of a sphere of unit radius is 4�2�2,
so smaller than 4�2. There is a solid angle de�cit
Æ
 = 32�2G�20 .
v) Because T00 � �2=r2, outside the global monopole
the total energy is linearly divergent at large distance:
E(r) � 4�G�20r:

Now after this brief review about the global
monopole spacetime, let us analyze some classical and
quantum e�ects produced by this geometry on the
movement of a charged particle.

III Classical E�ects

It is well known that a charged/massive particle when
placed in the spacetime of a cosmic string becomes sub-
jected to a repulsive/attractive self-interaction[5]. A
similar phenomenon also occur in the spacetime pro-
duced by a global monopole. These self-interactions
are given by[6]:

U =
K

r
; (21)
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where r is the distance from the particle to the
monopole and

K = q2S(�)=2 > 0 ; (22)

for the electrostatic case, or

K = �Gm2S(�)=2 < 0 ; (23)

for the induced gravitational one. The numerical factor
S(�) is a function of the parameter �

S(�) =

1X
l=0

"
2l+ 1p

�2 + 4l(l+ 1)
� 1

#
;

which is �nite and positive for � < 1.
These induced self-interactions are consequence of

the distortion on the particle's �eld caused by the cur-
vature and/or the non-trivial topology of the spacetime.

Brie
y speaking these e�ects can be explained by
calculating the Newtonian gravitational self-interaction
of an arbitrary mass distribution outside the monopole
core

UG = �1

2
G

Z Z
drdr0�m(r)G(r; r0)�m(r0); (24)

where �m is the mass density. Similarly, for the electro-
static self-interaction of an arbitrary charge distribution
we have

UE =
1

2
G

Z Z
drdr0�q(r)G(r; r0)�q(r0); (25)

where now �q is the charge density.
For an isolated particle at some speci�c position r,

we get

UG = �1

2
Gm2GR(r; r) (26)

and

UE =
1

2
q2GR(r; r) ; (27)

where GR(r; r
0) is the renormalized Green function de-

�ned as

GR(r; r
0) = G�(r; r

0)�GH(r; r
0) ; (28)

being G�(r; r
0) the Green function de�ned in the

monopole space section:

G(�)(r; r
0) =

1

�r>

1X
l=0

2l + 1

2�l + 1

�
r<
r>

��l
Pl(cos 
); (29)

where �l = � 1
2 +

p
�2+4l(l+1)

2� .
The Hadamard function, GH(r; r

0), associated with
the three-dimensional Laplace-Beltrami operator is

GH(r; r
0) =

1

2�(r; r0)
; (30)

being �(r; r0) the one-half of the geodesic distance be-
tween the two points r and r0 is the space section of
(20). Because we are interested to evaluate the renor-
malized Green function in the coincidence limit, let us
take �rst 
 = 
0. For this case the three-dimensional
line element in the G-M spacetime is

d~l2 =
dr2

�2
;

which give us

2�(r; r0) =
jr � r0j
�

:

So after some intermediate calculations we get

GR(r; r) =
1

r
S(�) ; (31)

which is �nite for r > 0.
The presence of this induced electrostatic self-

interaction is relevant in the analysis of the movement
of an electric charged particle placed in the spacetime
of a global monopole. In order to do that we take into
account the self-interaction as the zeroth component of
the four-vector A�. The next subsection is devoted to
this investigation.

A. Classical Analysis of the Motion

For the relativistic classical analysis of this move-
ment we shall use the Hamilton-Jacobi (H-J) formal-
ism. According this formalism, our �rst set of equation
is given by[7]

M
dx�

d�
+ qA� = g��

@S

@x�
; (32)

� being a parameter along the classical trajectory of
the particle.

The second set of equation is given by

g��
�
@S

@x�
� qA�

��
@S

@x�
� qA�

�
= �M2 ; (33)

where S is the functional given by

S = �Et+R(r) + �(�) + LZ� ; (34)

with R(r) and �(�) being unknown functions and E
and LZ constants of the movement.

Integrating (32) and (33) we can obtain the equa-
tions of the trajectories for di�erent situations as shown
below. De�ning u = 1

r , we get, for the surface � = �=2,
the following solutions:

u(�) =
EK

L2 �K2
+

p
(E2 �M2)L2 +M2K2

L2 �K2

� cos

"p
L2 �K2

LZ
�(�� �0)

#
;

(35)
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for L2 > K2,

u(�) =
EK

K2 � L2
+

p
(E2 �M2)L2 +M2K2

K2 � L2

� cosh

"p
K2 � L2

LZ
�(�� �0)

#
;

(36)

for L2 < K2 and

u(�) =
M2

2EK
� E2�2�2(� � �0)

2

2K
; (37)

for L2 = K2.
From the above equations is possible to see that the

�rst set of solutions presents bounded trajectory for
E2 < M2 and K < 0, which happens for the unphysi-
cal case when � > 1.

B. Quantum Analysis of the Motion

For the analysis of the quantum motion we should
use the relativistic Klein-Gordon equation or Dirac one
if the particle is a boson or fermion, respectively.

Bosonic Case

For the spin 0 case the Klein-Gordon equation writ-
ten in a covariant form reads

[2� iqA�

p�g (@�
p�g)� iq(@�A

�)� 2iqA�@�

� q2A�A� � �R(x)�M2]�(x) = 0 ; (38)

with

2�(x) =
1p�g @�

�p�gg��@��(x)� : (39)

where g = det(g��). In the above equation we also con-
sidered the non-minimal coupling between the scalar
�eld � with the scalar curvature R of the manifold.

Now applying this formalism for the G-M spacetime
we have

[�@t2 + �2

r2
@r(r

2@r)�
~L2

r2
� 2i

K

r
@t +

K2

r2

�M2 � �
�

r2
]�(x) = 0 : (40)

Because our metric tensor is static and the self-potential
is time-independent, we can adopt for the wave function
the form

�(x) = C exp(�iEt)R(r)Yl;m(�; �) ; (41)

where E is the particle's self-energy. The solution for
the radial di�erential equation are expressed in terms
of hypergeometric functions as

R(r) = r�leikrM(�l + 1 + i�; 2(�l + 1);�2ikr) ; (42)

where the e�ective angular quantum number is

�l = �1

2
+

p
�2 + 4[l(l+ 1) + �� �K2]

2�

with � = 2(1� �2) = 2� and

k =

p
E2 �M2

�
; � =

EK

�2k
:

From the radial solution is possible to obtain the
phase shift Æl, which is the most relevant parameter in
the calculation of the scattering amplitude.

If we are inclined to consider the possibility of this
system to present bound states, we have to assume that
the parameter � > 1, in which case K < 0. So, tak-
ing E2 < M2, we get discrete values for the self-energy
given by

En;l =M

�
�2(n+ �l + 1)2

K2 + �2(n+ �l + 1)

�1=2
; (43)

with n = 0; 1; 2 : : :

Fermionic Case

Considering now a fermionic particle, we must take
the Dirac equation in the covariant form

[i
�(x)(@� + iqA� � ��(x)) �M ] 	(x) = 0 ; (44)

where ��(x) is the spin coeÆcient. Using an appropri-
ated tetrad basis for the G-M spacetime we get[7]:

[i
(0)@t + i�
(r)@r +
i

r

(�)@� +

i

r sin �

�@�

+ i
(�� 1)

r

(r) � q
(0)A0 �M ]	(x) = 0 :(45)

Also using the standard procedure it is possible to ob-
tain the set of solution for the equation above. They are
expressed in terms of hypergeometric functions. Again
from the solution we can calculate the phase shift, Æj .
If again we admit the unphysical situation where � > 1,
it is possible to �nd bound states and the explicit ex-
pression for the discrete self-energy

En;j =M

"
1 +

K2

(n�+
p
(j + 1=2)2 �K2)2

#�1=2
:

(46)
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IV Quantum E�ects

The non-trivial topology of the G-M spacetime implies
that the vacuum expectation value (VEV) of the renor-
malized energy-momentum tensor associated with an
arbitrary collection of conformal massless quantum �eld
must be di�erent from zero[8].

The explicit calculations for hT��(x)iRen for a mass-
less scalar �eld[9] and fermionic one[12] have been de-
veloped. Also, recently thermal e�ects have been con-
sidered in this context[13].

Below we present the main e�ects due to this space-
time in the VEV of some quantum operators.

A. Scalar Case

The Euclidean version of the G-M metric tensor is
given by

ds2 = d�2 +
dr2

�2
+ r2d
2 : (47)

The massless scalar �eld propagator obeys the di�eren-
tial equation below

(�2+ �R)GE(x; x
0) =

Æ4(x; x0)p
g

; (48)

where we have included the non-minimal coupling be-
tween the propagator with the geometry. The Eu-

clidean Green function can be evaluated using the heat
kernel approach:

GE(x; x
0) =

Z 1

0

ds expf�s(�2+ �R)gÆ
4(x; x0)p

g

=

Z 1

0

dsK(x; x0; s) : (49)

In order to obtain the heat kernel, K(x; x0; s), let us
solve the eigenfunction equation below

(�2+ �R) ��(x) = �2��(x) : (50)

The complete result for the equation above is:

��(x) =

r
�p

2�r
exp (�i!t)J�l(pr)Yl;m(�; �) ; (51)

with eigenvalues �2 = !2 + p2�2 � 0 and �l =
��1

p
(l + 1=2)2 + 2(1� �2)(� � 1=8). These solutions

obey the completeness relation

X
�

��(x)�
�
�(x) =

Æ4(x; x0)p
g

: (52)

Now we are in position to obtain the heat kernel by

c

K(x; x0; s) =

Z 1

�1
d!

Z 1

0

dp
X
l;m

��(x)��(x
0) exp(�s�2)

=
exp

�
���2�2+r2+r02

4�2s

�
16(�s)3=2(rr0)1=2

�
1X
l=0

(2l+ 1)I�l

�
rr0

2�2s

�
Pl(cos 
) : (53)

d

We can easily verify that for � = 1, �l = l+1=2 and in
this case it is possible to get a closed expression for the
heat kernel [14]:

K(x; x0; s) =
1

16�2s2
exp

�
� (x� x0)2

4s

�
: (54)

Finally we can obtain the Euclidean Green function by
integrating (53). Our result is

G(x; x0) =
1

8�2rr0

1X
l=0

(2l + 1)

� Q�l�1=2

�
�2��2 + r2 + r02

2rr0

�
Pl(cos 
):

(55)

The Computation of h�2(x)iRen
The VEV of the square of the quantum �eld opera-

tor is given by

h�2(x)i = lim
x0!x

G(x; x0) : (56)

However the above expression is divergent. So in order
to obtain a �nite and well de�ned value for h�2(x)i,
we have to renormalize it. We shall use the standard
procedure as shown below:

h�2(x)iRen = lim
x0!x

[G(x; x0)�GH(x; x
0)] ; (57)
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where GH(x; x
0) is the Hadamard function given by[9]

GH (x; x
0) =

1

16�2

�
2

�(x; x0)

+ (� � 1=6)R(x) ln

�
�2�(x; x0)

2

��
;(58)

where � is an arbitrary scale introduced in order to
avoid the infrared divergence and �(x; x0) the one-half
of the square of the geodesic distance between the
points x and x0. Because we are interested in the coin-
cidence limit, let us set �rst 
0 = 
 in (57). For this

case we get �(x; x0) = (r�r0)2

2�2 . Our above expressions
reduce themselves to

G(r; r0) =
1

8�2rr0

1X
l=0

(2l + 1)Q�l�1=2

�
r2 + r02

2rr0

�
(59)

and

GH (r; r
0) =

1

16�2

�
4�2

(r � r0)2

+
2�

r2
(� � 1=6) ln

�
�2(r � r0)2

4�2

��
:(60)

Because the dependence of �l with l is not simple one, it
is not possible to develop the summation in the angular
quantum number l in (59) in an exact way; however if
we remember that the parameter �2 = 1 � � is close
to the unity for realistic models1, it is possible to ex-
pand �l in powers of � and consequently to obtain an
approximate expression for (59). So in lowest order in
� and using appropriate integral representation for the
Legendre function we get:

G(r; r0) =
1

8
p
2�2rr0

Z 1

�

dt
1p

cosh t� cosh �

�
1X
l=0

(2l+ 1)e��lt ; (61)

with cosh � = (r + r0)2=2rr0. Moreover evaluating the
summation in l up to the �rst order in �, we have:

S(t) =
1X
l=0

(2l + 1)e��lt

= e�t=2
1 + e�t

(1� e�t)2

�
1� 2�t

1� e�2t�
�(1� e�t)2 + e�t

��
: (62)

Also the logarithmic term in the Hadamard function

can be expressed in term of Q0(cosh �) = ln
�
r+r0

r�r0

�
and

consequently in integral form. So taking into account
all these considerations we found, up to the �rst order
in �

h�2(x)iRen = lim
r0!r

[G(r; r0)�GH (r; r
0)]

= ��(p� 2�q)

8
p
2�2r2

� �
(� � 1=6)

4�2r2
ln(�r) ;

(63)

where p and q are two numbers given by the integrals
below

p =

Z 1

0

dt
e�t=2p
cosh t� 1

�
1

3
+

�
t

sinh t
� 1

�

� 1 + e�t

(1� e�t)2

�
; (64)

and

q =

Z 1

0

dt
e�t=2p
cosh t� 1

�
1� t(1 + e�t)

1� e�2t

�
: (65)

These two integrals are �nite and can be evaluated nu-
merically. The results are p = �0:39 and q = �1:41[9].

2. Evaluation of hT �
� (x)iRen

In Ref. [9] the general structure of the renormalized
VEV of the energy-momentum tensor for a massless
scalar �eld in the G-M spacetime is presented. There,
this expression was obtained on basis of dimensional
arguments, symmetries, trace anomaly and the explicit
calculation of the VEV of the square of the �eld opera-
tor. Their conclusion is that the VEV for this energy-
momentum tensor has the following structure:

hT �
� (x)iRen =

1

16�2r4
�
A�
�(�;�) +B�

�(�;�) ln(�r)
�
;

(66)
where B�

� and A�
� are diagonal tensors The explicit ex-

pression for the latter is

A�
� = diag (T +Ar

r �Br
r ; A

r
r; �Ar

r + 1=2Br
r ;

�Ar
r + 1=2Br

r) : (67)

For the particular value � = 1=6, T is given by the
trace anomaly. We have hT�

� (x)iRen = T=16�2r4 =
�=770�2r4 (1� �=2).

B. Fermionic Case

The spinor Feynman propagator is de�ned as
follows[10]

iSF (x; x
0) = hT ( (x) (x0))i : (68)

This propagator obeys the following di�erential equa-
tion

(ir=�M)SF (x; x
0) =

1p�g Æ
4(x; x0)I(4) ; (69)

1In fact for a typical grand uni�ed theory the parameter �0 is of order 1016 Gev. So 1� �2 = � � 10�5
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where g = det(g��). The spinor covariant derivative is
given by

r= = e�(a)(x)

(a) (@� + ��) ; (70)

with the spin connection �� given in terms of the 

matrix and the basis tetrad e�(a) in the usual way:

�� = �1

4

(a)
(b)e�(a)e(b)�;� :

If a bispinor DF (x; x
0) satis�es the di�erential equation�

2�M2 � 1

4
R(x)

�
DF (x; x

0) = � 1p�g Æ
(4)(x; x0) ;

(71)
where the generalized d'Alembertian operator is ex-
pressed by

2 = g��r�r� = g��
�
@�r� + ��r� � ����r�

�
;
(72)

then the spinor Feynman propagator may be written as

SF (x; x
0) = (ir=+M)DF (x; x

0) : (73)

Now after this brief review, let us specialize in the cal-
culation of the spin Feynman propagator in the G-M
spacetime.

Using appropriate basis tetrad for this spacetime,
the only non-vanishing spin connections are[12]:

�2 =
1� �

2

h

(1)
(2) cos�+ 
(2)
(3) sin�

i
(74)

and

�3 = �1� �

2

h

(1)
(2) sin � + 
(1)
(3) sin� cos �

� 
(2)
(3) cos � cos�
i
sin � : (75)

We also adopt the following representation for the 
-
matrix


(0) =

�
1 0
0 �1

�
; 
(k) =

�
0 �k

��k 0

�
: (76)

These matrices obey the anticommutator relation
f
(a); 
(b)g = �2�(a)(b).

After some intermediate steps we get2

2 = � 1

�2
@2t +

�2

r2
@r(r

2@r)�
~L2

r2

� (1� �)2

2r2
� 1� �

r2
~� � ~L ; (77)

where

~� =

�
~� 0
0 ~�

�
: (78)

The system that we shall consider consists of a mass-
less left-handed fermionic �eld. For this case the Dirac

equation reduces to a 2� 2 matrix di�erential equation
as shown below:

iD=L� = 0 ; (79)

where

D=L = i

�
1

�
@t � ��(r)@r � 1

r
�(�)@�

� 1

r sin �
�(�)@� +

1� �

r
�(r)

�
; (80)

with �(u) = ~� �û, û denoting the usual unit vector along
the three spatial directions in spherical coordinates.

The Feynman two-component propagator obeys
now the equation

iD=lSF (x; x0) = 1p�g Æ
(4)(x; x0)I(2) ; (81)

and can be given in terms of the bispinor GF (x; x
0) by

SF (x; x
0) = iD=LGF (x; x

0) ; (82)

where now this bispinor obeys the 2�2 di�erential equa-
tion below:

K̂GF (x; x
0) = � 1p�g Æ

(4)(x; x0)I(2) ; (83)

with

K̂ = � 1

�2
@2t +

�2

r2
@rr

2@r �
~L2

r2
� 1� �

r2

�
1 + ~� � ~L

�
:

(84)
The VEV of the energy-momentum tensor can be
expressed in terms of the Euclidean Green function
GE(x; x

0) = �iGF (x; x
0). Now we shall calculate

GE(x; x
0) by using the solution of the eigenvalue equa-

tion below
K̂��(x) = ��2��(x) ; (85)

with �2 � 0, so we can write

GE(x; x
0) =

X
�

��(x)�
+
� (x

0)
�

: (86)

The normalized eigenfunction can be written as

�
(k)
� (x) =

r
p

2�r
e�iE�J�k(pr)�

(k)
j;mj

; k = 1 ; 2 ; (87)

with

�2 =
E2

�2
+ �2p2 ; (88)

and

�1 =
l + 1

�
� 1

2
; �2 =

l

�
+
1

2
: (89)

In the above equation �
(k)
j;mj

are the spinor spherical har-

monic eigenfunctions of the operators ~L2 and � � ~L[11].
2Here in this section we are using the following metric tensor: g�� = diag(��2; 1=�2; r2; r2 sin2(�)).
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The expression for GE(x; x
0) can be given by

GE(x; x
0) =

Z 1

�1
dE

Z 1

0

dp

�
X
j;mj

�
(1)
� (x)�

(1)+
� (x0) + �

(2)
� (x)�

(2)+
� (x0)

E2=�2 + �2p2
:

(90)

Substituting �
(k)
� (x) in the equation above we get

GE(x; x
0) =

1

2�rr0
X
j;mj

h
Q�1�1=2(u)C

(1)
j;mj

(
;
0)

+Q�2�1=2(u)C
(2)
j;mj

(
;
0)
i
; (91)

where Q�(z) is the Legendre function, u = 1+(�4��2+

�r2)=2rr0 and C(k)
j;mj

(
;
0) = �
(k)
j;mj

(
)�
(k)+
j;mj

(
0).
Again we can see that for � = 1, �1 = �2 = l + 1=2

and we get a closed form for GE(x; x
0)

GE(x; x
0) =

1

8�2
1

�(x; x0)
I(2) ; (92)

where 2�(x; x0) = ��2 + (~r � ~r0)2.
Now we can express the spinor Green function as

SF (x; x
0) = i

�
1

�
@t � ��(r)@r +

1

r
�(r)~� � ~L

+
1� �

r
�(r)

�
GE(x; x) : (93)

1. Vacuum Expectation Value

Also, as in the scalar case, the general structure of
the VEV of the energy-momentum tensor associated
with a massless fermionic �eld in the G-M spacetime
has the following structure:

hT �
� (x)iRen =

1

8�2r4

h
A�
� +B�

� ln
��r
�

�i
; (94)

where

A�
� = diag

�
A0
0;�T +A0

0 +B0
0 ;

T � A0
0 � 1=2B0

0 ; T �A0
0 � 1=2B0

0

�
(95)

and
B�
� = B0

0 diag(1; 1;�1;�1) : (96)

Because for this system T := r4Tra2
2 = � 1��4

60 , our
problem of �nding (94) consists to obtain the two com-
ponents A0

0 and B
0
0 only.

Using the point-splitting approach, the VEV of the
respective energy-momentum tensor for spinor �eld has
the following form

hT��(x)i = 1=4 lim
x0!x

Tr [��(r� �r�0)

+ ��(r� �r�0)]SF (x; x
0) : (97)

For us it is necessary only to compute hT 0
0 (x)i, so we

have

hT 0
0 (x)i = � 1

�2
lim
x0!x

Tr@2�GE(x; x
0) : (98)

The above limit is divergent, so in order to obtain a
well de�ned result we should renormalize it subtracting
from the Euclidean Green function, GE , the Hadamard
one, which for this case presents structure similar to
the scalar case. After a long calculation we found:

B0
0 = � 1��4

60 and A0
0 a complicated integral; however

we write down this latter component for speci�c values
of the parameter �.
1) For large solid angle de�cit (� << 1),

A0
0 � � 1

60
ln�+ C0 ; C0 = 0:0104 :

2) For small solid angle de�cit or excess (j��1j << 1),

A0
0 � C1(1� �) ; C1 = 0:0773 :

3) For large solid angle excess (� >> 1),

A0
0 � �C3�

4 ; C3 = 0:0173 :

V Thermal E�ects

Now we would like to present the e�ects of the nonzero
temperature in the formalism of quantum �eld theory
for a massless scalar �eld in the G-M spacetime. We
shall develop �rst the calculation of the respective Eu-
clidean thermal Green function. Our subsequent anal-
ysis concerns in the calculation of the corrections to
the VEV of h�2(x)i� and hT��(x)i� due to the nonzero
temperature[13].

A. The Euclidean Thermal Green Function

The thermal Green function, G�(x; x
0), for a mas-

sive scalar �eld, non-minimally coupled with the geom-
etry of the background spacetime, satis�es the following
conditions:
(i) It obeys the di�erential equation

�
2�m2 � �R

�
G�(x; x

0) = �Æ
(4)(x; x0)p�g (99)

and
(ii) is periodic in the Euclidean time � , with period �
given by

� =
1

�BT
;

where �B is the Boltzman constant and T the absolute
temperature.
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Because the Euclidean version of our spacetime is an
ultrastatic one3, the Euclidean thermal Green function
can be obtained by the Schwinger-De Witt formalism
as follows:

G�(x; x
0) =

Z 1

0

dsK�(x; x
0; s) ; (100)

where the thermal heat kernel can be factorized as

K�(x; x
0; s) = �3

 
�i���
4s

i�2

4�s

!
K1(x; x0; s) ; (101)

being �3 the third theta Jacobi function

�3(zj!) =
1X

n=�1
exp (i�n2! + 2inz) ; (102)

with Im(!) > 0. K1(x; x0; s) is the zero temperature
heat kernel previously de�ned by Eq. (53) in the anal-
ysis of the massless scalar �eld.

After some intermediate steps we get the Euclidean
thermal Green function for a scalar massless �eld which

reads

G�(x; x
0) =

1

8�2rr0

1X
n=�1

1X
l=0

(2l + 1)Pl(cos 
)

� Q�l�1=2

�
�2(�� � n�)2 + r2 + r02

2rr0

�
; (103)

where we see that this Green function is a sum of a
zero temperature one plus some thermal correction:
G�(x; x

0) = G1(x; x0) +G�(x; x
0).

Now we are in position to calculate the thermal cor-
rection to the VEV of h�2(x)i� and hT��(x)i� .

B. The Thermal Average h�2(x)i�
The singular contribution for h�2(x)i� comes from

the zero-temperature term in the Euclidean thermal
Green function. So the procedure to renormalize this
thermal average is identical to the previous one de�ned
in Sec. 4:A:1:

c

h�2(x)i�;Ren = lim
x0!x

[G�(x; x
0)�GH (x; x

0)]

= lim
x0!x

�
G1(x; x0) +G�(x; x

0)�GH(x; x
0)
�

= h�2(x)i1;Ren

+
1

4�2r2

1X
n=1

X
l�0

(2l + 1)Q�l�1=2(z
�
n );

(104)

d

where z�n = 1 + �2n2�2

2r2 . Because the �rst term in the
r.h.s. of the above equation has already been discussed
let us concentrate on the thermal correction. Also, here
it is necessary to calculate this correction expanding a
series in powers of the parameter �. After some inter-
mediate steps we get the following expression:

h�2
(x)i� =

1

12�2
(1 + �)� �

�
p
2

8�2r2
S1(�=r)

+ �
1

32�2r2
S2(�=r) ; (105)

where

S1(�=r) =
X
n�1

Z 1

�n

dt
1p

cosh t� cosh �n

t

sinh(t=2)

(106)

and

S2(�=r) =
X
n�1

Z 1

�n

dt
1p

cosh t� cosh �n

t

sinh3(t=2)
;

(107)

where �n = arcosh
�
1 + n2�2

2r2

�
.

Unfortunately it is not possible to obtain explicit
results for both integrals above in terms of any set of
elementary functions. So, if we want to get some con-
crete information about the behavior of the thermal
average of h�2(x)i we should proceed a numerical eval-
uation for S1 and S2 for some interval of the variable
�! := �=r. Speci�cally we are interested to know this
behavior in the high temperature, or great distance re-
gion, i. e., when �! << 1. By our numerical analyses[13]

3An ultrastatic spacetime admits a globally de�ned coordinate system in which the components of the metric tensor are time-
independent and the conditions g00 = 1 and goi = 0 hold
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we found the following dependences for both integrals
above when �! belong to the interval [0:01; 0:1]:

S1 =
c1
�!a1

(108)

and
S2 =

c2
�!a2

; (109)

where c1 = 14:26 with a1 = 0:92� 0:07 and c2 = 17:82
with a2 = 2:02 � 0:02. From these results we can in-
fer the approximate behavior for h�2(x)i� in the high
temperature limit:

h�2
(x)i�;Ren =

1

12�2
(1 + 1:68�)� 0:25

��

�r
: (110)

We can see that the leading term is independent on the
non-minimal coupling � and also on the distance from
the point to the global monopole.

C. The Thermal Average hT��(x)i�.

The energy-momentum tensor associated to the
scalar �eld in a general spacetime with a non-minimal
coupling is given by:

c

T��(x) = (1� 2�)r��(x)r��(x)� 2�(r�r��(x))�(x)

+

�
2� � 1

2

�
g��(x)g

��(x)r��(x)r��(x)

� 2�2g��(x)R(x)�
2(x)� �G��(x)�

2(x) ;

(111)

d

where G��(x) and R(x) are, respectively, the Einstein
tensor and the scalar curvature.

The thermal average of the operator energy-
momentum tensor can be obtained using the thermal
Green function de�ned as usual

G�(x; x
0) =

Tr
�
e��HhT�(x)�(x0)i�

Tre��H
: (112)

So the thermal average of the energy-momentum tensor
is given by

hT��(x)i� = lim
x0!x

[(1� 2�)r�r�0G�(x; x
0)

� 2�r�r�G�(x; x
0)� �G��G�(x; x

0)

+

�
2� � 1

2

�
g��g

��0r�r�0G�(x; x
0)

� 2�2g��R(x)G�(x; x
0))
�
: (113)

We have already mentioned that the thermal Green
function associated with a scalar �eld in G-M space-
time can be written as a sum of a zero temperature one
plus thermal corrections; so the above expression can
be written as

hT��(x)i� = hT��(x)i1 + hT��(x)i� : (114)

The general structure of the independent temperature
term in the r.h.s. of the above equation has already
been discussed previously in Sec. 4:A:2. So, by this
reason, we shall concentrate on the purely thermal cor-
rection, hT��(x)i� . For the sake of simplicity we shall
analyze its zero-zero component only:

hT 00i� = lim
x0!x

��@2�G�(x; x
0)

+

�
2� � 1

2

�
g��

0

(x; x0)r�r�0G�(x; x
0)

+
1

2
�(1� 4�)R(x)G�(x; x

0)
�
: (115)

The development of this equation is a long one. Our
�nal result is

hT 00i� =
�2

4�2r4

X
n�1

X
l�0

(2l + 1)
h
�n Q

(2)
�l�1=2(zn)

+ �n Q
(1)
�l�1=2(zn) + 	l Q�l�1=2(zn)

i
;

(116)

where Q
(k)
� (z) are the associated Legendre functions,

zn = 1 + n2�2

2 �!2 and
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c

�n =
1

�2n2�!2 + 4

�
2�(n2�!2 � 4)� 1=2(n2�!2 + 4)

�
; (117)

�n =
1

n�!�3
p
n2�!2 + 4

�
2�[(3n2�!2 � 2)�2 � 2]

� 1=2[(3n2�!2 + 2)�2 � 2]
�
; (118)

	l = (2� � 1=2) +
l(l + 1)

�2
+
�

2
(1� 4�)

�2 � 1

�2
:

(119)

d

Also in this case it is not possible to obtain some
concrete information about the behavior of hT00(x)i�
with the temperature without to adopt the following
procedures: (i) To expanding a series in powers of the
parameter � = 1 � �2, and (ii) to proceed the sum-
mation in the angular quantum number l. After doing
that, some expressions obtained allow us to proceed the
summation in n. Unfortunately we also could not de-
velop all the integrals that appears and consequently
the summations in n; again, here we had to develop
some numerical evaluations for these terms in the re-
gion where �! << 1. Our �nal result is:

hT 00(x)i� = � �2

30�4
+

�
1

24
� �

6

�
1

r2�2
+

�

1(�)

1

�4

+ 
2(�)
1

r2�2
+

1

4
p
2�2r4

F (�!)

�
� ; (120)

where


1(�) = � �2

180
(11 + 52�) (121)

and


2(�) = � 1

768

�
64�2 + 1725� � 832

�
: (122)

The function F (�!) contains all the integrals which were
not possible to be expressed in terms of elementary
functions and consequently to proceed the summations
in n. Analyzing all the terms in �F (�!) numerically, in
the high temperature regime we have obtained that the
leading term are, approximately proportional to 1=�!4,
followed by terms proportional to 1=�!3 and 1=�!2.

As our �nal conclusion about the thermal e�ects
in the renormalized VEV of the operators �2(x) and
T00(x) we can say that in the high temperature regime
we have:

i)h�2(x)iTRen = h�2(x)i0Ren + T 2f(
) (123)

and

ii)hT00(x)iTRen = hT00(x)i0Ren + T 4g(
) (124)

where f and g are functions of the dimensionless param-
eter 
 = �BrT . The analytic form for these functions
were obtained by us, up the �rst order in �.

VI Other Applications

A. Topological In
ation

Topological defects can be seeds for in
ation[15].
Vilenkin and Linde claimed that topological defects ex-
pand exponentially if �0 > O(mP ).

In the particular case of a global monopole, �2 =
1� 8�G�20 becomes negative and the solid angle de�cit
(Æ
 = 4�(8�G�20)) bigger than 4�. The role of the ra-
dial and time coordinates interchanges. The exterior
solution corresponds to the G-M solution is no longer
static.

B. Gravitating Magnetic Monopole

The occurrence of a de�cit angle is a consequence
of the nontrivial topology of the bosonic �eld con�g-
uration outside the the monopole. The non vanishing
gradients along nonradial directions imply an energy
density that falls o� slowly:

T00 � �a;i�
a
;i �

�2

r2
:

(This result also points out that the total Newtonian
mass contained within r is M(r) � 4�G�20r. If we
take the radial extent of a Galaxy to be RG ' 15 Kpc
and consider a typical grand uni�ed theory with �0 '
1016Gev, this mass turns out to be of order 1069Gev,
which is ten times the total mass of a typical Galaxy.)

However considering a gravitating magnetic
monopole, the gauge covariant derivative of the scalar
�led vanishes outside the monopole:

(Di�)
a = @i�

a � e�abcA
b
i�

cr �!0 :
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So there is no de�cit angle.

C. Condensed Matter

The e�ective gravity arise in many condensed mat-
ter system. The typical examples are the crystals with
dislocations and disclinations linear defects. However
it appears that the super
uid 3He � A provides the
most adequate analogies for relativistic models of the
e�ective gravity.

The quasiparticles in 3He�A are chiral and massless
fermions. Under speci�c circumstances these fermions
are `relativistic' with the spectrum[16]

E2(k) + gij (ki � eAi) (kj � eAj) = 0 : (125)

Here ~A is the dynamical vector potential of the induced
electromagnetic �eld, ~A = kF l̂ and l̂ is the unity vector
in the moment space.

The metric tensor of the e�ective space which gov-
erns the motion of the fermions is given by

gij = �c2?
�
Æij � lilj

�� c2kl
ilj ; g00 = 1 :

Here c? and ck = vF (c? << ck) are the speed of the

light propagating transverse to l̂ and along l̂, respec-
tively.

For the speci�c case where l̂ = r̂, we get

ds2 = dt2 � dr2

a2
� r2d
2 ;

where a2 = c2k=c
2
? > 1. In this case we have a metric

spacetime analogous to the G-M one with a solid angle
excess.

VII Concluding Remarks

In the present paper we have reviewed some of the most
important aspects about the global monopole spacetime
and its consequences on the the classical and quantum
movement of a charged particle. Also we have calcu-
lated the vacuum polarization e�ects due to massless
scalar and fermionic �elds in this manifold, and the ef-
fects of the nonzero temperature on these quantities.

Besides the main results exhibited in this paper as
mentioned above, the formalisms developed here can
be applied to other sub-areas of physics since the in
a-
tion problem in cosmology to condensed matter system.
For all these reasons we believe that the physics in the

global monople spacetime is very rich and deserves to
be studied.
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