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We discuss a method for obtaining vector constants of motion for time-dependent central �elds.

I Introduction

The search for �rst integrals has assumed an increas-
ing importance in the determination of the integrabil-
ity of a dynamical system. The notion of integrability
is related to the existence of �rst integrals of motion.
Several methods of �nding �rst integrals are available
in the literature. Some of them are based on the sym-
metries of the system [1], [2]. Another possibility re-
lies on a direct search for invariants with a speci�ed
form (usually, a polynomial form on the velocities) [3],
[4]. Still other methods to determine the integrability
of a system are available as, for instance, the Painlev�e
Analysis [5]. One of the most aesthetically appealing
and important problem in physics is the central �eld
problem [6]. Energy and angular momentum associ-
ated with this type of �eld are well known conserved
quantities. However, other vector and tensor conserved
quantities have been associated with some particular
central �elds. The Laplace-Runge-Lenz vector [7] is a
vector �rst integral of motion for the Kepler problem;
the Fradkin tensor [8] is conserved for the case of the
harmonic oscillator and for any central �eld it is possi-
ble to �nd a vector �rst integral of motion as was shown
in [9]. In the general case these additional integrals of
motion turn out to be complicated functions of the po-
sition r and linear momentum p of the particle probing
the central �eld. When orbits are closed and degener-

ated with respect to the mechanical energy, however,
we should expect these additional constants of motion
to be simple functions of r and p. In this article we wish
to exploit further this line of reasoning by determining
the existence of such additional vector �rst integrals of
motion for some special class of time-dependent Kepler
and isotropic harmonic oscillator problems. In partic-
ular, we will show that for the time-dependent Kepler
problem the existence of a vector constant of motion
coupled to a simple transformation of variables turns
the problem easily integrable.

II Constructing vector con-

stants of motion

The force f (r; t) acting on a particle moving in a central
but otherwise arbitrary and possible time-dependent
�eld of force g(r; t) can be written as

f (r; t) = g(r; t) r; (1)

where r = r (t) is the position vector with respect to the
center of force, r is its magnitude, and t is the time. As-
suming a constant vector j of the form

j (p; r; t) = A (p; r; t) p+B (p; r; t) r; (2)
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where p = p (t) = m _r(t) is the linear momentum, m is
the reduced mass and A, B are arbitrary scalar func-
tions of p; r and t, it follows that the functions A and
B must satisfy

Ag +
dB

dt
= 0; (3)

dA

dt
+
B

m
= 0: (4)

Eliminating B between (3) and (4) we obtain

m
d2A

dt2
� gA = 0: (5)

It follows from (4) that j can be written in the form

j = Ap�m
dA

dt
r: (6)

If the �eld g(r; t) is known any solution of (5) will yield
a vector constant of motion of the form given by (6).
Equation (5), however, is a di�erential equation whose
solution may turn out to be a hard task to accomplish.
Nevertheless, we can make progress if instead of trying
to tackle it directly we make plausible guesses concern-
ing A thereby linking j to speci�c forms of the �eld
g(r; t).

III Time-dependent �elds

Let us consider time-dependent central force �elds for
which we can build more general vector �rst integrals of
motion. As with the time-independent case there are of
course several possibilities when it comes to the choice
of a function A for a time-dependent central �eld. Here
is one

A = �(t) r � p+  (t) r � r: (7)

Using (7) in (5) and assuming the additional condition

 +m
d�

dt
= 0; (8)

we arrive at

g(r; t) =
m

�

d2�

dt2
+

C

�r3
: (9)

The vector �rst integral of motion associated with (9)
is

j = m�2L�
d

d t

�
r

�

�
�
mC r

r
; (10)

where we have made use of the fact that the angular
momentum is constant for any arbitrary central �eld
whether it is time-independent or not. If in (10) we set
� = 1 and C 6= 0, we can recover the time-independent
Kepler problem. If we set (m=�) d2�=dt2 = �k(t);
that is, if � is an arbitrary function of the time, and
also C = 0, we have the time-dependent isotropic har-
monic oscillator �eld, F (r) = �k(t) r. In this case
j is equal to the �rst term on the R.H.S. of (10). If
(m=�)d2�=dt2 = �k and C = 0, we have the time-
independent isotropic harmonic oscillator �eld. Finally,
if (m=�)d2�=dt2 = 0; � 6= 0 for any instant of time t and
C 6= 0; we have a time-dependent Kepler �eld. In this
case

g(r; t) =
C

(c1t+ c0)r3
; (11)

and the associated constant vector is a time-dependent
generalization of the Laplace-Runge-Lenz vector

c

j =m(c1t+ c0)
2L�

�
dr=dt

c1t+ c0
�

c1r

(c1t+ c0)2

�
�
mCr

r
: (12)

d

As another example let us consider the time-
dependent isotropic harmonic oscillator and show how
it is possible to generalize the Fradkin tensor for this
case. Let the function A (r;p; t) be written as

A = �(t) û � r+  (t) û � p: (13)

Using (5) and assuming the additional condition

2
d�

dt
+m

d2 

dt2
= 0; (14)

we obtain

m
d3 

dt3
� 4g

d 

dt
� 2

dg

dt
 = 0: (15)

We can solve (15) thoroughly if g (r; t) is a function of
the time t only. In this case, as before, we end up with
the time-dependent isotropic harmonic oscillator. From
(13) and (14) we can derive the vector j associated with
(13) which, in terms of components reads

ji = Fijuj ; (16)

where Fij is a generalized Fradkin tensor and can be
written as
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c

Fij =

�
�
m

2

d 

dt

�
pixj +  pipj +

�
m2

2

d2 

dt2
�mg 

�
xixj �

m

2

d 

dt
xipj : (17)

d

It is not hard to see that the trace of this gener-
alized Fradkin tensor F (r;p; t) becomes the energy of
the particle when g (r; t) is a constant �eld.

IV Obtaining explicit solutions:

An alternative way

Now we will show how to take advantage of the vector
constant j to obtain the solution for the Kepler and the

isotropic harmonic oscillator potentials. But �rstly we
must establish some very general relationships. First
notice that (6) can be recasted into the form

j = m A (r;p; t)
2 d

dt

�
r

A (r;p; t)

�
: (18)

Integrating (18) we readily obtain

c

r (t)

A (r;p; t)
�

r (0)

A (r (0) ;p (0) ; 0)
=

j

m

Z t

0

d�

A (r (�) ;p (�) ; �)
2
: (19)

d

Let us now show how we can obtain the orbits in the
case of the time-dependent Kepler problem. In what
follows, we will be dealing with a special class of time-
dependent Kepler problems, namely, those satisfying
(9). In polar coordinates the angular momentum con-
servation law is written in the form

l = mr2
d�

dt
(20)

and this allows to rewrite (18) as

j = l

�
�
d

d�

�
A

r

�
^

r +
A

r

^

�

�
; (21)

where we have introduced the polar unitary vectors
^

r

and
^

�. The component of the vector j in the direction

of
^

� is given by

j�
^

�= l
A

r
: (22)

In section 3 we determined a generalized Laplace-
Runge-Lenz vector for the time-dependent Kepler prob-
lem. The scalar function A (r;p; t) associated with this
vector was found to be

A = �(t) r � p�m
d�

dt
r2 : (23)

Considering A as a function of � we can write

A

r
= �l

d

d�

�
�

r

�
: (24)

Equations (22) and (24) lead to

d

d�

�
�

r

�
= �

j�
^

�

l2
=

j

l2
sin(� � �) ; (25)

where � is the angle between j and the OX axis. Upon
integrating (25) we �nd

�

r
=
�0
r0

+
j

l2
[cos(�0 � �)� cos(� � �)] : (26)

This is the orbit equation we were looking for.

It is possible to transform the time-dependent Ke-
pler problem into the time-independent one. In order
to see this we de�ne a new position vector r0 according
to

r0 =
r

�
; (27)

and rede�ne our time parameter according to

dt0 =
dt

�2
: (28)



O. M. Ritter et al. 307

We can recast the equation of motion for the time-
dependent Kepler problem, namely

m
d2r

dt2
=

�
m

�

d2�

dt2
+

C

� r3

�
r (29)

into a simpler form. Making use of the above trans-
formations the equation of motion (29) can be written
as

m
d2r

dt02

0

=
C

(r0)3
r0 : (30)

Equation (30) corresponds to the usual time-
independent Kepler problem. Equations (27) and (28)
show that the open solutions of (30) are transformed
into the open solutions of (29) with the same angu-
lar size and that closed solutions of (30) are associated
with spiraling solutions of (29). To conclude consider
the total mechanical energy associated with (30)

E =
p0 2

2m
+
C

r0
= const: (31)

Since p0 and p are related by

p0 = � (t) p�m _� (t) r (32)

and r0 and r by (27) we easily obtain

E = �2
p2

2m
� 2�

d�

dt
r � p+

�
d�

dt

�2
r2

2
+ C

�

r
(33)

which is a conserved quantity and can be interpreted
as a generalization of the energy of the particle under
the action of a time-dependent Kepler �eld.

V Conclusions

In this paper we have outlined a simple and e�ec-
tive method for treating problems related with time-
dependent and time independent central force �elds.
In particular we have dealt with the Kepler problem

and the isotropic harmonic oscillator �elds. The diÆ-
culty in �nding vector constants of motion for central
�elds stems from the fact that, in general, orbits for
this type of problem are not closed, therefore any new
ways to attack those problems are welcome. In our
method this diÆculty is transferred, so to speak, to the
obtention for each possible central �eld, which can be
time-dependent or not, of a certain scalar function of
the position, linear momentum and time. For a given
central �eld this scalar function is a solution of (5). In
the general case, the obtention of the scalar function is
a diÆcult task. Judicious guesses, however, facilitate
the search for solution of (5) and this is what we have
done here. Notice also that the method apllies to closed
orbits �0 < 1 as well as open orbits �0 > 1. The case
�0 = 1, the parabolic orbit is also contemplated.
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