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The restricted class of Natanzon potentials with two free parameters is studied within the context
of Supersymmetric Quantum Mechanics. The hierarchy of Hamiltonians and a general form for the
superpotential is presented. The �rst members of the superfamily are explicitly evaluated.

I Introduction

The classes of Natanzon potentials, namely, the hyper-

geometric and the con
uent, re�er to potentials whose

Schr�odinger equation is analytically and exactly solv-

able by means of hypergeometric functions. They have

motivated several works concerning the mathematical

and algebraic aspects of their structure and solutions

and have numerous applications in several branches of

physics, [1]-[7].

In particular, there have been studies within Super-

symmetric Quantum Mechanics formalism. Cooper et

al, [6], for instance, investigated the relationship be-

tween shape invariance and exactly analytical solvable

potentials and showed that the Natanzon potential is

not shape invariant although it has analytical solutions

for the associated Schr�odinger equation. L�evai et al,

[7], have determined phase-equivalent potentials for a

class of Natanzon potentials employing the formalism

of supersymmetry.

However, the hierarchy of the Hamiltonians corre-

sponding to Natanzon potentials has not been deter-

mined yet. In ref. [6], Cooper et al have sketched the

�rst few potentials of the hierarchy from the knowledge

of their asymptotic behaviour from the series approx-

imation. In this paper we construct the hierarchy of

Hamiltonians of the restricted class of Natanzon po-

tentials, (Ginocchio class), with two free parameters.

The �rst few members of the superfamily are explicitly

evaluated and a general form for the superportential is

proposed by induction.

II Supersymmetric Quantum

Mechanics Formalism

In the formalism of Supersymmetric Quantum Mechan-

ics there are two operators Q and Q+, that satisfy the

algebra

fQ;Qg = fQ+; Q+g = 0; fQ;Q+g = HSS (1)

where HSS is the supersymmetric Hamiltonian. The

usual realisation of the operators Q and Q+ is

Q = a�1 �
� =

�
0 0
A� 0

�

Q+ = a+1 �
+ =

�
0 A+

0 0

�
(2)

where �� are written in terms of the Pauli matrices

and A� are bosonic operators. With this realisation

the supersymmetric Hamiltonian HSS is given by

HSS =

�
A+A� 0

0 A�A+

�
=

�
H+ 0
0 H�

�
: (3)

where H� are supersymmetric partner Hamiltonians

and share the same spectra, apart from the nondegen-

erate ground state. Using the super-algebra a given
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Hamiltonian can be factorized in terms of the bosonic

operators. In ~ = c = 1 units, it is given by

H1 = �
d2

dr2
+ V1(r) = A+

1 A
�

1 +E
(1)
0 (4)

where E
(1)
0 is the lowest eigenvalue. The bosonic oper-

ators are de�ned by

A�1 =

�
�
d

dr
+W1(r)

�
(5)

where the superpotential W1(r) satis�es the Riccati

equation

W 2
1 �W 0

1 = V1(r) �E
(1)
0 : (6)

The eigenfunction for the lowest state is related to the

superpotential W as

	
(1)
0 (r) = Nexp(�

Z r

0

W1(�r)d�r) (7)

or conversely

W1(r) = �
d

dr
ln(	

(1)
0 ): (8)

Now it is possible to construct the supersymmetric

partner Hamiltonian,

c

H2 = A�1 A
+
1 +E

(1)
0 = �

d2

dr2
+ (W 2

1 +W 0

1) +E
(1)
0 : (9)

If one factorizes H2 in terms of a new pair of bosonic operators, A�2 one gets,

H2 = A+
2 A

�

2 +E
(2)
0 = �

d2

dr2
+ (W 2

2 �W 0

2) +E
(2)
0 (10)

d

where E
(2)
0 is the lowest eigenvalue ofH2 andW2 satisfy

the Riccati equation,

W 2
2 �W 0

2 = V2(r) �E
(2)
0 : (11)

Thus a whole hierarchy of Hamiltonians can be con-
structed , with simple relations connecting the eigen-
values and eigenfunctions of the n-members, [8]-[13]

Hn = A+
nA

�

n +E
(n)
0 (12)

A�n =

�
�
d

dr
+Wn(r)

�
(13)

	(1)
n = A+

1 A
+
2 ::: 

(n+1)
0 E(1)

n = E
(n+1)
0 (14)

	
(1)
0 (r) = Nexp(�

Z r

0

W1(�r)d�r): (15)

III Natanzon Potential and the

Hierarchy of Hamiltonians

The restricted class of Natanzon potentials having two
parameters and given in terms of the variable y(r) is,

c

V (r) = f��2v(v + 1) + 1=4(1� �2)[5(1� �2)y4 � (7� �2)y2 + 2]g(1� y2) ; (16)

where the variable function y(r) satis�es dy=dr = (1� y2)[1� (1��2)y2]. The dimensionless free parameters v and

� measure the depth and the shape of the potential, respectively.

The Schr�odinger equation for this potential, [2], [3], in dimensionless units, is given by

[�d2=dr2 + V (r)]	n(r) = �n	n(r) (17)

where V (x) = v0V (r), �n = En=v0 and r = bx = (2mv0=~
2)1=2x.

The analytic solutions for the energy eigenfunctions are given by,

	n = (1� �2)�n=2[g(y)]�(2�n+1)=4C�n+1=2
n (�y=[g(y)]1=2) (18)
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where g(y) = 1 � (1 � �2)y2. The factor C
(a)
n (x) is a Gegenbauer polynomial when n is a non-negative integer,

which is our case. The corresponding energy eigenvalues are given by �n = ��2n�
4 ; �n > 0, where

�n�
2 = [�2(v + 1=2)2 + (1� �2)(n+ 1=2)2]1=2 � (n+ 1=2): (19)

Notice the relationship between the energy levels which will be extensively used in what follows,

(�2n � �2n�1)�
2 = (�2n� (2n+ 1)�n + (2n� 1)�n�1): (20)

d

In order to construct the superfamily we �rstly fac-
torize the Natanzon potential, calling V (r) = V1(r) =

V�(r) + �
(1)
0 , [6]. The factorized Schr�odinger equation

is given by

H1 � �
(1)
0 = a+1 a

�

1 ; a�1 = �d=dr +W1(r) (21)

where �
(1)
n = �n. The superpotentialW1(r) is evaluated

from the knowledge of the ground state eigenfunction

of V (r) by using (8) with 	
(1)
n = 	n, given by (18). It

satis�es the Riccati equation and it is given by

W1(r) = (1� �2)y(y2 � 1)=2 + y�0�
2: (22)

The superpartner Hamiltonian satis�es the equation

H2 � �
(1)
0 = a�1 a

+
1 (23)

which is written in terms of V2(r) as

W 2
1 +W 0

1 = V2(r) � �
(1)
0 (24)

where V2(r), the potential for the second member of the
hierarchy, is given by

c

V2(r) = f��20�
4 + �0�

2 + 1=4(1� �2)[�7(1� �2)y4 + (9� 3�2 � 8�0�
2)y2 � 2]g(1� y2): (25)

d

To construct the next member of the superfamily, we
factorize the Schr�odinger equation for V2. It gives

H2 � �
(2)
0 = a+2 a

�

2 ; a�2 = �d=dr +W2(r) (26)

where W2(r) satis�es the associated Riccati equation,

W 2
2 �W 0

2 = V2(r) � �
(2)
0 : (27)

�
(2)
0 is the energy ground state of the potential V2(r)

and it is such that �
(2)
0 = �

(1)
1 . The superpotential W2

can be computed from the ground state wave function

	
(2)
0 . It is given by W2(r) = � d

dr log(	
(2)
0 ), where

	
(2)
0 = a�1  

(1)
1 , i.e.,

W2(r) = 3=2(1��2)y(y2�1)+y�1�
2�

d

dr
log(f1) (28)

where

f1(y) = 1 + a11y
2; (29)

and the coeÆcient a11 is given by

a11 = (�0 � �1)�
2 � 1: (30)

The new superpartner of H2 is given by

W 2
2 +W 0

2 = V3(r) � �
(2)
0 (31)

where V3(r), the potential for the third member of the
hierarchy, is given by

c

V3(r) = f��21�
4 + �1�

2 + 1=4(1� �2)
�
�27(1� �2)y4 + (33� 15�2)y2 � 6

�
+ (32)

+
2a11g(y)

f1(y)
f1 + (�9 + 6�2 � 2�1�

2)y2 + 8(1� �2)y4g+ 8a211y
2(1� y2)(

g(y)

f1(y)
)2g(1� y2):
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and g(y) = 1� (1� �2)y2. Thus, factorizing the Hamiltonian for this potential we have

H3 � �
(3)
0 = a+3 a

�

3 ; a�3 = �d=dr +W3(r) (33)

where W3(r) satis�es the Riccati equation,

W 2
3 �W 0

3 = V3(r)� �
(3)
0 : (34)

�
(3)
0 is the energy ground state of the potential V3(r), with �

(3)
0 = �

(2)
1 = �

(1)
2 . Again, the superpotential W3 can be

computed from the ground state wave function 	
(3)
0 , de�ned by W3(r) = � d

dr log(	
(3)
0 ), with 	

(3)
0 = a�2 a

�

1  
(1)
2 . It

is given by

W3 = 5=2(1� �2)y(y2 � 1) + y�2�
2 +

d

dr
log(f1)�

d

dr
log(f2) (35)

where
f2(y) = 1 + a21y

2 + a22y
4 (36)

with coeÆcients are given by

a21 = 2(�1 � �2)�
2 � 2

a22 = 1 + �2(2� �0 � 3�1 + 6�2)=3 + �4(�4�0 + 6�1 � 2�2 � �20 � 5�0�2 + 3�0�1 + 3�1�2)=3:

For the next member of the superfamily, we show the result of the evaluation of the superpotential, W4(r) =

� d
dr log(	

(4)
0 ) with 	

(4)
0 = a�3 a

�

2 a
�

1  
(1)
3 . It is given by

W4 = 7=2(1� �2)y(y2 � 1) + y�3�
2 +

d

dr
log(f1) +

d

dr
log(f2)�

d

dr
log(f3) (37)

where f1 and f2 are evaluated in (29) and (36) and f3 is set to

f3(y) = 1 + a31y
2 + a32y

4 + a33y
6; (38)

with the coeÆcients given by

a31 = 3(�2 � �3)�
2 + 2(�0 � �1)�

2 � 5

a32 = 10 + �2(6� 25�0 + 15�1 � 6�2 + 22�3)=3 +

+ �4(6�0 + 2�20 � 18�1 � 6�0�1 + 18�2 + 13�0�2 �

� 3�1�2 � 6�3 � 11�0�3 � 3�1�3 + 8�2�3)=3

a33 = �10 + �2(�6 + 13�0 � 3�1 � 12�2 � 4�3) + �4
�
�

148

15
+

484

45
�0 �

206

45
�20 �

84

5
�1 +

+
42

45
�0�1 + 2�2 +

1

3
�0�2 � �1�2 �

394

45
�3 +

497

45
�0�3 �

59

5
�1�3 �

16

3
�2�3

�
+

+ �6
�8
3
�0 +

328

45
�20 �

116

45
�30 �

24

5
�1 �

48

5
�0�1 +

12

5
�20�1 +

8

3
�2 +

82

9
�0�2 �

�
14

9
�20�2 � 6�1�2 + 2�0�1�2 �

8

15
�3 �

58

45
�0�3 +

182

45
�20�3 �

2

5
�1�3 �

�
26

5
�0�1�3 +

8

9
�2�3 +

44

9
�0�2�3 � 4�0�2�3

�

Casting all the results we have so far for the hierarchy, the following nth-term for the superpotential is induced

Wn+1 = (n+ 1=2)(1� �2)y(y2 � 1) + y�n�
2 +

d

dr
log(

Qn
i=0 fi�1
fn

) ; f0 = f�1 = 1 (39)

where fn(y) is a 2n-order polynomial of the form

fn(y) =

nX
i=0

aniy
2i ; an0 = 1: (40)
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We stress that since Wn+1 is a superpotential it checks the Riccati equation,

W 2
n+1 �W 0

n+1 = Vn+1(r) � �
(n+1)
0 (41)

where Vn+1(r) is the superpartner potential of Vn which satis�es

W 2
n +W 0

n = Vn+1(r) � �n0 : (42)

We have therefore a recursive relationship between Wn+1 and Wn given by

W 2
n+1 �W 0

n+1 =W 2
n +W 0

n + �n0 � �
(n+1)
0 (43)

where �n0 = ��2n�1�
4 and �

(n+1)
0 = ��2n�

4. After the substitutions we end up with the condition

2n(1� �2)2y2(y2 � 1)2 + (y2 � 1)�2
�
((2n� 1)�n�1 � (2n+ 1)�n)(1� (1� �2)y2)� 2n

�
+

+

n�1X
i=0

f 0i�1
fi�1

�
4
f 0n�1
fn�1

� 2
f 0n
fn

+ 2(1� �2)y(y2 � 1) + 2y�2(�n � �n�1)

�
+

+f 0n�1=fn�1
�
4n(1� �2)y(y2 � 1)� 2f 0n=fn + 2y�2(�n + �n�1)

�
� (44)

�f 0n=fn
�
(1� �2)y(y2 � 1)(2n+ 1) + 2y�2�n

�
+ f 00n=fn

�2

n�1X
i=0

f 00i�1
fi�1

+ 2

n�1X
i=0

(
f 0i�1
fi�1

)2 +
�
2n(1� �2)(1� 3y2)� �2(�n + �n�1)

�
dy=dr = 0:

where f 0 = df=dr and f 00 = d2f=dr2.

d

Therefore, fn+1 can be determined from the knowl-
edge of fn. In this way, the particular cases of n = 1,
n = 2 and n = 3 can be checked by inspection and the
resulting functions f1, f2 and f3 perfectly agree with
equations (29) , (36) and (38) respectively. Notice that
the particular case when � = 1 trivially reduces the n-
th term superpotential, equation (39) to Wn+1 = y�n,
with �n = v � n, since all the f 's become 1 once all
the ain's are checked to reduce to zero. The related
potentials of the hierarchy are then given by

Vn+1(r) = �(v � n)(v � n+ 1)=cosh2r n = 0; 1; :::
(45)

This is known as the shape invariant P�oschl-Teller (PT)
potential.

IV Conclusions

The hierarchy of Hamiltonians is studied for the re-
stricted class of Natanzon potentials, (Ginocchio class),
with two parameters and a general form for the super-
potential is proposed. The superalgebra drives us to the
conclusion that the whole superfamily is a collection of
exactly solvable Hamiltonians. The case � = 1 served
as a check of our formulae and was shown to reduce the
original potential to the P�oschl-Teller (PT) potential,
known to be shape invariant.

As a �nal remark, the shape invariance concept in-
troduced by Gedenshtein, [12], has motivated several

discussions about the exactly solvable potentials. In
ref. [8] there is a discussion about this subject which
has recently been extended in [14] concerning potentials
depending on n parameters . The Natanzon potential
is not shape invariant in the usual sense, as most of
the exactly solvable potentials are. However, for the
restricted class analised here, it was possible to obtain
a general form for the superpotential, as shown in the
previous section.

The Hulth�en potential without the potential barrier
term is another example of an exactly solvable potential
which is not shape invariant, but for which it is possible
to determine a general expression for the superpotential
in the hierarchy, [13].
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