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The Spacetime of a Dirac Magnetic Monopole
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We construct a spacetime whose only source of curvature is a Dirac magnetic monopole, and whose
geometry inherits the structure of lines of singularities of the monopole electromagnetic potentials.
The spacetime has the topology S3

� R, is stationary and asymptotically 
at but not asymptoti-
cally Minkowskian, with its 
at null in�nity having the topology of S3. These mild pathologies, as
acausality and string structure, allow the spacetime con�guration to have a gravitational magnetic
mass, which results proportional to the charge � of the monopole. This suggests that the Dirac
monopole may be the source of magnetic mass in gravitational con�gurations, which has no Newto-
nian analogue. Also � has the role of a NUT parameter in the metric of the spacetime, suggesting
that the charge of the monopole can provide a physical realization of the NUT parameter.

I Introduction

Magnetic monopoles are �eld con�gurations that arise
naturally in gauge �eld theories, even at the classical
level. The idea of a magnetic monopole was put for-
ward originally by Dirac in a classical paper [1], and
more recently remade by Wu and Yang [2] in its gen-
eralization for non-Abelian gauge theories. Two funda-
mental concepts are introduced in Dirac's original pa-
per: (i) electromagnetism is a gauge-invariant manifes-
tation of the non-integrability of the phase of the wave
function; (ii) nodal lines of the wave function (space-
like lines along which the wave function vanishes) are
singularity lines of the electromagnetic potential and
the end points of nodal lines are points of singularity
of the electromagnetic �eld. At this singularity there
is a magnetic monopole, such that the total magnetic

ux through a closed surface about this singularity is
di�erent from zero. In other words, although the pair
of Maxwell equations dF = 0 imply that the total mag-
netic 
ux through any closed surface at a given instant
of time must be zero, this is no longer true if a magnetic
monopole is present inside the closed surface. Equation
dF = 0 must be violated in some point of the surface.
Furthermore, it must be violated in some point of any
closed surface enclosing the monopole so that it is vio-
lated along a line of points - which we denote by string
- extending from the monopole to in�nity or to another
pole of same strength and opposite sign. At this point,
some questions may be posed to us. If the magnetic

monopole generates gravitation, does the gravitational
�eld inherits this structure of lines of singularities? And
if it does, what are the physical consequences? An an-
swer to these questions, and which is in part a mo-
tivation for this paper, is connected to the possibility
of the physical realization of a magnetic gravitational
mass generated by the charge of the Dirac monopole.

As a �eld theory, General Relativity also presents
�eld con�gurations which may be associated with mag-
netic mass monopoles and strings. Weird con�gura-
tions of this type are known in General Relativity since
the discovery [3] and analysis [4] of the two parame-
ter NUT vacuum solution. The remarkable feature of
this solution emerges from a new parameter - the NUT
parameter - and, as we will discuss, there are strong
suggestions that this parameter is associated with the
existence of magnetic gravitational charges and wire
structures in the spacetime. The NUT solution was
generalized by Brill to include electromagnetic �elds as
sources of curvature [5] but the physical origin of the
NUT parameter remained obscure. We note that, in
the NUT solution, the vanishing of the NUT parame-
ter yields the Schwarzschild solution while its vanishing
in the NUT-Brill solution results in the known Reissner-
Nordstr�om spacetime.

Although the physical origin of the NUT parameter
is obscure, there has been suggestion in the literature
that the two parameter NUT metric can be considered
as a gravitational dyon. In fact, Hansen [6] showed
that, for stationary and asymptotically 
at solutions
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of vacuum Einstein's equations, two functions can be
introduced - the mass potential �M and the angular
momentum potential �J de�ned on the manifold of or-
bits of the timelike Killing vector - that characterize
uniquely the local structure of these spacetimes. Ex-
panding these potentials in multipole moments, it can
be shown that, for the NUT solution, the monopole
moment associated with �M is the mass, while the
monopole moment associated to �J is the NUT pa-
rameter [7]. The NUT parameter � is then interpreted
as a monopole source of angular momentum, and dual
to the mass in the sense that there is a duality transfor-
mation [6, 8] in the plane (�M ;�J) such that, by this
transformation we may take the Schwarzschild solution
(m;� = 0) into the pure NUT solution (m = 0; �).
Later, Ramaswamy and Sen [9] were able to introduce
a de�nition of dual (or magnetic) mass for stationary
spacetimes and established the precise conditions for a
spacetime to admit dual mass. They showed that for
stationary spacetimes which have the null boundary at
in�nity with the topology of S3 (namely, a S1 bun-
dle over S2), precise expressions can be constructed at
this boundary which characterize mass and dual mass,
based on the Weyl curvature of the spacetime. How-
ever the spacetime must obviously be acausal. This
is exactly the case of the NUT spacetime, where the
dual mass is proportional to the NUT parameter. We
note that spacetimes with asymptotic topology R�S2

have dual mass vanishing identically, what excludes
Reissner-Nordstr�om as a candidate. The mass and the
dual mass are associated with the electric and magnetic
part of the Weyl tensor, respectively, and therefore the
dual mass is denoted magnetic, in the sense of the dual-
ity of electromagnetism (a duality which is also present
connected with the decomposition of the Weyl curva-
ture in its electric and magnetic parts).

In order to understand the nature of the NUT pa-
rameter and its association with the dual or magnetic
mass, we here construct a spacetime with topology
S3�R having a magnetic monopole as the only source
of curvature. As it turns out, the magnetic charge of the
monopole behaves in the solution as a NUT parameter,
thus providing a physical source for the NUT parameter
or dual mass. However pathologies in the solution will
be present because geometrical structures of the space-
time must absorb the singularities of the monopole �eld,
although these pathologies are in a sense necessary to

a precise characterization of dual (magnetic) mass. We
organize the paper as follows. In Section II we con-
struct and analyse a spacetime manifold with topology
S3�R (a basic condition for the existence of dual mass)
and electromagnetic �elds on this manifold, solutions of
Einstein-Maxwell equations. This construction is made
in detail, using Hamilton quaternions and di�erential
forms, which constitute a natural frame for this anal-
ysis. In Sections III and IV we examine relevant ge-
ometrical properties of the spacetime whose curvature
is generated by the magnetic monopole. The curva-
ture tensor and the electric and magnetic parts of the
Weyl tensor are examined, as well as the asymptotic
structure of the spacetime; the magnetic component of
the Weyl curvature is fundamental in characterizing the
dual gravitational mass, as discussed already. We also
examine how the structure of wire singularities both in
the electromagnetic �elds and in the geometry of the
spacetime are intrinsically merged, and use is made of
the violation of the Poincar�e Lemma in topologically
non-trivial spacetime domains in order to characterize
the nature of these singularities. We also introduce Mis-
ner's type coordinates to properly connect the electro-
magnetic potential to the geometry 1-forms, and relate
gauge transformations of the potentials to transforma-
tions in temporal coordinates de�ned on S1. In Section
V conclusions are made, with some discussions on the
pathologies of the solution as acausality, and possible
interest of these objects for quantum gravity.

II The Spacetime with Topology

S3
�R Generated by the Dirac

Monopole

The methods used in part of this Section are partially
borrowed from Ref.[10] and are presented here for com-
pleteness. Calculations are not given in detail but they
can be checked without diÆculty.

Let E4 be the four dimensional Euclidean space with
Cartesian coordinates (a0; a1; a2; a3). We de�ne the hy-
persurface S3 of E4 as the set of points which satisfy

(a0)2 + (a1)2 + (a2)2 + (a3)2 = 1: (1)

For every a = (a0; a1; a2; a3) and b = (b0; b1; b2; b3) 2
S3 we de�ne the multiplication law

c

ab = (a0b0 � a1b1 � a2b2 � a3b3; a0b1 + a1b0 + a2b3 � a3b2;

a0b2 + a2b0 + a3b1 � a1b3; a0b3 + a3b0 + a1b2 � a2b1) (2)
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This is the multiplication law of Hamilton quaternions
[11]. Under (2) S3 becomes a group, acting on itself by
left multiplication; namely, for a given v 2 S3, a left
motion of S3 into itself is expressed as

a0 = va (3)

and we have that a0 2 S3 for all a 2 S3. S3 is said sim-
ply transitive since for each a 2 S3 there exists only one
left motion v from a to a given a0, namely, v = a�1a0.

S3 acting on itself by left multiplication (3) is a Lie
group with the three independent left-invariant vectors
�elds

e�(0)(a) = (�a1; a0; a3;�a2)

e�(1)(a) = (�a2;�a3; a0; a1) (4)

e�(2)(a) = (�a3; a2;�a1; a0)

They are obtained by an arbitrary left motion a of the
three independent unit vectors (0; 1; 0; 0), (0; 0; 1; 0) and
(0; 0; 0; 1) which de�ne the tangent space of S3 at the
identity (1; 0; 0; 0). We remark that a left-invariant
vector �eld �(a) on the Lie group S3 is de�ned by
v�(a) = �(va), for all v; a 2 S3.

We have an analogous picture for right motions of
S3 on itself, namely

a0 = av (5)

with the corresponding right-invariant vector �elds on
S3,

d�(0)(a) = (�a1; a0;�a3; a2)

d�(1)(a) = (�a2; a3; a0;�a1) (6)

d�(2)(a) = (�a3;�a2; a1; a0)

Bases (4) and (6), expressed as e(i)(a) =
1
2e

�

(i)
@
@a�

and d(i)(a) =
1
2d

�

(i)
@
@a�

, constitute two distinct repre-

sentations of the algebra of the Lie Group S3,

[e(i); e(j)] = Ck
ije(k); (7)

[d(i); d(j)] = �Ck
ije(k); (8)

where Ck
ij = �ijk . They are related by an anti-

isomorphism induced by the inverse map of S3 on itself,
and obviously satisfy

[e(i); d(j)] = 0; i; j = 0; 1; 2: (9)

Introducing on S3 the Euler angles (t; �; �) by the
transformations

a0 = cos
�

2
cos

t+ �

2

a1 = cos
�

2
sin

t+ �

2
(10)

a2 = sin
�

2
sin

t� �

2

a3 = sin
�

2
cos

t� �

2

with t 2 [0; 2�], � 2 [0; �] and � 2 [0; 2�], the left-
invariant vector �elds e(i) are expressed

e(0) =
@

@t

e(1) = sint
@

@�
+ cotg�cost

@

@t
�

cost

sin�

@

@�
(11)

e(2) = cost
@

@�
� cotg�sint

@

@t
+

sint

sin�

@

@�

with corresponding dual left-invariant 1-forms

!0 = dt+ cos�d�

!1 = sintd� � costsin�d� (12)

!2 = costd� + sintsin�d�;

satisfying d!i = ��ijk!
j ^ !k. For future reference we

give the right-invariant vector �elds in this coordinate
system,

d(0) =
@

@�

d(1) = �sin�
@

@�
� cotg�cos�

@

@�
+
cos�

sin�

@

@t
(13)

d(2) = �cos�
@

@�
� cotg�sin�

@

@�
+
sin�

sin�

@

@t

Taking on the one dimensional manifold R the co-
ordinate r (0 � r <1), with vector �eld e(3) =

@
@r

and
1-form !3 = dr, the group S3�R can be characterized
by the left-invariant vector �elds (e(0); e(1); e(2); e(3)),
which satisfy (7) and

[e(i); e(3)] = 0; i = 0; 1; 2; (14)

and which are a basis for the left-invariant vector �elds
on S3 � R; correspondingly the invariant dual 1-forms
(!0; !1; !2; !3) are a basis for the left-invariant 1-forms
on S3�R. The manifold S3�R is the simply transitive
covering group of the algebra (7) and (14).

The geometry is obtained by introducing on S3�R
the left-invariant metric g = gab!

a!b, where gab =
diag(4A2(r);�B2(r);�B2(r);�1) such that the sec-
tions r = const: have the topology of S3; it assumes
the form

g = 4A2(r)(dt + cos�d�)2 � dr2 �B2(r)(d�2 + sin2�d�2):
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In terms of the Lorentzian Cartan frame de�ned by

�0 = 2A(r)(dt + cos�d�)

�1 = B(r)d� (15)

�2 = B(r)sin�d�

�3 = dr

we have g = �AB�
A�B , with �AB =

diag(1;�1;�1;�1) , A;B = 0; 1; 2; 3. By construc-
tion, this geometry has the right-invariant vector �elds
(13) as Killing vectors which act transitively on the
surfaces r = const: Expressing the Maxwell tensor in
this frame as F = FAB�

A ^ �B , Maxwell's equations
in this geometry are given by

dF = 0; dF � = j� =
1

3
jA�ABCD�

B ^�C ^�D (16)

where � denotes the dual operation. For a pure radial
magnetic �eld in the frame (15), we obtain the solution

F12 =
�

B2
; j0 = ��

2A

B4
(17)

other components zero, where the constant � is the
charge of the magnetic monopole, being proportional to
the magnetic 
ux as shown unambiguously in Section
III. The associated Maxwell energy-momentum tensor
results in

TAB =
�2

2B4
diag(1; 1; 1;�1); (18)

and, for this �eld con�guration, Einstein-Maxwell equa-
tions yield the solution A(r) = �=2 and B(r)2 =
r2 + �2=4 or, by a proper rescale of the time variable,

c

g = (dt+ � cos�d�)2 � dr2 � (r2 + �2=4)(d�2 + sin2�d�2): (19)

d

This solution is stationary, with Killing vectors (13)
plus @=@t. We mention that the orbits of the timelike
Killing �eld @=@t, which are de�ned on S3, are closed
timelike geodesics, characterizing the acausal nature of
the spacetime. The time coordinate t in (19) has period
2��.

Also the spacetime is asymptotically 
at for r !1.
However it is not asymptotically Minkowskian, since
r ! 1 has the topology of S3, by construction, and

is therefore acausal. These characteristics allow the
spacetime to be endowed with a dual (magnetic) grav-
itational mass, a point to be discussed in Section IV.
Furthermore, in (19), � has the role of the NUT pa-
rameter, suggesting the charge of the monopole as a
physical realization for the NUT parameter. In the lo-
cal Cartan frame (15), the non-null components of the
curvature tensor are given by

c

R0101 = R0202 =
1

4
R2121 = �R3131 = �R2323 = �

�2

(r2 + �2=4)2

R0123 = R0231 = �
�r

(r2 + �2=4)2

d

showing clearly that the magnetic monopole is the only
source of curvature of the spacetime and consequently
responsible for all the weird properties of the spacetime.
If � = 0, the spacetime is 
at. Note that the curvature
tensor is regular everywhere and only the metric fails
to be regular along the strings of the electromagnetic

potentials A's associated with the magnetic �eld (17),
as shown in the next Section. In this sense we say that
the spacetime exhibits only mild singularities.

The electric and magnetic parts of the Weyl curva-
ture tensor[12] with respect to the Killing vector �eld
@=@t are given, in the frame (15), respectively by
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EAB = diag(0;�E ;�E ; 2E);

HAB = diag(0;H;H;�2H) (20)

where

E = �
�2

4(r2 + �2=4)2
; H = �

�r

2(r2 + �2=4)2
: (21)

The fact that E � O( 1
r4
) and H � (� �

2r3 ), as r ! 1,
is crucial for the characterization of the spacetime as
having zero electric gravitational mass (the usual New-
tonian mass as de�ned asymptotically) and a non-zero
magnetic gravitational mass, connected to the magnetic
part of the Weyl curvature tensor and proportional to
the charge � of the monopole.

III The Magnetic Monopole

String Structure in the Grav-

itational Field. Integrability

Conditions

Let us now examine how the spacetime inherits the
string structure of the magnetic monopole. From (15)
and (17) the monopole Maxwell tensor F can be ex-
pressed as the 2-form

F = � sin�d� ^ d�: (22)

Since dF = 0, we may assume from Poincar�e's Lemma
[13] that there exists a potential 1-form A such that
F = dA, namely, that the 2-form F is exact. However
the Poincar�e's Lemma holds for topologically non com-
plicated domains, that is not the case for the domain of
de�nition of (22). To see this, let us integrate dF = 0
in the 3-dim section of the spacetime r = const: that by
construction is a S3. Taking into account that S3 is a
Hopf �ber bundle[14], with base space S2 coordinated
by (�; �) and Hopf �bers homeomorphic to S1 gener-
ated by the Killing �eld @=@t, this volume integral can
be reduced to

Z
S3

dF =

Z
S2

F = 4�� (23)

which is di�erent of zero for � 6= 0. Since the man-
ifolds S3 and S2 have no boundary, this implies that
in some point of S3 and of the section S2 the equa-
tions dF = 0 and F = dA are violated. To characterize
topologically the domain of de�nition of F , let us con-
sider the manifold S3 which has no boundary. Now
if we extract one point of S3 we obtain a boundary
which is S2. To see this, let us intersect S3 by a plane
which, for simplicity, we take a2 = 0. In the case of

this particular section, the boundary is the unit sphere
S2. We can gradually diminish the radius of S2 tak-
ing sections of type a2 = a20 = const: with increasing
a20 such that the radius becomes very small, namely,
(a0)2+(a1)2+(a3)2 = 1� (a20)

2 = �. This corresponds
to the limiting situation of extracting a point from S3,
obtaining a boundary which is S2 with radius � << 1.
Now S2 is also a manifold without boundary, and there-
fore the second equality in (23) implies that F = dA is
violated at some point of S2. Therefore the topology of
the domain of regularity of F is S2 with one point & re-
moved, with corresponding S3 with one point removed.
And Eq.(23) should actually be expressed

Z
S3�&

dF =

Z
S2�&

F = 4��; (24)

the non-null result of (23) coming from the contribution
of the boundaries @(S3 � &) and @(S2 � &). By contin-
uously varying r, we have in the spacetime a line of
points where this violation occurs, de�ning what is de-
noted by a string structure. Indeed, associated to the
�eld F given in (22) we may have the 1-form potentials

AN = �(1� cos�)d� (25)

AS = ��(1 + cos�)d� (26)

which are singular respectively at � = � and � = 0. In
� = �=2 where both are well de�ned, they are related
by the gauge transformation

AN �AS = d� = d(2��): (27)

Regularity and single-valuedness conditions on the wave
function of a charged particle in interaction with this
monopole magnetic �eld implies that the phase factor
S = e(2��) in the overlap region must be a multiple n
of 2�, which is Dirac's quantization, namely, 2�e = n
(in units such that ~ = c = 1). Here n is a characteristic
of the particular string, corresponding to the quantized
magnetic 
ux through S2(cf. [1]-[2]). We note that the
boundary in S2 � & appearing in the second integral of
(24) is not homotopic equivalent for distinct n's.

Going now to the gravitational �eld of the space-
time, de�ned from (15), let us consider the 1-form
�0 = (dt + �cos�d�). Its exterior derivative yields
d�0 = (��sin�d� ^ d�). A discussion based on
Poincar�e's Lemma, analogous to the one leading to (24),
shows us that the domain of de�nition of �0 presents
a line of singularities where the identity d2�0 = 0 is
violated (this being equivalent to the violation of the
identity for the Riemann tensor RA

[BCD] = 0). What is
the relation between these lines of singularities in the
geometry and those of the electromagnetic potentials
A? The answer is direct. The lines of singularities of
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the electromagnetic potentials A (cf. (25)) are inherited
by the spacetime and coincide exactly with the lines of
singularities which lead to the violation of d2�0 = 0.

To see this, let us introduce coordinates which al-
low us to connect the 1-forms of the geometry with the
electromagnetic potentials (25). We consider �rst the
coordinate t in (19). >From (15) we can express

dt = �0 � �
cotg�

B
�2;

up to a rescale of the time variable in �0 analogous as
done in (19). In the metric (19), we have g(dt; dt) =
1 � �2(cotg�=B)2. Therefore this temporal coordinate
makes the metric singular both in � = 0 and � = �.
However we can de�ne two new distinct temporal coor-
dinates in such a way that the geometry is singular in a
single value of the angle �, either � = 0 or � = �, of S3.
This can be done by analyzing the topology induced by
S3 on the space of the Euler angles (t; �; �) introduced
in (10), giving us a picture of S3 as the union of two
solid tori with their surfaces identi�ed.

Consider Eqs.(10) de�ning points in S3 and the cube
of Fig.1 in the Cartesian space (t; �; �). Let us now
make in (10) the transformations

t! t+ �; �! �+ � (28)

with � = 2n�. These transformations do not alter
the points of S3, and therefore the planes t0 and �0 of
the cube of Fig.1 must be identi�ed respectively with
the planes t0 + � and �0 + �. In this way, for each
� = �0 = const: we have a torus T 2 obtained by the
identi�cations shown in Fig.2.

Figure 1. Cube in the space (t; �; �) whose points are in
1 � 1 correspondence with the points of S3 by the trans-
formations (10). This identi�cation makes S3 topologically
equivalent to the union of two solid tori with their surfaces
identi�ed.

c

Figure 2. E�ect of the identi�cation (28) on the plane � = �0 of the cube of Fig.1, resulting in a torus T 2.

d

Now we show that the planes � = 0 and � = � are
reduced, by identi�cations, to one-dimensional tori T 1,
that is, circles S1. Let us examine the case � = 0:
from (10) we have that (a0 = cos(t + �)=2; a1 =
sin(t+�)=2; a2 = 0; a3 = 0). These points of S3 remain
invariant by the transformations

t! t+ Æ; �! �� Æ; (29)

for any arbitrary constant Æ. Thus all points of the
plane � = 0 related by (29) must be identi�ed. In other
words, all points of the straight lines t + � = ��0, ��0

an arbitrary constant, must be identi�ed; each of the
straight lines t+ � = ��0 is reduced to a point that can
be characterized by the constant ��0. This constant may
then be used as a coordinate for the circle S1 obtained
by the identi�cations (28)-(29), and denoted by tN ,

tN � ��0 = t+ �: (30)

Analogously, for � = � we have from (10) that
(a0 = 0; a1 = 0; a2 = sin(t � �)=2; a3 = cos(t � �)=2).
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Now the points of S3 remain invariant by the transfor-
mation

t! t+ Æ; �! �+ Æ; (31)

with Æ an arbitrary constant. The points of � = �
related by (31) must be identi�ed. These points now
belong to the straight lines t � � = �0, �0 an arbitrary
constant, each of which is reduced to a point charac-
terized by �0 and this constant can be used as a coor-
dinate for the circle S1 obtained by the identi�cations

(28)-(31), and denoted by tS ,

tS � �0 = t� �: (32)

We can now use these coordinates tN and tS , to-
gether with (�; �), to characterize S3 as the union of
two solid tori identi�ed by its boundary, given by the
torus T 2 corresponding to � = �0 (0 < �0 < �), as illus-
trated in Fig.3. We �x �0 = �=2 such that each solid
torus corresponds to a hemisphere of S3.

c

Figure 3. Representation of S3 as two solid tori identi�ed by their surfaces � = �=2, resulting from the identi�cations (28),
(29) and (31). tN and tS are Misner's coordinates de�ned on the inner circles of each solid torus.

d

Note that by a rescale of t as done in (19), we have
actually

tN = t+ ��; tS = t� ��: (33)

These two new time variables have period 2��, and
are related by

tN = tS + 2��: (34)

A trivial calculation gives, for the Cartan metric 1-
form �0 (cf. (15))

�0
N = dtN �AN (35)

�0
S = dtS �AS (36)

Thus, as mentioned before, in the time coordinate tN ,
the metric is regular at � = 0 and has a line of singu-
larities along � = �, coinciding with the string of the
electromagnetic potential AN . Analogously, for tS , the
metric is regular at � = � and has a line of singularities
along � = 0, coinciding with the string of the electro-
magnetic potential AS . These time coordinates display
clearly how the metric inherits the string structure of
the magnetic monopole potentials. Note that the gauge
transformations (27) which relate AN and AS also con-
nect �0

N and �0
S. In general the gauge transformations

of the electromagnetic potentials A's are absorbed by
transformations in the temporal coordinates tN and tS
de�ned on the S1 manifolds at the center of the two
solid tori of Figure 3. In this instance, Dirac's quanti-
zation of the charge of the monopole de�ne the winding
number n of the periodic coordinates tN and tS de�ned
on S1, where n is associated to the quantized magnetic

ux through a two sphere enclosing the monopole. In
a equivalent way, from the point of view of �ber bun-
dle structure of S3, the winding number n characterizes
the periodicity of the integral curves of the vector �eld
@=@t de�ned on the �bers homeomorphic to S1. Coor-
dinates (33) were originally introduced by Misner[4] in
his analysis of the topology of the NUT geometry.

IV The S3 Null In�nity and the

Gravitational Magnetic Mass

Let us discuss concisely the idea of dual (or mag-
netic) mass as de�ned by Ramaswamy and Sen[9]. They
showed that for stationary spacetimes which have a null
boundary at in�nity with topology S3 (namely, having
the structure of a principal S1 �ber bundle over S2)
precise expressions can be constructed at this bound-
ary characterizing mass and dual mass, based on the
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Weyl curvature of the spacetime. This condition is es-
sential since a null in�nity with topology S2 �R (with
R being the null generators), e.g., in asymptotically
Minkowskian spacetimes, the dual mass vanishes iden-
tically.

The introduction of a structure of null in�nity with
the S3 topology in the spacetime of (19) can be imple-
mented as follows. To start, let us note that the space-
time has topology S3�R, with the timelike Killing vec-

tor �eld @=@t generating the S1 Hopf �bers of S3. This
implies that there exists closed timelike curves (in fact,
closed timelike geodesics) and no global spacelike sur-
faces in the spacetime. Although the notion of spatial
in�nity cannot be introduced, the notion of null in�nity
exists. Let us de�ne new coordinates xa = (u; �; �; x)
by u = t� r, x = r�1, with u having also the period of
2��. In this new coordinate system, the geometry (19)
takes the form

c

g = (du+
dx

x2
+ � cos�d�)2 � (

1

x2
+
�2

4
)(d�2 + sin2�d�2)�

dx2

x4
(37)

d

The Penrose conformal compacti�cation of the space-
time at in�nity can be implemented by introducing a
conformal transformation on the geometry, with con-
formal factor 
 = x and to extend the coordinate
chart to include x = 0, namely points at in�nity
r ! 1 for all u; �; �. The spacetime manifold is
now endowed with a three-sphere boundary at r ! 1
in�nity,that is, at 
 = 0. The geometrical struc-
ture of the null in�nity J is given by the vector �eld
na = gabrb
 j
=0= (@=@u)a (which is the timelike
Killing translation @=@t on J ) and the degenerate met-
ric �g = 
2g, evaluated at x = 0; dx = 0. Namely, the
asymptotically 
at null in�nity J is a null three-sphere
coordinatized by xa = (u; �; �), a = 0; 1; 2, with the de-
generate metric �gab = diag(0;�1;�sin2�), and vector
�eld na = (1; 0; 0) = ( @

@u
)a.

Let us consider a BMS in�nitesimal supertransla-
tion generated by na on J ; associated with this su-
pertranslation the total energy-momentum pa can be
de�ned in a given gauge by pa = Kablb, with lb a cov-
ector on J such that nala = �1 and Kab is associated
with the asymptotic electric part of the Weyl curvature
tensor. From pa the electric mass (the usual Newtonian
mass)

MJ =
1

32�

Z
S2

�abcp
cdSab (38)

is de�ned, at the instant represented by the cross sec-
tion S2 of J . To de�ne the dual mass, the natural can-
didate to be considered is �pa = �Kablb, where

�Kab

is the asymptotic magnetic part of the Weyl curvature
tensor, resulting analogously

NJ =
1

32�

Z
S2

�abc
�pcdSab: (39)

In the case of stationary spacetime (more speci�cally,
in the absence of gravitational waves) both the elec-
tric gravitational mass (38) and the dual (or magnetic)

gravitational mass (39) are well de�ned, gauge invari-
ant and independent of the choice of la, and also inde-
pendent of the choice of the cross section. The duality
aspect is connected to the duality between the electric
and magnetic parts of the Weyl curvature[12], analo-
gous to the duality in electromagnetism, leading us to
denote the above de�ned quantity (39) equivalently as
dual mass or magnetic gravitational mass.

For our spacetime (19), the mass and the dual mass
are calculated through the quantities de�ned on J ,

Kab = lim
!0(4

�3Epqg

pagqb)
�Kab = lim
!0(4


�3Hpqg
pagqb);

respectively. In the limit, only the following terms sur-
vive,

Kab = limr!1(4r
3E33)n

anb;
�Kab = limr!1(4r

3H33)n
anb;

where E33 and H33 are the electric and magnetic com-
ponents of the Weyl curvature of the spacetime given
in (20)-(21). Note that the geometry �g calculated at

 = 0 in the coordinate system xa = (u; �; �; x) is
�g j
=0= �2dudx � 2� cos�d�dx � (d�2 + sin2�d�2).
It results

Kab = 0; �Kab = 4�nanb; (40)

yielding from (38) and (39) the gravitational electric
mass MJ = 0 and the dual(or magnetic)-gravitational
mass

NJ = ��=2: (41)
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In this way, the charge of the Dirac magnetic monopole
is the source for the magnetic gravitational mass of
the spacetime. The fact that the spacetime inherits
the structure of singularities of the monopole �eld is
fundamental to turn it into a candidate with the mild
pathologies (as acausality and asymptotically 
at null
in�nity with the topology of S3) necessary for the def-
inition of magnetic gravitational mass, with the charge
of the monopole providing a possible physical realiza-
tion of the NUT parameter.

V Conclusions an Final Com-

ments

In this paper we basically construct a spacetime
whose only source of curvature is a Dirac magnetic
monopole, and whose geometry inherits the structure
of singularities of the monopole electromagnetic po-
tentials. The spacetime has topology S3 � R, is sta-
tionary and asymptotically 
at but not asymptotically
Minkowskian, by construction. The curvature tensor
is regular everywhere and only the metric fails to be
regular along the strings of the monopole electromag-
netic potentials. The metric depends on one parame-
ter �, the charge of the monopole; � has the role of
the NUT parameter suggesting that the charge of the
monopole constitutes a possible physical realization of
the NUT parameter. The timelike lines are de�ned on
S3 implying the existence of closed timelike geodesics
and no global spacelike surfaces in the spacetime. Al-
though the notion of spatial in�nity cannot be intro-
duced, the notion of null in�nity J exists, with the
topology of S3. This structure plus the mild patholo-
gies (as strings and acausality) turn the spacetime into a
candidate for a gravitational con�guration having mag-
netic gravitational mass, associated with the non-null
magnetic part of the Weyl curvature present due to
the monopole. In the framework introduced by Ra-
maswamy and Sen[9], where the spacetime is stationary
(no gravitational waves are present), a precise de�ni-
tion of magnetic gravitational mass can be established
dual to the de�nition of electric gravitational mass (the
usual Newtonian mass as de�ned asymptotically), both
de�nitions based on BMS supertranslations de�ned on
the null in�nity with topology S3 (a S1 Hopf �ber bun-
dle over S2). It turns out that the spacetime of the
Dirac magnetic monopole is a con�guration with zero
electric gravitational mass, and magnetic gravitational
mass proportional to the charge of the monopole.

Ashtekar and Sen[15] extended the framework of [9]
to cases in which gravitational waves may be present
(more speci�cally, in which the Bondi news function
does not vanish). They showed that, while the elec-
tric gravitational mass can be radiated away in form
of gravitational waves (with balance equations given
by Bondi-Sachs analysis[16]) the magnetic gravitational

mass cannot be radiated away. In this aspect, the mag-
netic gravitational mass of our model (which is propor-
tional to the magnetic charge of the monopole) is in
perfect accordance with Abelian Maxwell theory where
both electric and magnetic charges are absolutely con-
served, and opposed to non-Abelian Yang-Mills theories
where both charges may be radiated away. We remark
once again that in our model the electric gravitational
mass is zero.

A possible extension of our paper to be exam-
ined would be to uncover the possible spacetime struc-
tures having magnetic monopole con�gurations in non-
Abelian gauge theories[17] as the only source of curva-
ture and how they could possibly be the source of elec-
tric and magnetic gravitational masses of these space-
time con�gurations.

We must comment that the spacetime structure dis-
cussed may not be of interest as a model for gravita-
tional con�gurations of macroscopic objects, because of
its pathologies as causality violation. However the in-
terest in these con�gurations may come from quantum
gravity where dual mass vacuum solutions are station-
ary points of the gravitational action functional and
may play an important role in Euclidean quantum grav-
ity.

Finally we mention that a tentative for establishing
the equation of motion of point particles with magnetic
gravitational mass were proposed in [18], based on the
Jacobi equation for geodesic deviation where, by the
same process of duality analogy, the electric part of the
Weyl tensor is substituted by the its magnetic part.
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