
Brazilian Journal of Physics, vol. 32, no. 2A, June, 2002 293

E�ect of the Lead Dimensionality

Over Transport Properties in Quantum Dots

L. Craco
1
and G. Cuniberti

2

1Instituto de F��sica \Gleb Wataghin", Unicamp, 13.081-970 Campinas, SP, Brazil
2Max{Planck{Institut f�ur Physik komplexer Systeme, N�othnitzer Str. 38, D-01187 Dresden, Germany

Received on 23 April, 2001

We theoretically investigate the e�ect of the lead dimensionality on the non-equilibrium electron
transport through quantum dots. More precisely, we study nonlinear transport in a quantum
dot coupled to leads of diverse dimensionality. We show that the presence of the latter strongly
determines the resulting transport properties. Di�erently from higher dimensional leads (wide and
smooth band limit), van Hove singularities in the density of states of low{dimensional reservoirs
determine sharp resonances in the di�erential conductance at �nite applied voltages as well as in
the dot spectral density. It is also shown that, due to the �niteness of the terminal bandwidth,
the di�erential conductance change its sign at higher biases. These results clearly indicate that
the environment does play an important rôle in determining transport properties in mesoscopic
systems.

Quantum dots represent perhaps the ultimate limit

in the design of miniaturized electronic circuits. Trans-

port measurements o�ered a wide variety of informa-

tion for the theoretical understanding of the quantum

dot physics especially as concerning to the role of single
electron charging [1], spin ground states electronic cor-

relation [2], and Kondo e�ect [3]. One of the unsolved

issues of the foremost nanofabrication is the interfacing

between quantum dots and the external environment.
The byproducts of this e�ort can give operational cri-

teria for the potential applicability of these structures

in large scale integration. Low dimensional systems are

thought as possible tools for overcoming this diÆculty.

Examples come from the hybridation of biological and
electronic material [4], and from novel 1D-like materials

such as carbon nanotubes [5]. A theoretical comprehen-

sion of the coupling between di�erent dimensional elec-

tronic systems in transport experiments is consequently
needed.

To the purpose of understanding the interplay be-

tween small dots and low dimensional reservoirs coupled

to them, we consider here a single level quantum dot

(QD) connected to leads of di�erent dimensionality. We

model the experimentally plausible case in which a QD
is coupled to two van Hove leads (vHL), that are non in-

teracting 1D reservoirs, and to high dimensional reser-

voirs with parabolic (PL) density of states (DOS) [6].

We also consider the mixed con�guration where the QD
is simultaneously connected to two di�erent terminals:

vHL and PL leads.

Here we treat the simplest model that takes into ac-

count the resonant tunneling through a single quantum

state, more precisely, the noninteracting two-orbital

Anderson impurity model. This model has the advan-

tage of being reduced in complexity so that it preserves

exactly solvable features, and consequently it allows a
deep investigation of the possible physical behavior in

the full parameter range. Moreover, it grasps the ba-

sic physics of more sophisticated system such as Kondo

systems in the strong coupling limit [7].
The noninteracting two-orbital Anderson impurity

model is described by the Hamiltonian

H =
X
k;�;�
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where "�k represents the single particle energy in the

reservoir � = L;R with their chemical potential di�er-

ence being the applied voltage, that is �L � �R = eV .

The parameters "0 and t
�
k denote the single particle en-

ergy in the single level QD and the coupling between

QD and reservoir states, respectively.

To make contact with experiments we calculate the

current using the Landauer [8] formula

I =
2e

~

X
�

Z
d! ~�(!) [fL(!)� fR(!)] ��(!); (2)

where ~�(!) = �L(!)�R(!)=(�L(!) + �R(!)), ��(!) =

�
P

k jt�k j2 Æ(! � "k�) is the coupling between the dot
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level and the lead �. In Eq. (2) the transmission prob-

ability span the product of ~�(!), the Fermi function

of leads f�(!) = 1=(e�(!���) + 1) and the spectral

density of states (DOS) of the electron in the QD:
��(!) = � 1

�
ImG�(!).

The retarded one-particle Green's function for the

noninteracting Anderson impurity model is given by

G�(!) =
1

! � "0 ��(!)
; (3)

where �(!) =
P

���(!) is the self-energy due to the
tunneling into the leads, which is given by

��(!) =
X
k2�

jt�k j2
! � "�k

: (4)

In what follows we will assume an k-independent

coupling between the leads and the single level QD:

t�k � t� = 0:25W�, W� is the half with of conduction

band in the reservoir �. In doing so, the k-dependence
in Eq. (4) is restricted to the tight-binding energies "�k
and one can naturally replace the sum over k by and

integral in energy in the form

��(!) = t2�

Z
d�

��0 (�)

! + �� � �
; (5)

where ��0 (�) is the uncorrelated DOS for the reservoirs.

In the case of vHL, we consider a 1D system for which
��0 (�) =

�(W��j�j)p
W 2
�
��2

[9]. To describe a system where the

e�ect of the van Hove singularities is absent, we con-

sider an hypercubic lattice (PL) whose orbital is de-

scribed by ��0 (�) =
3

4W�

(1� �2

W 2
�

) for j�j �W� and zero

otherwise [10].

Let us now turn our attention to the numerical re-

sults. Without loss of generality, we will consider here
the symmetric "0 = 0 (zero gate voltage) case at zero

temperature. The van Hove singularities observed in

the density of states (DOS) of the QD at Figs. (1a)

and (1b) are related with the presence of the same

singularities in the leads. It is well known that the
singularities in a free electron 1D system appears in

the border of the band. Since in the equilibrium case

eV = 0W (W� � W ) the bands of the left and right

leads coincide, we therefore observe only two van Hove
singularities in DOS of the single level quantum dot,

see Fig. (1a). Once the applied voltage is considered

eV 6= O, as in Fig. (1b), the Fermi level of the two

leads are shifted from the equilibrium value and the to-

tal DOS of the external bath �(!) for the pure 1D envi-
ronment presents four van Hove singularities. Since the

dot feels the presence of both reservoirs simultaneously,

we consequently observe four singularities for �nite ap-

plied voltage. As one can see in Figs. (1a) and (1b) the
spectral DOS of the dot is symmetric around the zero

bias voltage for the non-mixed scenarios (vHL and PL)

in both equilibrium and non-equilibrium cases. This

symmetric property breaks down in the mixed con�g-

uration for eV 6= 0. In this regime the central peak is

shifted to positive energies and due to the bias voltage
the two vH singularities of the 1D reservoir are also

shifted to positive energies, as one can see in Fig. (1b).
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Figure 1. Spectral DOS for (a) eV = 0 and (b) eV = 0:75
in the three di�erent environment con�gurations: parabolic
leads (dotted line), 1D-leads (dashed line) and the hybrid
case (solid line).

Our results for the di�erential conductance and the
current are shown in Figs. (2a) and (2b), respectively.
As expected the di�erential conductance is decreasing
when increasing the bias voltage in the vHL, PL and
mixed scenarios. Nevertheless when the bias voltage
approaches the critical value Wc � W=e the lead di-
mensionality may be revealed by nonequilibrium calcu-
lations. In fact, the presence of at least one vH lead in-
duces a resonance in the di�erential conductance, which
does not appear in the PL case, see Fig. (2a). By fur-
ther increasing the bias voltage a negative di�erential
conductance is obtained for all systems. In the case of
pure vHL reservoirs, we also observe a large negative
resonance at the border of the band, while for the PL
is characterized by a suppression of dI=dV at the same
energy.

In Fig. (2b) we show our results for the current. As
one can see, the current �rst increases up to energies
near Wc and after start to decrease due to the �nite-
ness of the lead bandwidth. The resonance observed in
the di�erential conductance at the critical bias voltage
in both vHL and mixed con�gurations is closely related
to the sharp increasing of the current at energies just
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below Wc. It is important to mention here that similar
type of e�ect has been recently observed in current-
voltage measurements of gold point contacts coupled
to (BCS) superconducting aluminum leads [11].
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Figure 2. Di�erential conductance (a) and the current (b),
respectively, for eV = 0 in the three di�erent environ-
ment con�gurations: parabolic leads (dotted line), 1D-leads
(dashed line) and the hybrid case (solid line).

Summarizing, we have investigated the nonequilib-
rium electron transport through a QD connected to
leads of di�erent dimensionality. The peculiar nature of
the leads is re
ected in a resonant behavior of the dif-
ferential conductance induced by a discontinuity in the
current. Contrary to parabolic DOS leads (emerging
in systems with large coordination number), the cur-
rent and the di�erential conductance manifest abrupt
changes for values of the external applied voltage which
match the one-dimensional half bandwidth.

Acknowledgments

LC was also supported by the Funda�c~ao de Amparo
�a Pesquisa do Estado de S~ao Paulo (FAPESP). The

research of GC at MPI is sponsored by the Schloe�-
mann Foundation. We acknowledge the kind help of
the editorial oÆce of the Brazilian Physical Society in
the edition of the Proceedings of the BWSP-10.

References

[1] Single Charge Tunneling, Vol. 294 of NATO Advanced

Study Institute series B, edited by H. Grabert and M. H.
Devoret (Plenum Press, New York, 1992).

[2] T. H. Oosterkamp et al., Phys. Rev. Lett. 80, 4951
(1998).

[3] D. Goldhaber{Gordon et al., Nature 391, 156 (1998);
S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwen-
hoven, Science 281, 540 (1998).

[4] D. Porath, A. Bezryadin, S. de Vries, and C. Dekker,
Nature 403, 635 (2000); B. Crone et al., Nature 403,
521 (2000); S. S. Wong et al., Nature 394, 52 (1998).

[5] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys-
ical Properties of Carbon Nanotubes (World Scienti�c
Publishing Co. Pte. Ltd., London, 1998).

[6] L. Craco and K. Kang, Phys. Rev. B 59, 12244 (1998).

[7] By using the slave boson representation with mean �eld
approximation the solution the strongly correlated An-
derson impurity model is mapped onto the noninteract-
ing one with the hybridisation and the bound state self-
consistently renormalized, for more details see for ex-
ample, G. M. Zhang et al., Phys. Rev. Lett. 86, 704
(2001).

[8] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512
(1992).

[9] E. N. Economou, Green's Functions in Quantum Physics

(Springer, Berlin, 1990).

[10] L. G. Brunet, R. M. Ribeiro Teixeira, and J. R. Iglesias,
Solid State Comm. 68, 477 (1988).

[11] E. Scheer et al., Phys. Rev. Lett. 86, 284 (2001).


