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In this work we review some features of topological defects in �eld theory models for real scalar
�elds. We investigate topological defects in models involving one and two or more real scalar �elds.
In models involving a single �eld we examine two di�erent subclasses of models, which support
one or more topological defects. In models involving two or more real scalar �elds, we explore the
presence of defects that live inside topological defects, and junctions and networks of defects. In
the case of junctions of defects we investigte structures that simulate nanotubes and fulerenes. Our
investigations may also be used to describe nonlinear properties of polymers, Langmuir �lms and
optical solitons in �bers.

I Introduction

Research on topological defects in Field Theory was ini-

ciated almost three decades ago, and some of the main

investigations may be found for instance in Refs. [1-

5]. In the case of topological defects that appears in

models described by real scalar �elds in (1; 1) space-

time dimensions, they are usually named kinks, and

are classical static solutions of the equations of motion.

Their topological behavior is related to the asymptotic

form of the �eld con�gurations, which has to di�er in

both the positive and negative space directions. To en-

sure that the classical solutions have �nite energy, one

requires that the asymptotic behavior of the solutions

is identi�ed with minima of the potential that de�nes

the system under consideration, so in general the po-

tential has to include at least two distinct minima for

the system to support topological solutions.

We can investigate real scalar �elds in (3; 1) space-

time dimensions, and now the topological solutions are

named domain walls. These domain walls are bidimen-

sional structures that carry surface tension, which is

identi�ed with the energy of the classical solutions that

spring in (1; 1) space-time dimensions. The domain wall

structures are supposed to play a role in applications to

several di�erent contexts, ranging from the low energy

scale of condensed matter [6-8] up to the high energy

scale required in the physics of elementary particles,

�elds and cosmology [1-5].

There are at least three classes of models that sup-

port kinks or domain walls. In the �rst class one deals

with a single real scalar �eld, and the topological solu-

tions are structureless. Examples of this are the sine-

Gordon and �4 models. In the second class of models

one also deals with a single real scalar �eld, but now the

systems comprise at least two distinct domain walls. An

example of this is the double sine-Gordon model, which

has been investigated for instance in Refs. [9-11]. In the

third class of models we deal with systems de�ned by

two real scalar �elds, and now one opens two new pos-

sibilities: domain walls that admit internal structure

[12-20]. and junctions of domain walls, which appear

in models of two �elds when the potential contains non-

colinear minima, as recently investigated for instance in

Refs. [21-35].

There are other motivations to investigate domain

walls in models of �eld theory, one of them being related

to the fact that the low energy world volume dynam-

ics of branes in string and M theory may be described

by standard models in �eld theory [36-38]. Besides,

one knows that �eld theory models of scalar �elds may

also be used to investigate properties of quasi-linear

polymeric chains, as for instance in the applications of

Refs. [39-42], to describe solitary waves in ferroelectric

crystals, the presence of twistons in polyethylene, and

solitons in Langmuir �lms.

In the present work, in Sec. II we review some known

facts about models described by real scalar �elds. The
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investigations follow in Secs. III and IV, where we

search for topological structures that generate kinks

and walls, in models involving a single real scalar �eld,

and two or more �elds, respectively.

II General considerations

In this work we are interested in �eld theory models

that describe real scalar �elds and support topolog-

ical solutions of the Bogomol'nyi-Prasad-Sommer�eld

(BPS) type [43, 44]. In the case of a single real scalar

�eld �, we consider the Lagrange density

L =
1

2
@��@

��� V (�) (1)

Here V (�) is the potential, which identi�es the particu-

lar model under consideration. We write the potential

in the form V (�) = (1=2)W 2
� , where W = W (�) is a

smooth function of the �eld �, and W� = dW=d�. In

a supersymmetric theory W is the superpotential, and

this is the way we name W in this work.

The equation of motion for � = �(x; t) has the gen-

eral form
@2�

@t2
� @2�

@x2
+
dV

d�
= 0 (2)

and for static solutions we get

d2�

dx2
=W�W�� (3)

It was recently shown in Ref. [45] that this equation of

motion is equivalent to the �rst order equations

d�

dx
= �W� (4)

if one is searching for solutions that obey the boundary

conditions limx!�1 �(x) = ��i and limx!�1(d�=dx) =

0, where ��i is one among the several vacua f��1; ��2; :::g
of the system. In this case the topological solutions

are BPS (+) and anti-BPS (-) solutions. Their ener-

gies get minimized to the value tij = j�Wij j, where
�Wij = Wi �Wj , with Wi standing for W (��i). The

BPS and anti-BPS solutions are de�ned by two vacuum

states belonging to the set of minima that identify the

several topological sectors of the model.

In the case of two real scalar �elds � and � the po-

tential is written in terms of the superpotential, in a

way such that V (�; �) = (1=2)W 2
� + (1=2)W 2

� . The

equations of motion for static �elds are

d2�

dx2
=W�W�� +W�W�� (5)

d2�

dx2
=W�W�� +W�W�� (6)

which are solved by the �rst order equations

d�

dx
= �W�

d�

dx
= �W� (7)

Solutions to these �rst order equations are BPS (+)

and anti-BPS (-) states. They solve the equations of

motion, and have energy minimized to tij = j�W ij j
as in the case of a single �eld; here, however, �W ij =

W (�i; �i)�W (�j ; �j), since now we need a pair of num-

bers (�i; �i) to represent each one of the vacuum states

in the system of two �elds. In the plane (�; �) we may

have minima that are non colinear, openning the pos-

sibility for junctions of defects. In the case of two real

scalar �elds, we can �nd a family of �rst order equations

that are equivalent to the pair of second order equations

of motion, but this requires that the superpotential is

harmonic, obeying W�� +W�� = 0 [45].

III Models involving a single real

scalar �eld

We now turn attention to kinks and domain walls. A

well known example is given by the �4 model, de�ned by

the potential V (�) = (1=2) (�2�1)2. Here we are using

natural units, and dimensionless �elds and coordinates.

In this model the domain wall can be represented by the

solution �s(x) = � tanh(x). The above potential can be

written with the superpotential W (�) = �� �3=3, and
the domain wall is of the BPS or anti-BPS type. The

wall tension corresponding to the BPS wall is ts = 4=3.

We can also �nd structureless domain walls in other

models, for instance in the �6 model, which is described

by the potential V (�) = (1=2)�2 (�2 � 1)2. Here we

have W (�) = (1=2)�2 � (1=4)�4, and the wall con-

�gurations are also of the BPS type, and are given

by ��2s = (1=2)[1 � tanh(x)]. The wall tension is now
�ts = 1=4. This potential was investigated for instance

in Ref. [46].

We can build another class of models where the do-

main walls engender other features. The next class is

yet described by a single �eld, but the systems may now

support two or more di�erent walls. An interesting ex-

ample of this is the double sine-Gordon model, which

is de�ned by the potential

Vr(�) =
1

r + 1

�
4 r cos(�) + cos(2�)

�
(8)

where r is a parameter, real and positive. This potential

is periodic, with period 2�; for simplicity in the follow-

ing we consider the interval �2� < � < 2�. The value
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r = 1 distinguishes two regions, the region r 2 (0; 1)

where the potential contains four minima, and the re-

gion r � 1, where the potential contains two minima.

For r 2 (0; 1) the system supports two distinct wall con-

�gurations, the large wall and the small wall, which dis-

tinguish the two di�erent barrier the model comprises in

this case. The limits r ! 0 and r !1 lead us back to

the sine-Gordon model. The double sine-Gordon model

has been considered in several distinct applications, as

for instance in Ref. [9-11], where one investigates mag-

netic solitons in super
uid 3He, kink propagation in a

model for poling in polyvinylidine 
uoride, and prop-

erties related to the two di�erent kinks that appear in

such polymeric chain.

To expose new features of the double sine-Gordon

model we rewrite Eq. (8) in the form [47]

Vr(�) =
2

1 + r
[cos(�) + r ]2 (9)

where we have omitted an unimportant r-dependent

constant. The model can be described by the super-

potential

W (�) =
2p
1 + r

[sin(�) + r �] (10)

For r in the interval r 2 (0; 1) the minima of the po-

tential are the singular points of the superpotential,

dW=d� = 0. They are periodic, and for �2� < � < 2�

there are four minima, at the points �� = �� � �(r),

where �(r) = cos�1(r). For r � 1 the minima are at
�� = ��, in the interval �2� < � < 2�. A closer in-

spection shows that for 0 < r < 1 the local maxima at

�� and the minima �� � �(r) degenerate to the min-

ima �� for r = 1, and remain there for r > 1. Thus,

the parameter r induces a transition in the behavior

of the double sine-Gordon model. The value r = 1 is

the critical value, since it is the point where the system

changes behavior: for r 2 (0; 1) this model supports

minima that desapear for r � 1. We illustrate the dou-

ble sine-Gordon model in Fig. 1, where we depict the

potential of Eq. (9) for r = 1=3; 2=3 and for r = 1.
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Figure 1. The double sine-Gordon potential, depicted for
r = 1=3; 2=3 and 1 from above to below respectively, to
illustrate how the behavior of the model changes with r.

We get a better view of the phase transition in the
double sine-Gordon model by examining the order pa-
rameter ��(r), which is given by ����(r) for 0 < r � 1,
so it goes continuously to �� for r � 1. Also, the
(squared) mass of the �eld can be obtained via the re-
lation

V 00r (
��) =W 2

���� +W��W�� ���� (11)

where �� is the corresponding minimum of the potential.
For 0 < r � 1 we get m2(r) = 4 � 4r, and for r � 1
we have m2(r) = 4(r � 1)=(r + 1). We plot ��(r) and
m2(r) in Fig. 2. We see that m(r) vanishes in the limit
r ! 1. These results indicate that r drives a second
order phase transition, a transition where the system
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goes from the case of two distinct phases to another
one, engendering a single phase.

We consider 0 < r � 1. The energies of the BPS
solutions are given as follows. For solutions connecting
the minima �� + �(r) and � � �(r) the defect is large
since it joins minima separated by a higher and wider
barrier. We have

tldsG = 4
p
1� r + 4r

� � �(r)p
1 + r

(12)

In the case of the minima � � �(r) and � + �(r) the
defect is small and we get

tsdsG = 4
p
1� r � 4r

�(r)p
1 + r

(13)

We notice that tldsG = tsdsG + 4�r=
p
1 + r, and that

the limit r ! 1 sends tldsG ! 2
p
2� and tsdsG ! 0,

as expected. For the BPS states we can write the solu-
tions explicitly. For instance, for solutions that connect
the minima �� + �(r) and � � �(r) we get large kink
solutions, which are of the form

�l(x) = �2 tan�1
"r

1 + r

1� r
tanh

�p
1� r x

�#
(14)

1 r

π

r1

Figure 2. Plots of ��(r) (above) and m2(r) (below) for the
double sine-Gordon potential, which illustrate how the be-
havior of the model changes with r.

For solutions that connect the minima ���(r) and the
minima �� � �(r) we get small kink solutions. They

are given by

�s(x) = ���2 tan�1

"r
1� r

1 + r
tanh

�p
1� r x

�#
(15)

The potential in Eq. (9) in the limit r ! 0 goes to

V0(�) = 1 + cos(2�) (16)

which leads us back to the sine-Gordon model. Thus,
we can suppose r small and use Vr(�) to explore the
double sine-Gordon model as a model controlled by
a small parameter, in the vicinity of the sine-Gordon
model. This feature may be of some use for inves-
tigations that follow the lines of Ref. [48], and also
in the case concerning the presence of internal modes
of solitary waves, which seems to appear when one
slightly modi�es some integrable model { see for in-
stance Ref. [49].

IV Models involving two or

more real scalar �elds

We now turn attention to the third class of models,
which is described by two real scalar �elds. In this case
the domain walls may engender internal structure. This
line of investigation follows as in Refs. [14-16] and we
illustrate such possibility with the system de�ned by
the potential

V (�; �) =
1

2
(�1 � 1)2 +

1

2
r2
�
�2 � 1

r

�2

+

r(1 + 2r)�2�2 (17)

where the parameter r 6= 0 is real. This model was �rst
investigated in Ref. [50], and can be used to modify the
internal structure of domain walls { see Refs. [16, 51].
This potential follows from the superpotential

W (�; �) = �� 1

3
�3 � r��2 (18)

and the system supports two-�eld solutions. An explicit
solution is

�(x) = tanh(2rx) (19)

�(x) = a(r) sech(2rx) (20)

with a2(r) = 1=r � 2. This is a BPS solution, and now
the parameter r is restricted to the interval r 2 (0; 1=2).
The limit r ! 1=2 lead us to the one-�eld solution
�(x) = tanh(x) and �(x) = 0. As we know, all the
BPS solutions are linearly stable [52].

The two-�eld solutions obey

�2 + �2=a2 = 1 (21)
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which describes an elliptic arc connecting the two min-
ima (�1; 0) of the corresponding potential in the (�; �)
plane. The one-�eld solutions represent standard do-
main walls, while the two-�eld solutions may be seen
as domain walls having internal structure: the vec-
tor (�; �) in con�guration space describes an straight
line segment for the one-�eld solution, and an elliptic
arc for the two-�eld solution, resembling light in the
linearly and elliptically polarized cases, respectively.
The same solutions appear in condensed matter, in
the anysotropic XY model used to describe ferromag-
netic transition in magnetic systems, and there they
are named Ising and Bloch walls, respectively { see for
instance Ref. [8], chapter 7.

We recall that domain walls may be seen as seeds
[4, 5] for the formation of non-topological structures.
This possibility appears in Refs. [51-54], where the dis-
crete symmetry is changed to an approximate symme-
try, or in Ref. [57], with the discrete symmetry biased
so that domains of distinct but degenerate vacua spring
unequally. Domain walls that appear in models involv-
ing two real scalar �elds present features that are not
seen in the case of a single �eld. Thus, we are now inves-
tigating other extensions of the above model, de�ned by
the superpotential of Eq. (18). In the work in Ref. [58]
we are investigating the possibility of changing the el-
liptic arc to a more general orbit, that may �nd applica-
tions in condensed matter. In another work [59] we are
investigating other superpotentials, non-polynomial, in
an e�ort to extend the model studied in [58-60] to the
case of two or more �elds. The model de�ned by the
superpotential of Eq. (18) present other interesting fea-
tures, recently explored in Ref. [63], which deserve fur-
ther investigations.

We now turn our attention to polynomial potentials
that engenders the Z3 symmetry, and that supports
stable three-junctions that generate a regular hexago-
nal network of defects. Investigations on the presence
of junctions [64] of defects in supersymmetric models
have been given in Refs. [21-23], and in Ref. [25] we
have found the fourth-order polynomial potential

V (�; �) = �2�2
�
�2 � 9

4

�
+ �2�2

�
�2 � 9

4

�

+2�2 �2 �2 � �2� (�2 � 3�2) +
27

8
�2(22)

This potential does not allow for supersymmetric exten-
sions. The equations of motion for static con�gurations
that follows in this case are

d2�

dx2
= �2�

�
4�2 + 4�2 � 3�� 9

2

�
+ 3�2�2(23)

d2�

dx2
= �2�

�
4�2 + 4�2 + 6�� 9

2

�
(24)

The potential has three degenerate minima, at the
points v1 = (3=2) (1; 0) and v2;3 = (3=4) (�1;�p3).

These minima form an equilateral triangle, invariant
under the Z3 symmetry. The distance between the min-
ima is (3=2)

p
3.

We can obtain the topological solutions explicitly.
The easiest way to do this follows by �rst examining
the sector that connects the vacua v2 and v3. This is
so because in this case we set � = �3=4, searching for
a strainght-line segment in the (�; �) plane. This is
compatible with the Eq. (23), and reduces the other
Eq. (24) to the form

d2�

dx2
= �2

�
4�3 � 27

4
�

�
(25)

This implies that the orbit connecting the vacua v2 and
v3 is a straight line. It is such that, along the orbit the
� �eld feels the potential �2 [�2�(27=16)]2. This shows
that the model reduces to a model of a single �eld, and
the solution satis�es the �rst-order equation

d�

dx
=
p
2�

�
�2 � 27

16

�
(26)

The solution is

�(x) = �3

4

p
3 tanh

 r
27

8
�x

!
(27)

The other solutions can be obtained by rotations obey-
ing the Z3 symmetry of the model.

The full set of solutions of the equations of motion
are collected below. In the sector connecting the min-
ima v2 and v3 they are

�
(�)
(2;3) = �3

4
(28)

�
(�)
(2;3) = �3

4

p
3 tanh

 r
27

8
�x

!
(29)

In the sector connecting the minima v1 and v2 they are

�
(�)
(1;2) =

3

8
� 9

8
tanh

 r
27

8
�x

!
(30)

�
(�)
(1;2) =

3

8

p
3� 3

8

p
3 tanh

 r
27

8
�x

!
(31)

In the sector connecting the minima v1 and v3 they are

�
(�)
(1;3) =

3

8
� 9

8
tanh

 r
27

8
�x

!
(32)

�
(�)
(1;3) = �3

8

p
3� 3

8

p
3 tanh

 r
27

8
�x

!
(33)

The label (�) is used to identify kink and antikink. All
the solutions have the same energy, (9=4)

p
27=8 j�j.

We examine how the bosonic �elds behave in the
background of the classical solutions. We do this
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by considering 
uctuations around the static solutions
�(x) and �(x). We use the equations of motion to see
that the 
uctuations depend on the potential

U(x) =

�
V�� V��
V�� V��

�
(34)

Evidently, after obtaining the derivatives we substitute
the �elds by their classical static values �(x) and �(x).
The model under consideration is de�ned by the poten-
tial (47). In this case we use (28) and (29) to obtain
two decoupled equations for the 
uctuations. The po-
tentials of the corresponding Schr�odinger-like equations
are

U11(x) =
27

8
�2

"
4� 2 sech2

 r
27

8
�x

!#
(35)

U22(x) =
27

8
�2

"
4� 6 sech2

 r
27

8
�x

!#
(36)

The eigenvalues can be obtained explicitly: in the �
direction we get w�

0 = 0 and w�
1 = (9=2)

p
�2=2, and in

the � direction we have w�
0 = (9=2)

p
�2=2. This shows

that the pair (28) and (29) is stable, and by symmetry
we get that all the three topological solutions are stable
solutions.

The classical solutions present the nice property of
having energy evenly distributed in their gradient (g)
and potential (p) portions. In terms of energy density
they are

g(x) = p(x) =
1

4

�
27

8

�2

�2 sech4

 r
27

8
�x

!
(37)

To understand this feature we recall the calculation
done explicitly in the sector with � = �3=4, constant.
There the model is shown to reduce to a model of a sin-
gle �eld, a model that supports BPS solutions. Within
this context, the above solutions are very much like the
non-BPS solutions that appear in supersymmetric sys-
tems [26]. We use this property and the topological
current

J� = "��@�

�
�

�

�
(38)

It obeys @�J
� = 0, and it is also a vector in the (�; �)

plane. For static con�gurations we have J t� J
� = �t �,

where � = �(�; �) is the charge density. This charge
density allows writing �t� = "(x), where "(x) = g(x) +
p(x) is the (total) energy density of the solution. We
use this result and the notation ij, to identify the sector
connecting the vacua (�i; �i) and (�j ; �j), to show that
for any two di�erent sectors ij and jk, i; j; k = 1; 2; 3
we get that

(�ij + �jk)
t (�ij + �jk) < �tij�ij + �tjk�jk (39)

This condition shows that the three-junction is a pro-
cess of fusion of defects that occurs exothermically, pro-
viding stability of junctions in the present model. This
result is more general than the one in Ref. [64], which
appears within the context of supersymmetry. Evi-
dently, our result also works for BPS and non-BPS solu-
tions that appears in supersymmetric models, with the
property of having energy evenly distributed in their
gradient and potential portions [26].

We notice that the orbits corresponding to the sta-
ble defect solutions form an equilateral triangle in the
(�; �) plane. This is so because the solutions are
straight-line segments joining the three vacuum states
in con�guration space. They are degenerate in energy,
and this allows associating to each defect the same ten-
sion

t =
9

4

r
27

8
j�j (40)

This makes tij < tjk + tki; i; j; k = 1; 2; 3, and now the
inequality is strictly valid in this case, stabilizing the
three-junction that appears in this model when one en-
larges the space-time to three spatial dimensions.

We consider the possibility of junctions in the plane,
which may give rise to a planar network of defects. We
work in (2; 1) space-time dimensions, in the plane (x; y).
We identify the plane (x; y) with the space of con�gu-
rations, the plane (�; �). We illustrate this situation by
considering, for instance, the solutions we have already
obtained. They are collected in Eqs. (28)-(33) in (1,1)
dimensions. In the planar case they change to

c

�
(�)
(2;3) = �3

4
(41)

�
(�)
(2;3) = �3

4

p
3 tanh

 r
27

8
� y

!
(42)

and

�
(�)
(1;2) =

3

8
� 9

8
tanh

 
1

2

r
27

8
� (y +

p
3x)

!
(43)
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�
(�)
(1;2) =

3

8

p
3� 3

8

p
3 tanh

 
1

2

r
27

8
� (y +

p
3x)

!
(44)

and

�
(�)
(1;3) =

3

8
� 9

8
tanh

 
1

2

r
27

8
� (y �

p
3x)

!
(45)

�
(�)
(1;3) = �3

8

p
3� 3

8

p
3 tanh

 
1

2

r
27

8
� (y �

p
3x)

!
(46)

These planar defects are domain walls, and can be used
to represent the three-junction in the limit of thin walls.

The three-junction that appears in this Z3-
symmetric model allows building a network of defects,
precisely in the form of a regular hexagonal network,
as depicted in Fig. 3 in the thin wall approximation.
In this network the tension associated to the defect is
the tipical value of the energy in this tiling of the plane
with a regular hexagonal network, which seems to be
the most eÆcient way of tiling the plane. As we have
shown, our model behaves standardly in (3; 1) dimen-
sions. It supports stable three-junctions that generate
a stable regular hexagonal network of defects.

2

1

2

3

2

1

3

2

3 3

11

3 3

3 3

2

1

Figure 3. A regular hexagonal network of defects, formed
by three-junctions surrounded by domains representing the
vacua v1 = 1; v2 = 2, and v3 = 3.

In Ref. [25] the idea of nesting a network of defects
inside a domain wall has been presented. A model that
contains the basic mechanisms behind this idea was in-
troduced in Ref. [31]. It is described by three real scalar
�elds �, �, and �, and is de�ned by the (dimensionless)
potential,

V (�; �; �) =
2

3

�
�2 � 9

4

�2

+

�
r �2 � 9

4

�
(�2 + �2)

+(�2 + �2)2 � � (�2 � 3�2) (47)

Here r couples � to the pair of �elds (�; �). This po-
tential is polynomial, and contains up to the fourth or-
der power in the �elds. Thus, it behaves standardly in
(3; 1) space-time dimensions. Also, it presents discrete
Z2 � Z3 symmetry. We set (�; �) ! (0; 0), to get the
projection V (�; 0; 0) ! V (�) = (2=3) (�2 � 9=4)2. The
projected potential presents Z2 symmetry, and can be
written with the superpotential W (�) = (2

p
3=9)�3 �

(3
p
3=2)�, in the form V = (1=2)(dW=d�)2. The

reduced model supports the explicit con�gurations
�h(z) = � (3=2) tanh(

p
3z). The tension of the host

wall is th = 3
p
3 = (3=2)mh, where mh represents the

mass of the elementary � meson. Also, the width of the
wall is such that lh � 1=

p
3.

The potentials projected inside (� ! 0) and out-
side (� ! � 3=2) the host domain wall are Vin(�; �)
and Vout(�; �). Inside the wall we have

Vin(�; �) = (�2 + �2)2 � � (�2 � 3�2)

�9

4
(�2 + �2) +

27

8
(48)

This potential engenders the Z3 symmetry, and there
are three global minima, at the points vin1 = (3=2)(1; 0)
and vin2;3 = (3=4)(�1;�p3), which de�ne an equilateral
triangle. Outside the wall we get

Vout(�; �) = (�2 + �2)2 � � (�2 � 3�2)

+
9

4
(r � 1) (�2 + �2) (49)

Vout also engenders the Z3 symmetry, but now the min-
ima depend on r. We can adjust r such that r > 9=8,
which is the condition for the �elds � and � to develop
no non-zero vacuum expectation value outside the host
domain wall, ensuring that the model supports no do-
main defect outside the host domain wall. The restric-
tion of considering quartic potentials forbids the pos-
sibility of describing the Z3 portion of the model with
the complex superpotential used in [21].

We investigate the masses of the elementary �
and � mesons. Inside the wall they degenerate to
the single value min = 3

p
3=2. Outside the wall,

for r > 9=8 they also degenerate to a single value,
mout(r) = 3

p
(r � 1)=2, which depends on r. We see
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that mout(r = 4) = min. Also, mout(r) > min for r
bigger than 4, and mout(r) < min for r in the interval
(9=8; 4).

We study linear stability of the classical solutions
� = �h(z) and (�; �) = (0; 0). The �elds � and � van-
ish classically, and their 
uctuations (�n; �n) decouple.
The procedure leads to two equations for the 
uctu-
ations, that degenerate to the single Schr�odinger-like
equation

� d2 n(z)

dz2
+

9

2
V (z)  n(z) = w2

n  n(z) (50)

Here V (z) = �1 + r tanh2
p
3z. This equation is

of the modi�ed P�oschl-Teller type, and can be ex-
amined analytically. The lowest eigenvalue is w2

0 =
(3=2)

p
6 r + 1 � 6. There is instability for r < 5=2,

showing that the host domain wall with (�; �) = (0; 0)
is unstable and therefore relax to lower energy con�gu-
rations, with (�; �) 6= (0; 0) for r < 5=2. Inside the host
domain wall the sigma �eld vanishes, and the model is
governed by the potential Vin(�; �), which consequently
may allow the presence of non-trivial (�; �) con�gura-
tions. The host domain wall entraps the system de-
scribed by Vin(�; �) for the parameter r in the inter-
val (9=8; 5=2). In this interval we have mout < min,
showing that it is not energetically favorable for the
elementary � and � mesons to live inside the wall for
r 2 (9=8; 5=2). The model automatically suppress back-
reactions of the � and � mesons into the defects that
may appear inside the host domain wall.

In Ref. [25] the potential inside the wall was shown
to admit a network of domain walls, in the form of
a hexagonal array of domain walls. In the thin wall
approximation the network may be represented by the
solutions

�
1

=
3

8
+

9

8
tanh

 
1

2

r
27

8
(y +

p
3x)

!
(51)

�
1

=
3

8

p
3� 3

8

p
3 tanh

 
1

2

r
27

8
(y +

p
3x)

!
(52)

and by (�k ; �k), obtained by rotating the pair (�1; �1)
by 2(k�1)�=3, for k = 2; 3. We identify the space (�; �)
with (x; y), so rotations in (�; �) also rotates the plane
(x; y) accordingly. The energy or tension of the indi-
vidual defects in the network is given by, in the thin
wall approximation, tn = (27=8)

p
3=2 = (9=8) min.

In the nested network, the width of each defect obeys
ln �

p
8=27. This shows that lh=ln = 3=2

p
2, and so

the host domain wall is slightly thicker than the defects
in the nested network. In the thin wall approximation,
the potential Vin(�; �) allows the formation of three-
junctions as reactions that occur exothermically, and
the nested array of thin wall con�gurations is stable.
In Fig. 4 we depict the hexagonal network of defects
inside the domain wall, in the thin wall approximation;

the dashed lines show equilateral triangles, that belong
to the dual lattice. Both the hexagonal network and
the dual triagular network are composed of equilateral
polygons, a fact that follows in accordance with the Z3

symmetry.

Figure 4. The equilateral hexagonal network of defects, that
may live inside the host domain wall. The dashed lines show
the dual lattice, formed by equilateral triangles.

We now explore the breaking of the Z2 � Z3 sym-
metry of the model. The simplest case refers to the
breaking of the Z3 symmetry, without breaking the re-
maining Z2 symmetry. We consider the case of break-
ing the internal Z3 symmetry in the following way. We
take for instance the vacuum state vin1 = (3=2) (1; 0),
and change its position to a location farther from or
closer to the other minima of the system, increasing or
decreasing the angle between two of the three defects;
see Fig. 5. We can do this with the inclusion in the
potential of another term, proportional to the second-
order power on �. We notice that the energy of the
defect depends on the distance between the two min-
ima the defect connects, and goes with the cube of it.
Thus, if the vacuum state deviates signi�cantly from
its Z3-symmetric position, we cannot neglect the cor-
rection to the energy of the defects. This changes the
regular hexagonal pattern of Fig. 4 to two other hexag-
onal patterns, composed of thicker or thinner hexagons.
We recall that hexagonal patterns may appear in chem-
ical systems [65], and in 
uid convection [66] where they
may also involve non-equilateral hexagons.
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Figure 5. The vacuum states (black dots) and the junction
that forms the nested network. (a) and (b) illustrate the
only two ways of breaking the Z3 ! Z2 symmetry.

We explore the presence of local defects in the
hexagonal network by introducing penta-hepta pair of
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cells, in a local deformation of the network that disor-
ganize its otherwise regular pattern. The mechanism is
similar to that of Refs. [67, 68]. However, if the Z2 sym-
metry that governs the host domain wall is e�ective,
local deformations may only appear in a 
at surface,
requiring the pentagons and heptagons are not regu-
lar polygons. This possibility may be seen in B�enard-
Marangoni convection; see Ref. [69] for a report on the
experimental observation of such paterns. But if to-
gether with the slight breaking of the Z3 symmetry of
the internal network, one slightly breaks the Z2 symme-
try of the host domain wall locally, this will ultimately
favor the appearence of local deformations composed
of pair of equilateral pentagons and heptagons. Since
in the network of equilateral hexagons, the presence
of equilateral pentagons and heptagons introduce lo-
cal curvature, positive and negative, respectively, we
can understand these local defects as a mechanism for
roughening the planar surface that contains the net-
work. To break the symmetry of the nested network,
one requires a slight change of position of one of the
three minima of the nested system, so we can neglect
the di�erence in energy and consider the tension as in
the regular hexagonal network. We see that the rough-
ening springs to generate higher energy states from the
planar regular hexagonal structure.

We now concentrate on breaking the Z2 symmetry
of the host domain wall. We can do this with the inclu-
sion in the potential of a term odd in �, that slightly
removes the degeneracy of the two minima � = �3=2.
Thus, the host domain wall bends trying to involve the
local minimum, the false vacuum. To stabilize the non-
topological structure we include charged �elds into the
system. The way one couples the charged �elds is not
unique, but if we choose to add fermions, we can couple
them to the � �eld in a way such that the projection
with (�; �) ! (0; 0) may leave the model supersym-
metric. This is obtained with the superpotentialW (�),
with the Yukawa coupling d2W=d�2 = (4=3)

p
3�. In

this case massless fermions bind [70] to the host domain
wall, and contribute to stabilize [56] the non-topological
defect that emerges with the breaking of the Z2 sym-
metry.

The breaking of the Z2 symmetry can be done
breaking or not the remaining Z3 symmetry of the
model. We examine these two possibilities supposing
that the host domain wall bends under the assump-
tion of spherical symmetry, becoming a non-topological
defect with the standard spherical shape. This is the
minimal surface of genus zero, and according to the Eu-
ler theorem we can only tile the spherical surface with
three-junctions as a regular polygonal network in the
three di�erent ways: with 4 triangles, or 6 squares, or
yet 12 pentagons. They are the tetrahedron, cube, and
dodecahedron, respectively. They are three of the �ve
di�erent ways of tiling the sphere with regular poly-
gons, known as the Platonic solids [71]. These three

cases preserve the Z3 symmetry of the original network,
locally, at the three-junction points. However, if locally
one slightly breaks the Z3 symmetry of the network to
the Z2 one, the three-junctions can now tile the spher-
ical surface with 12 pentagons and 20 hexagons. We
think of breaking the Z3 symmetry minimally, to the
Z2 symmetry, through the same mechanism presented
in Fig. 5. Thus, if the symmetry is broken slightly we
can consider the defect tensions as in the regular hexag-
onal network.

The tiling with 12 pentagons and 20 hexagons gen-
erates a spherical structure that resembles the fullerene,
the buckyball composed of sixty carbon atoms [72, 73].
This is the truncated icosahedron, one among thirteen
di�erent possibilities of tiling the sphere with regular
polygons of two or more distinct types, known as the
Archimedean solids [71]. The truncated icosahedron is
one of the seven Archimedean solids constructed with
triple junctions, and it is the one that breaks the Z3

symmetry very slightly. We visualize the symmetries
involved in the spherical structures thinking of the cor-
responding dual lattices, which are triangular lattices,
but in the three �rst cases the triangles are equilateral,
while in the fourth case they are isosceles. We recall
that regular heptagons introduce negative curvature,
so they cannot appear when the genus zero surface is
minimal. However, they may for instance spring to gen-
erate higher energy states from the fullerene-like struc-
ture, locally roughening the otherwise smooth spherical
surface.

We write the energy of the non-topological structure
as En

nt = Es
nt +En, where E

s
nt stands for the energy of

the standard non-topological defect, and En is the por-
tion due to the nested network. We use Es

nt = Eq+Eh,
which shows the contributions of the charged �elds
and of the host domain wall, respectively. We have
Eh = S th, and En = N d tn, where S is the area of
the spherical surface, and N and d are the number and
length of segments in the nested network. We intro-
duce the ratio En

nt=E
s
nt = 1 + [N=(1 + r)](tn=th)(d=S),

with r = Eq=Eh. The non-topological structure nests
a network of defects, which modi�es the scenario one
gets with the standard domain wall. The modi�ca-
tion depends on the way one couples charged bosons
and fermions to the �; �, and � �elds. However, if
the Z3 symmetry is locally broken to the Z2 one, the
most probable defect corresponds to the fullerene or
buckyball structure. But if the Z3 symmetry is lo-
cally e�ective, there may be three equilateral struc-
tures, the most probable arising as follows. We con-
sider the simpler case of plane polygonal structures,
identifying the tetrahedron (i = 3), cube (i = 4), and
dodecahedron (i = 5). We introduce rij as the en-
ergy ratio for the i and j structures. We get rij =
(1 + r + tn=hi th)=(1 + r + tn=hj th), for i; j = 3; 4; 5.
Here h3; h4, and h5 stand for the radius of the incircle

of the triangle, square, and pentagon, respectively. En-
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ergy favors the triangular lattice as the nested network.
This con�guration is self-dual, because the network and
its dual are the very same triangular lattice. The two
other con�gurations (that add to give the �ve Platonic
solids) are the octahedron, dual to the cube, and the
icosahedron, dual to the dodecahedron. They do not
appear in the Z2�Z3 model because they require four-
and �ve-junctions, respectively.

Our work can be extended in several directions.
For instance, we could use the Z2 � Zk symmetry
(k = 4; 5; 6), getting to k-junctions. This allows to tile
the plane with squares (k = 4), or triangles (k = 6),
and the spherical surface with triangles, as the octahe-
dron (k = 4) or the icosahedron (k = 5). This direction
seems appropriate to model the recent experimental ob-
servations of squares in speci�c Rayleigh-B�enard and
B�enard-Marangoni convections [74, 75]. Also, in the
Z2 � Z3 model, if the host domain wall bends cylin-
drically, one may get to nanotube-like con�gurations
[76, 77]. As one knows, in certain types of nanotubes
one can �nd polarons [78], so we are using this idea to
investigate the presence of chiral polarons in chiral nan-
otubes. Another line of investigations concern the use
of real scalar �elds to map laser beams interacting inside
nonlinear �ber optics, as for instance in the model we
have already presented in Ref. [79], where laser beams
that generate black solitons are used to give rise to a
vector soliton of the black and bright type.
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