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We review recent studies demonstrating a nonuniversal (continuously variable) survival exponent for history-
dependent random walks, and analyze a new example, the hard movable partial reflector. These processes serve
as simplified models of infection in a medium with a history-dependent susceptibility, and for spreading in
systems with an infinite number of absorbing configurations. The memory may take the form of a history-
dependent step length, or be the result of a partial reflector whose position marks the maximum distance the
walker has ventured from the origin. In each case, a process with memory is rendered Markovian by a suitable
expansion of the state space. Asymptotic analysis of the probability generating function shows that, for larget,
the survival probability decays asS(t) ∼ t−δ, whereδ varies with the parameters of the model. We report new
results for ahard partial reflector, i.e., one that moves forward only when the walker does. When the walker
tries to jump to the site R occupied by the reflector, it is reflected back with probabilityr, and stays at R with
probability1−r; only in the latter case does the reflector move (R→R+1). For this model,δ = 1/2(1−r), and
becomes arbitrarily large asr approaches 1. This prediction is confirmed via iteration of the transition matrix,
which also reveals slowly-decaying corrections to scaling.

I Introduction

Random walks with absorbing or reflecting boundaries,
or with memory, serve as important models in statistical
physics, often admitting an exact analysis. Among the many
examples are equilibrium models for polymer adsorption [1-
4] and absorbing-state phase transitions [5]. Another mo-
tivation for the study of such problems is provided by the
spreading of an epidemic in a medium with a long memory
[6, 7].

In addition to the intrinsic interest of such an infection
with memory, our study is motivated by the spread of ac-
tivity in models exhibiting an infinite number of absorbing
configurations (INAC), typified by the pair contact process
[8, 9]. Anomalies in critical spreading for INAC, such as
continuously variable critical exponents, have been traced
to a long memory in the dynamics of the order parameter,
ρ, due to coupling to an auxiliary field that remains frozen
in regions whereρ = 0 [9, 10]. INAC appears to be par-
ticularly relevant to the transition to spatiotemporal chaos,
as shown in a recent study of a coupled-map lattice with
“laminar” and “turbulent” states, which revealed continu-
ously variable spreading exponents [11].

Grassberger, Chaté and Rousseau [6] proposed that
spreading in INAC could be understood by studying a model

with a unique absorbing configuration, but in which the
spreading rate of activity into previously inactive regions is
different than for revisiting a region that has already been ac-
tive. In light of the anomalies found in spreading in models
with INAC or with a memory, we are interested in study-
ing the effect of such a memory on the scaling behavior in
a model whose asymptotic behavior can be determined ex-
actly. Of particular interest is the survival probabilityS(t)
(i.e., not to have fallen into the absorbing state up to timet).

In the present work, we review previous results on sur-
vival of random walks with memory, and analyze the asymp-
totic behavior of a random walk subject to a hard movable
reflector. On the basis of an exact solution for the probability
generating function, we obtain the decay exponentδ.

The balance of this paper is organized as follows. Sec-
tion II reviews previous results on variable survival expo-
nents for random walks with memory. In Sec. III we define
the hard reflector model and obtain a formal solution for the
generating function. An asymptotic analysis of this func-
tion is presented in Sec. IV, leading to an expression for
the decay exponentδ in terms of the reflection probability
r. In Sec. V we present exact numerical results for finite
times (from iteration of the probability transfer matrix) that
complement and extend the asymptotic analysis. Sec. VI
contains a brief summary and discussion.
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II Variable survival exponents in ran-
dom walks with memory

Relatively simple random walk problems often serve as re-
duced examples of much more complicated many-body phe-
momena. So it is with phase transitions between an active
and an absorbing state. In these systems [5, 12] the station-
ary state of a Markov process exhibits (in the infinite-size
limit) a phase transition from a frozen, inactive regime to
one with sustained activity, as a control parameter is var-
ied. Broadly speaking, the control parameter represents the
reproduction rate of activity (A→ 2A) relative to its extinc-
tion (A→ 0). The simplest examples are the contact process
[13] and directed percolation (DP).

Consider now, instead of the stationary state, thespread
of activity from a localized source, in an infinite system. In
the subcritical regime (for which the only stationary state is
the inactive, absorbing one), the initial activity decays (typ-
ically, exponentially fast), while in the supercritical regime
there is a finite probability for it to spread indefinitely. Just at
the critical point, one finds a scale-invariant evolution: the
survival probabilityS(t), the integrated activityn(t), and
the mean-square distance,R2(t), of the activity from the
initial seed, all follow asymptotic power laws.

The question of survival arises naturally in the context
of a random walk in the presence of an absorbing boundary.
The survival probabilityS(t) is the probability never to have
visited an absorbing boundary until timet. The simplest
example is a one-dimensional random walkxt (in discrete
time) on the non-negative integers, with the origin absorb-
ing, andx0 ≥ 1. Let the walker jump, at each time step,
to the right (xt+1 = xt + 1) with probabilityp, and the left
(xt+1 = xt − 1) with probability q = 1 − p. If p < q
then the survival probability decays exponentially, while for
p > q it approaches (again exponentially) a nonzero value,
so that the walker has a finite probability to escape to infin-
ity. In the absence of drift (p = q = 1/2), S(t) ∼ t−1/2

for larget; associated with this power-law decay is an infi-
nite mean lifetime. In the analogy with an absorbing-state
phase transition,p = 1/2 evidently marks the transition,
with extinction certain forp ≤ 1/2, and a finite asymptotic
survival probability forp > 1/2. The same qualitative situ-
ation holds in the contact process, starting for example from
a single active site [5].

The analogy is in factexactfor the rather special case
of compact directed percolation(CDP), in which active re-
gions are delimited by independent random walks that anni-
hilate on contact. (CDP is a particular limit of the Domany-
Kinzel model [14].) In this case ‘drift’ corresponds to a
tendency of the walkers at the boundaries of an active re-
gion to approach, or separate from, one another; the critical
point corresponds to zero drift, or unbiased random walk-
ers (p = 1/2). Initializing CDP with a finite interval (say,
1, 2,...,m) of active sites, is equivalent to placing random
walkers (xt andyt) at 0 andm + 1. The active region at
any subsequent time corresponds to the interval between the
walkersxt andyt; the process ends when the two meet. To

make the analogy between CDP and a random walk with the
origin absorbing complete, we may fixxt = 0 for all times,
so that only the right frontier of the active region is free to
fluctuate, while the left frontier is pinned, as it were, at a
wall.

Given the connection with phase transitions, we shall
think of the power law for the survival probabilty as defin-
ing a critical exponent, and writeS(t) ∼ t−δ. The main
interest of the examples discussed in this paper is that the
exponentδ can be shown tovary continuouslyas a function
of a parameter. This in turn may help to understand scaling
in more complex examples, such as the pair contact process
[8], for which a variable survival exponent has been reported
numerically, but cannot be established rigorously.

Random walk models exhibiting variable survival expo-
nents fall in two classes. In one, the position of the absorb-
ing boundary is a given (deterministic) function of time. A
random walk in the presence of such a boundary defines a
nonstationary stochastic process. The second class (which
is our principal interest here) involvesmemory, either in the
form of a reflector that moves when it encounters the walker,
or of a history-dependent step length.

We begin with a brief review of the first class. In a
highly readable paper, Krapivsky and Redner [15] consid-
ered what happens when a random walker on the line is sub-
ject to two absorbing boundaries,R(t) andL(t), which are
prescribed functions of time (initially the walker is at the
origin). The absorbers are initially near the origin, and fol-
low R(t) = a + (At)α, L(t) = −R(t). For α > 1/2, the
absorbers rapidly leave the region explored by the walker,
which therefore enjoys a finite probability of survival as
t → ∞. If the absorbers are stationary we of course expect
S(t) to decay exponentially; but if their motion is charac-
terized by0 < α < 1/2, this changes to astretched expo-
nential decay,S ∼ exp[−t1−2α]. For α = 1/2, the ‘safe’
region expands with the same power law as the region ex-
plored by the walker. The result is power-law decay of the
survival probability, with a variable exponent which depends
onA.

The problem studied by Krapivsky and Redner may be
pictured as a random walk confined to a parabola in thet−x
plane, whose equation (fort ≥ 0) is x = ±(At)α. When
α = 1/2, as noted, there is power-law decay ofS(t), with
a nonuniversal exponent. Similar conclusions apply for DP
and for directed self-avoiding walks [16], and for CDP [17],
when these processes are confined to a fixed parabola.

We now turn to studies of a random walk subject to some
special condition when it enters virgin territory, i.e., when it
attempts to visit a site for the first time. Here there is no
fixed confining boundary; the condition depends on the his-
tory of the walk. But since the region explored by the walker
grows∝ t1/2, it effectively creates its own parabola.

It was recently shown [18] that an unbiased random walk
on the nonnegative integers, with the origin absorbing, ex-
hibits a continuously variable exponentδ when subject to a
mobile, partial reflector. The latter is initially one site to the
right of the walker. Each time the walker steps onto the site
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occupied by the reflector, it is reflected one step to the left
with probabilityr (it remains at its new location with proba-
bility 1−r); in either case, the reflector is pushed forward one
site in this encounter. The survival exponentδ = (1+r)/2 in
this process [18]. Since the reflector effectively records the
spanof the walk (i.e., the rightmost site yet visited), its inter-
action with the walker represents a memory. We shall refer
to this model as thesoft reflector, to highlight the fact that
the refector obligingly moves forward, even if the walker is
reflected back. Note that in this caseδ never exceeds unity.

The analysis of the random walk with soft reflector was
subsequently extended to compact directed percolation [19].
The active region initially consists of a single site (the ori-
gin), and, as already noted, is bounded by a pair of inde-
pendent, unbiased random walkers, originally atx = 0 and
x = 1. The two walkers are subject to movable partial
(“soft”) reflectors, such that the walker on the right is re-
flected toward the left and vice-versa. The results for the
survival exponent are qualitatively similar to those for the
single walker, butδ now varies between 1/2 and 1.160 as
the reflection probabilityr varies between zero and one.
The results (coming in this case from iteration of the transi-
tion matrix, rather than from an asymptotic analysis of the
generating function), are well fit by the simple expression
δ = 1/2 + 2r/3; small but significant deviations from this
simple formula are found, however. CDP with reflectors has
so far defied exact analysis, and the reason for the specific
valueδ = 1.160 for r = 1 is not understood.

Most recently, the methods developed in Ref. [18] were
applied to a one-dimensional random walk with memory of
a different form: if the target sitex lies in the region that
has been visited before (that is, ifx itself has been visited,
or lies between two sites that have been visited), then the
step length isv; otherwise the step length isn. In this case
one findsδ = v/2n [20]. Thusδ can take any rational value
between zero and infinity.

With this background we may now describe the prob-
lem to be analyzed here as a random walk subject to ahard
partial, movable reflector. This is because the reflector now
moves forward if and only if the walker succeeds in occu-
pying the new position; when the walker is reflected, the
reflector maintains its position. This, as will be shown, can
lead to much larger values ofδ than in the soft reflector case.

Before embarking on the technical discussion, we sum-
marize our approach, as developed in Refs. [18] and [20].
After formulating the problem, we enlarge the state space
so that the process becomes Markovian in the expanded rep-
resentation [21]. We then write down the equation of mo-
tion for the probability distribution and its associated bound-
ary and initial conditions. Since these are discrete models,
the equation of motion corresponds to a set ofdifference
equations, first-order in time, and second-order in space. It
is convenient to eliminate the time variable by passing to
a generating function̂P (z) (effectively, a discrete Laplace
transform). Using separation of variables, we obtain a for-
mal solution for the generating function. Finally, the asymp-
totic long-time behavior is found by studying the generating

function for the survival probability in the limitz → 1.

III Model

Consider an unbiased, discrete-time random walk on the
nonnegative integers, with the origin absorbing. We denote
the position of the walker at timet by xt, with x0 = 1.
The movement of the walker is affected by the presence of a
movable partial reflector, whose position is denoted byRt,
with R0 = 2. At each time step the walker hops from its cur-
rent positionxt to eitherxt + 1 or xt − 1 with probabilities
of 1/2. If, however,xt +1 = Rt, the walker is reflected back
to xt with probabilityr, and remains atxt+1 with probabil-
ity r ≡ 1−r; in the latter case the reflector simultaneously
moves toRt + 1. Summarizing, the transition probabilities
for the walker are

xt+1 =
{

xt − 1 , w.p. 1/2
xt + 1 , w.p. 1/2 (1)

in casext ≤ Rt − 2. Whenxt = Rt − 1, we have instead

xt+1 =





xt − 1 , w.p. 1/2
xt + 1 , w.p. r/2
xt , w.p. r/2

(2)

The position of the reflector at any moment is given by
Rt = 1 + maxt′≤t{xt′}.

Although the processxt is non-Markovian (since the
transition probability into a given site depends on whether it
has been visited previously), we can define a Markov pro-
cess by expanding the state space to include the variable
yt ≡ Rt − 1 = maxt′≤t{xt′}. The state spaceE ⊂ Z2

is given by by

E = {(x, y) ∈ Z2 : x ≥ 0, y ≥ 1, x ≤ y},

as represented in Fig. 1.
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Figure 1. Random walk subject to hard reflector: transitions in the
x-y plane.

The probability distributionP (x, y, t) follows the evo-
lution equation



Ronald Dickmanet al. 453

P (x, y, t + 1) =
1
2
P (x + 1, y, t) +

1
2
P (x− 1, y, t), for x < y − 1, (3)

with P (x, y, 0) = δx,1δy,1. Eq. (3) is subject to two boundary conditions. The first is the absorbing condition forx ≤ 0

P (x, y, t) = 0, for x ≤ 0. (4)

The second applies along the diagonalx=y. DefiningD(y, t) ≡ P (y, y, t), we have

D(y, t + 1) =
1
2
P (y−1, y, t) +

r

2
D(y−1, t) +

r

2
D(y, t), for y ≥ 2. (5)

For y = 1 the equation is simplyD(1, t + 1) = (r/2)D(1, t), and sinceD(1, 0) = 1, one hasD(1, t) = (r/2)t. Finally, for
x = y − 1,

P (y−1, y, t + 1) =
1
2
P (y−2, y, t) +

1
2
D(y, t), for x < y − 1, (6)

We next introduce the generating function:

P̂ (x, y, z) =
∞∑

t=0

P (x, y, t) zt. (7)

Multiplying Eqs. (3), (6) byzt, summing overt and shifting the sum index where necessary, one finds that the generating
function satisfies

1
z
P̂ (x, y) =

1
2
P̂ (x + 1, y) +

1
2
P̂ (x− 1, y), for x ≤ y − 2 (8)

1
z
P̂ (y−1, y) =

1
2
D̂(y) +

1
2
P̂ (y−2, y), for x = y − 1, (9)

(we drop the argumentz for brevity), whereD̂(y) is defined by an expression analogous to Eq. (7). The initial condition
impliesD̂(1) = (1− zr/2)−1; the boundary conditions are

P̂ (0, y) = 0, (10)

and
1
z
D̂(y) =

1
2
P̂ (y−1, y) +

r

2
D̂(y−1) +

r

2
D̂(y), for y ≥ 2. (11)

Eq. (8) relateŝP at different values ofx, for the samey. Specifically, on the interior of each line of constanty, P̂ satisfies
a diffusion equation, with a source atx = y and a sink atx = 0. It is therefore natural to attempt separation of variables,

P̂ (x, y) = Â(x)B̂(y) . (12)

Inserting this expression in Eq. (8) one obtains

1
z
Â(x)− 1

2
Â(x− 1)− 1

2
Â(x + 1) = 0 , (13)

with A(0) = 0. The solution satisfying this boundary condition is

Â(x) = λx − λ−x , (14)

with

λ =
1
z

+

√
1
z2
− 1 . (15)

Our next task is to determinêB(y); for this we require a relation between generating functions with different arguments
y. Relations of this kind arise along the diagonal, but involve the functionD̂(y), which we proceed to eliminate. Combining
Eqs. (9) and (11), we find

Q(z)D̂(y) =
zr

2
D̂(y−1) +

z2

4
P̂ (y−2, y) (16)

where

Q(z) = 1− zr

2
− z2

4
. (17)
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Equation (11) may also be written as

(
1− zr

2

)
D̂(y)− zr

2
D̂(y−1) =

z

2
P̂ (y−1, y) , (18)

We now multiply Eq. (16) fory − 1 by β ≡ zr/(2− zr) and subtract the result from the same equation fory. This yields

Q
[
D̂(y)− βD̂(y−1)

]
=

zr

2

[
D̂(y−1)− βD̂(y−2)

]
+

z2

4

[
P̂ (y−2, y)− βP̂ (y−3, y−1)

]
. (19)

From Eq. (18) we have

D̂(y)− βD̂(y−1) =
z

2− zr
P̂ (y−1, y) , (20)

allowing us to eliminatêD from Eq. (19):

4Q

z(2− zr)
P̂ (y−1, y)− P̂ (y−2, y) = β

[
2
z
P̂ (y−2, y − 1)− P̂ (y−3, y − 1)

]
. (21)

Inserting Eq. (12) one readily finds a recursion relation forB̂:

B̂(y)
B̂(y−1)

=
zr[2Â(y−2)− zÂ(y−3)]

(4− 2zr − z2)Â(y−1)− z(2− zr)Â(y−2)
. (22)

GivenB̂(1) = D̂(1)/Â(1) with D̂(1) andÂ(y) as found above, Eqs. (12), (14), and (22) represent a complete formal solution
for the generating function̂P (x, y).

d

IV Asymptotic analysis

Our goal is to find the survival probabilityS(t) for larget.
This can be found analysing the associated generating func-
tion,

Ŝ(z) =
∞∑

t=0

S(t)zt (23)

in the limit z → 1. Specifically, ifS(t) ∼ t−δ, then the
radius of convergence of̂S(z) is |z| = 1, and the singular
behavior of the generating function asz → 1 determinesδ.
Indeed, in this case, withz = 1− ε, we have

Ŝ '
∞∑

t=1

t−δ(1− ε)t

'
∫ ∞

1

dt t−δ exp[−t| ln(1− ε)|]

' εδ−1Γ(1− δ) , (24)

so that the scaling exponentδ can be read off from the
power-law dependence of̂S on ε = 1 − z asε → 0. This
simplifies considerably the determination of the long-time
asymptotic behavior ofS(t).

The generating function̂S has two contributions, com-
ing from the “interior” (x < y) and the diagonal:

Ŝ =
∞∑

y=1

y−1∑
x=1

P̂ (x, y) +
∞∑

y=1

D̂(y)

≡ ŜP + ŜD . (25)

Using Eq. (20) one readily shows that

ŜD =
z

2− z

∞∑
y=1

P̂ (y−1, y) < ŜP , (26)

so that it suffices to analyze the behavior ofŜP .
Consider

ŜP =
∞∑

y=1

B̂(y)
y−1∑
x=1

Â(x). (27)

The sum overx can be evaluated as

y−1∑
x=1

Â(x) =
λy − 1
λ− 1

− λ−y − 1
λ−1 − 1

' 4
Λ

sinh2 Λy

2
(28)

where in the last step we usedΛ ≡ ln λ ' √
2ε asε → 0.

To evaluatêSP we also require an expression forB̂(y) in
the limit ε → 0; this can be obtained from Eq. (22). We be-
gin by setting all explicit factors ofz equal to unity, since the
O(ε) corrections thereby discarded do not contribute to the
singular behavior of̂SP . The singular contributions in fact
originate from the functionŝA, through their dependence on
λ. Writing Â(y) = 2 sinhΛy, we therefore have
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c
B̂(y)

B̂(y−1)
' r[2 sinh Λ(y−2)− sinhΛ(y−3)]

(3− 2r) sinh Λ(y−1)− (2− r) sinh Λ(y−2)
. (29)

d

Using the identity sinh(a + b) = sinh a cosh b +
sinh b cosh a, and neglecting termsO(Λ2), we obtain

B̂(y)
B̂(y−1)

' tanhΛy − Λ
tanh Λy + Λ/r

. (30)

For y ≤ y0 = [2/r] + 1 (here[...] denotes the integer
part of its argument), we can write, for smallΛ

B̂(y) = B̂(1)
y∏

k=2

k − 1
k + 1/r

= CB̂(1) , (31)

whereC depends onr andy but is independent ofΛ. We
shall in fact discard the contribution due toy < y0 in ŜP .
The reason is that the contribution to the survival probabil-
ity from any fixed, finite set of transient states must decay
exponentially at long times, and so will not affect our result
for the scaling exponent.

Noting thatB̂(1) = D̂(1)/Â(1) ∝ 1/Λ, we have, for
y > y0,

B̂(y) =
C

Λ

y∏

k=y0

B̂(k)
B̂(k−1)

, (32)

whereC is a constant. Since all terms havek ≥ 2/r, we
may use Eq. (30) to write, withφk ≡ tanhΛk,

ln
B̂(y)
B̂(y0)

'
y∑

k=y0

ln
1− Λ/φk

1 + Λ/(rφk)

' −
(

1 +
1
r

)
Λ

y∑

k=y0

1
φk

. (33)

Approximating the sum by an integral we find

ln
B̂(y)
B̂(y0)

'
(

1 +
1
r

)
ln

sinhΛy0

sinh Λy
. (34)

Now, inserting Eqs. (28) and (34) in Eq. (27), the gen-
erating function forε → 0 is:

ŜP ∼ Λ1/r−1
∞∑

y=y0

sinh2 Λy/2

sinh1+1/r Λy
, (35)

where ‘∼’ denotes asymptotic proportionality asε → 0. Ap-
proximating, as before, the sum by an integral, we have

ŜP ∼ Λ1/r−2

∫ ∞

Λy0

du
sinh2 u/2

sinh1+1/r u
. (36)

Since1 + 1/r ≥ 2, the integral converges at its upper
limit. For r < 1/2, 1 + 1/r < 3 and the integral remains
finite asΛ → 0. Then

ŜP ∼ Λ1/r−2 ∼ ε1/(2r)−1 , (37)

so that the survival probability decays asS(t) ∼ t−δ with
δ = 1/2r. For r = 1/2, the prefactor in Eq. (36) is inde-
pendent ofΛ and

ŜP ∼
∫ ∞

Λy0

du

u
∼ − ln(1− z) . (38)

Expanding the logarithm, we find̂S(z) ∼ ∑
n zn/n, yield-

ing directlyS(t) ∼ t−1. Finally, whenr > 1/2, 1+1/r > 3
and the integral in Eq. (36) contains two principal contribu-
tions: one finite (due to the interval from say, 1, to infin-
ity), the other arising from the lower limit, and diverging
asΛ2−1/r. Combined with the prefactor∝ Λ1/r−2 how-
ever, the latter contribution is nonsingular, while the former
is again proportional toΛ1/r−2.

Summarizing, the asymptotic survival probability de-
cays as a power law,

S(t) ∼ t−1/2r , (39)

which is the result we set out to prove.

V Numerical Results

The foregoing analysis provides thet → ∞ scaling behav-
ior of the survival probability, but does not indicate the rate
of convergence to the asymptotic power law. To determine
how the corrections to scaling decay, we iterate the discrete
time evolution equation forP (x, y, t) directly. In Fig. 2 we
show the decay ofS(t) for reflection probabilityr = 0.85,
corresponding toδ = 10/3. For very late times, the graph
indeed approaches a power law with the expected exponent.
The approach is, however, extremely slow.

Since our asymptotic analysis only retains the leading
dominant term in the long-time behavior ofS(t), we have
no specific information on correction to scaling terms. It is
easy to see, nonetheless, that corrections∝ t−1/2 will be
generated, sinceΛ ' √

2ε +O(ε). In fact, we are able to fit
the long-time evolution of the survival probability by adding
a suitableO(t−1/2) term to the power law, but further terms
(∼ t−1), etc.) are required for intermediate times.
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Figure 2. Decay of survival probabilityS(t) for reflection proba-
bility r = 0.85 (solid curve); the slope of the straight line is -10/3.

We have found a particularly simple transformation of
variable that appears to take the dominant correction to scal-
ing into account. It consists in defining a shifted time vari-
able

T = t + bt1/2, (40)

with parameterb adjusted to make the graph ofS versusT
(on log scales) as linear as possible. Fig. 3 shows the sur-
vival probability data forr = 1/2, 2/3, 0.75 and 0.85 versus
T (the correspondingb values are 1.754, 4.167, 7.042, and
16.67). In each case the numerical data (points) follow the
modified power law,

S(T ) = AT−δ, (41)

to very high precision. [HereA is an amplitude determined
by extrapolatingT δS(T ) to T → ∞.] The numerical data
appear to converge rapidly (faster than a power law) to the
fit. While this ‘shifted time’ analysis is for the moment
without theoretical basis, it clearly confirms the asymptotic
power laws found analytically, and suggests a simple form
for describing slowly decaying corrections to scaling.

The slowly decaying correction to scaling would likely
frustrate efforts to extract the correct long-time behavior
from simulations. Looking at Fig. 2, we see that the asymp-
totic power law is barely evident whenS(t) has decayed to
e−15. To obtain even marginally useful simulation data in
this situation we would need to perform≥ 10e15 ' 3× 107

independent realizations of the process, extending to a max-
imum time of about 2000 steps. This is feasible for a simple
random walk, but becomes a computational challenge for a
many-particle system. Thus, if lattice models such as the
PCP behave in a manner analogous to what is found for the
random walk with a hard reflector, it will be very difficult to
confirm power-law scaling in simulations. Data for limited
times (or limited samples) may well give the impression of
faster than exponential decay ofS(t).

Figure 3. Survival probabilityS as a function of the shifted time
variableT , for reflection probabilitiesr = 1/2, 2/3, 3/4 and 0.85
(data points); the straight lines have slopes of -1, -3/2, -2, and -
10/3.

VI Discussion

We have reviewed examples of confined random walks, and
random walks with memory, that lead to a continuously vari-
able scaling exponent for the survival probability, and anal-
ysed in detail the ‘hard reflector’ case. The latter problem
appears to be particularly relevant to spreading in the pair
contact process, since modification of the background den-
sity of isolated particles can only occur when activity in-
vades a previously inactive region [8]. The strong correc-
tion to scaling found numerically for the hard reflector is
reminiscent of the slow convergence (interpreted as faster
than power-law decay in Ref. [6]), found in spreading stud-
ies of the PCP. Stretched-exponential decay of the survival
probability has also been found via scaling arguments for an
epidemic model with immunization [7].

Several interesting issues remain open. First, the nature
of correction to scaling terms needs to be investigated us-
ing a more complete asymptotic expansion of the generating
function. Second, one would like to understand the exponent
values for CDP (obtained numerically in Ref. [19]) on the
basis of the generating function approach. Finally, extension
of any of the models discussed here to two or more dimen-
sions promises to be a difficult but potentially fascinating
challenge.
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