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The exact solution of the asymmetric exclusion problem and several of its generalizations is obtained by a
matrix productansatz Due to the similarity of the master equation and the 8dimger equation at imaginary

times the solution of these problems reduces to the diagonalization of a one dimensional quantum Hamiltonian.
Initially, we present the solution of the problem when an arbitrary mixture of molecules, each of then having an
arbitrary size § = 0, 1,2, ...) in units of lattice spacing, diffuses asymmetrically on the lattice. The solution of

the more general problem where we have the diffusion of particles belongiNgdistinct classes of particles
(c=1,...,N),with hierarchical order and arbitrary sizes, is also presented. Our matrix prnthatizasserts

that the amplitudes of an arbitrary eigenfunction of the associated quantum Hamiltonian can be expressed by
a product of matrices. The algebraic properties of the matrices definingnfezdepend on the particular
associated Hamiltonian. The absence of contradictions in the algebraic relations defining the algebra ensures
the exact integrability of the model. In the case of particles distributed i 2 classes, the associativity of

this algebra implies the Yang-Baxter relations of the exact integrable model.

| Introduction quantum chain related to this problem is known in the litera-
ture as the anisotropic Sutherland model [28] or §Berk-
The representation of interacting stochastic particle dynam-Schultz model [29]. In [15], [18] and [19] it was shown that
ics in terms of quantum spin systems produced interestingthe above mentioned asymmetric exclusion problem could
and fruitful interchanges between the areas of equilibrium also be solved exactly through the Betresatzn the cases
and nonequilibrium statistical mechanics. The connection where the particles diffusing on the lattice have hard-core
between these areas follows from the similarity between interactions of arbitrary range, or equivalently, the particles
the master equation describing the time-fluctuations on thehave sizes = 0, 1, 2, ..., in units of lattice spacing.
nonequilibrium stochastic problem and the quantum fluctu-  On the other hand, along the last decade it has been
ations of the equilibrium quantum spin chains [1]-[20]. shown that the stationary distribution of probability den-
Unlike the area of nonequilibrium interacting systems, sities of some stochastic models can also be expressed in
where very few models are fully solvable, there exists a hugeterms of a matrix producénsatz This means that the
family of quantum chains appearing in equilibrium prob- ground state eigenvector of the related quantum chain is
lems that are exactly integrable. The machinery that allowsalso given by a matrix produ@nsatz According to this
the exact solutions of these quantum chains comes from theansatzthe components of the ground state wavefunction
Bethe ansatz in its several formulations (see [21]-[24] for re- are given in terms of a product of matrices. These com-
views). The above mentioned mathematical connection be-ponents, apart from an overall normalization constant, are
tween equilibrium and nonequilibrium revealed that some fixed by the commutation relations of the matrices defining
guantum chains related to interacting stochastic problemsthe matrix productinsatz These models are in general not
are exactly solvable through the Betliesatz The simplest ~ exactly integrable [13] and the matrix produtsatzonly
example is the problem of asymmetric diffusion of hard-core gives the ground state wavefunction of the related Hamilto-
particles on the one dimensional lattice (see [16, 17, 20] nian. Despite this limitation, thiansatzproduced interest-
for reviews). The time fluctuations of this last model are ing results in a quite variety of problems including interface
governed by a time evolution operator that coincides with growth [30], boundary induced phase transitions [31]-[34],
the exact integrable anisotropic Heisenberg chain, or the sahe dynamics of shocks [35] or traffic flow [36].
called, XXZ quantum chain, in its ferromagnetically ordered An interesting development of the matrix prodaasatz
regime. A generalization of this stochastic problem where that happened also in the area of interacting stochastic mod-
exact integrability is also known [25]-[27] is the case where els is nowadays known as the dynamical maarisatZ37].
there areV (IV = 1, 2, ...) classes of particles hierarchically According to this nevansatz whenever it is valid, the prob-
ordered and diffusing asymmetrically on the lattice. The ability density of the stochastic system is given by a matrix
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productansatmot only at the stationary state but at arbitrary motions to the right and left, respectively. It is important to
times. In the related quantum chain this would be equivalentnotice that this Hamiltonian, contrary to the standard XXZ
to the requirement that not only the ground state wavefunc-quantum chain, is not Hermitian fer. # e¢_. Such prop-
tion, but an arbitrary one, should have its components givenerty, besides producing complex eigenvalues, also produces
by a matrix productinsatz The dynamical matrix product massless regime, in a region where the standard XXZ is
ansatzwas applied originally to the problem of asymmet- massive (gapped), whose mass gap vanishds a5*[10]-

ric diffusion of particles on the lattice [37, 38]. More re- [12].

cently [39], [40] it has been shown that thissatzcan also The generalization of this problem, that we consider in
be formulated in the problem of asymmetric diffusion of two this section, is obtained by considering that each distinct par-
types of particles. The validity of thensatzwas confirmed ticle, instead of having an excluded hard-core volume of a
in the regions where the model is known to be exactly inte- single lattice size{ = 1), may now have a hard-core vol-
grable through the Bethensatz[3, 18]. Motivated by this  ume ofs sites 6 = 0, 1, 2, ...). Equivalently, each individual
fact we decided to verify if we can solve the above quantum particle on the lattice may have a distinct size 0, 1,2, ....
chains directly though a matrix produemsatz without con-  Particles of sizes on the lattice are composed Iyone-
sidering any time dependence as in the case of the dynamisite monomers and we represent their coordinates by giv-
cal matrixansatz Surprisingly, we were able to rederive all ing the position of their leftmost monomer. In Fig. 1 some
the results previously obtained though the Bethsatzfor examples were shown for the configurations with= 5

the asymmetric diffusion problem with one species of par- molecules and some size distributions in a lattice with
ticles [15] or more [18, 19]. Moreover, our derivation turns [, — 5 sites. We should notice that molecules of size 0

out to be quite simple and it is not difficult to extend it to have no excluded volume interaction and we can have an ar-
many other quantum Hamiltonians related or not to stochas-jtrary number of them in a given site. However, we should
tic particle dynamics [41]. We are going to present in this stress that although being sizeless they keep the order of the
paper these derivations and, as we shall see, many of the resize distribution on the lattice. This means that if a given
sults obtained in [15], [18] and [19] can now be rederived particle of sizes is initially between particles of siz& and

quite easily. The simplicity of ouansatzenabled us to ex- " it will keep this relative order in future times.
tend the results of [19] to the case where each individual
particle: belonging to any class:(= 1,...,N) is distin- @
guishable with a given size (s; =0,1,...). o

This paper is organized as follows. In the next section
we review the asymmetric diffusion problem with a single @) _ ® - -
type of particles of arbitrary size and we derive the associ-
ated quantum chain. In sectignwe introduce the matrix
productansatzand obtain the exact solution of the model {s} ={2,0,0,0,1} ®
presented in sectiokd Similarly as in sectior2, in section
4 we derive the quantum Hamiltonian associated with the @
problem of asymmetric diffusion of several types of parti- b)
cles with arbitrary sizes and hierarchical order. In secfion _- @
the exact solution of the general model of sectiois ob- _
tained though an appropriate matrix prodansatz Finally {st ={3,1,00,0}

@
o [l o o N

in section6 we conclude our paper with some final com-
ments and conclusions.
{s} ={1,0,0,0,2}

I The asymmetric exclusion model

with particles of arbitrary sizes
Figure 1. Example of configurations of molecules with distinct
The standard asymmetric exclusion model is a one- sizessin a lattice of sizel, = 5.
dimensional stochastic model that describes the time fluc- ] ) .
tuations of hard-core particles diffusing asymmetrically on  In order to describe the occupancy of a given gite
the lattice. If we denote an occupied siten the lattice by ~ (1,2,..., V) we attach on it a site variable; taking inte-
o7 = +1and a vacant siteby 7 = —1, the time evolution ~ ger values §; € Z). If 5; = 0, the site is vacant (or may
operator of the probability distribution of particles is given be occupied by a monomer of the molecule on its leftmost
by the asymmetric XXZ Hamiltonian, ne|ghbor|ng site). 1f3; > 0, we have on the site a molecule
of sizes = 3; and the siteg = i + 1,....,i + 3; — 1 are
L 1 empty sites. Finally, if3; = —n < 0, we have, at the site
H=— Z {qgi—g;l 4 e_gjg;rl +-(1—o0foiy)], 1, n molecules of size zero. The allowed configurations, de-
i—1 4 noted by{s;} = {f1, B, ..., Bn }, are those satisfying the
D) hard-core constraints imposed by the sizes of the molecules
where L is the number of lattice sizes and®™ = on the periodic lattice. This means that if in a given config-
(oc®+io¥)/2 are the raising and lowering spii/2 Pauli uration{s;} we haves; # 0 andg; # 0 then we should
operators. Periodic boundary conditions are imposedand havel — j > 5, orj — [ > ;, depending if > jorl < j,
ande_ (e. + e_ = 1) are the transition probabilities for the respectively (see Fig. 1).
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The master equation for the probability distribution at a given tinfe({5},t), can be written in general as

]
OPUBLD _ () — ) PUBY. 0 + T — BNPUS D), @

wherel'({5} — {8’}) is the transition rate where a config-  with transition rate:;,. The master equation (2) can be writ-
uration{3} changes td3’}. In the model we are consider- ten as a Sclidinger equation in Euclidean time (see [3] for
ing there exists only diffusion processes. The allowed mo- general applications for two-body processes),

tions, whenever there is no hard-core constraints, are those
in which a given particle diffuses to its right,

ar)
Bi 0ix1 — 0; Bit1, >0, ot
Bivier — (B+1)i (v =11, <0, 7<0,(3)

= —H|P), (5)

if we interpret| P) = P({3}, t) as the associated wave func-

with transition rate:, and diffuses to the left, tion. If we represent; as|3);, the vectord3); @ |5)s ®
-~ ® |B)n will span the associated Hilbert space. The dif-
0; Biv1 — Bi Diy1, B>0, fusion process given in (3) and (4) is associated with the
Yi Biv1 — (y—1); (B+1)it1, <0, v<0,(4) Hamiltonian [3]
]
L
H = -DPY (H +H)P,
=1
(oo}
M= [eatt - BOEPEL B e ROEIPELES).
-1
HY = Z Z [ EB+1,BE“/— Y Eﬁ 5E7Jﬂ) e (E)™ I,WEZBJ:-ll,/B EY “/EzﬁJrﬁl)} , (6)
pB=—o00 y=—00
with - L
D=¢g+er, €= , €_ = , 7
R L + €rp + €1, €ER T+ €L ( )

and periodic boundary conditions. The matridé®” are infinite-dimensional with a single nonzero elem@ht-?); ; =
ba,i0p,5 (v, 3,4, j € Z). The projectofP projects out the configuration§3}) > satisfying the constraint that for at, 3; #
0:(j—1) >s;if j>ior(i—j) > s;if ¢ > j. The constanD in (6) fixes the time scale, and for simplicity we chose
D = 1. A simplification of our general problem happens when all the particles have the samessife In this case the
matricesE*? can be replaced by the spin2 Pauli matrices and the Hamiltonian is given by

L
- - 1 z __Z
His= =5, =53 = —Ps (Z [5+Ui UIH + G—U;'_Uzdd] + Z(6+ +e)(oiofs — 1)) Py, 8

=1

where nowpP; projects out the configuration where two up spins, indfiebasis, are at distance smaller than the size 0

of the particles. The simplest case- 1 givesP, = 1 and we obtain the standard asymmetric exclusion Hamiltonian (1). For
the sake of comparison with the standard XXZ chain, normally considered in the context of magnetic systems, fet 0,

we perform the canonical transformation:

a}—>( )iéo—ig —o®, (i=0,1,2,...,L), 9)
€+
in Eqg. (8) and obtain

L
H = ! ol Yo¥ A(oio; P 10
= _5\/€+TZPS (070l + ool + Aofoiy, —1)] P, (10)

i=1

€4 +€_

2. /e e_
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Apart from the projector, this Hamiltonian coincides with work of the coordinate Bethansatz In this section we are
the gapped ferromagnetic Heisenberg chain. However now,going to rederive this solution by imposing a matrix product
in distinction with (8), the boundary condition is not peri- ansatzfor the eigenfunctions of the Hamiltonian (6). As we
odic but twisted, shall see, this derivation turns out to be more direct than the
n (&)i% old one presented in [15].

g = g
N+1 €

,ONy1 = 07 (11)
) ) Before considering the more general situation where any
Sincee /e # 1 this boundary term has the same degree molecule may have a distinct size let us consider initially

of importance as the whole system, and we have a criticalthe simple case where all the molecules have the same siz¢
behavior induced by the surface, i. e., the mass gap vanisheg (s = 0,1,.. ).

in opposition to the standard periodic ferromagnetic XXZ

chain. Since the diffusion process conserves particles, and the
lattice is periodic, the total number of particleand the mo-

. mentumP are good quantum numbers. Consequently the
I The exact solution of the gener- Hilbert space associated with (6) can be separated into block

i i i _ disjoint sectors labelled by the valueswof(n = 0,1,...)
alized asymmt_etrlc exclusion prob- 1% P/l =010 LoD,
lem: The matrix product ansatz
Our ansatzasserts that any eigenfunctipi,, p) of (6)

The exact solution of the generalized asymmetric exclusionin the sector with: particles and momentur® will have its
problem of last section was derived in [15] within the frame- components given by the matrix product

]
Cop) = > flanw)|en ), (12)
{z1,..., T}
flze,...,zy) = Tr {E“‘lA(S)E“‘”“‘lA(S) P e (OO DT O P I
The ket|z,, ..., z,) denotes the configuration where the particles are located at.( , z,,), and the symbol) in the sum

denotes the restriction to the sets satisfying the hard-core exclusion due to thefihe particles, i. e.,

Tiv1>xi+s, i=1,....n—1, s<z,—x1<L-—s, (13)

where we have to remember that in the case where the parparticle. The matriX2p in (12) is introduced in order to en-
ticles have size = 0 we may have any number of particle sure the momentur® of the eigenfunction®,, p). This is

in a given site. Differently from the standard Betlesatz accomplished by imposing the commutation relation

in which f(z1,...,z,) is given by a combination of plane

waves, now it is given by the trace of a product of matri- EQp =e "PQpE, ALQp = e—iPQPA(S), (14)
ces. The matrice§ and A(®) are associated with the empty

and occupied sites describing the configuration of the lat- since, from (12), we must have for eigenfunctions of mo-
tice. The superscriptsj is just to remember the size of the mentumP the ratio of the amplitudes

]

f(xla""xn) _ _—imP
e b

f(x1+ma"'axn+m)

The algebraic properties of(*) and E will be fixed by requiring that¥,, p), defining theansatz(12), satisfy the eigenvalue
equation

(m=0,1,2,...,L—1). (15)

H{s1:~~~=sn=s}|\:[ln,P> = 5n|\Iln,P>7 (16)
whereH , —..._,, —s is given by (8).
Before considering the case wherés general, let us consider the cases where we haveroalyl or n = 2 particles.
n = 1. For one patrticle the eigenvalue equation (16) gives
o Tr (E“’l_lA(S)EL_‘“Qp) — e, Tr (E”I‘QA(S)EL“”IHQP)

fe_Tr(E“A(S)EL’“/’l’lQp> + (e++e_)Tr(Em1*1A<S>EL*$IQP). 17)
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The cyclic property of the trace and the algebra (14) fix the Inserting (19) in (17) and using (20) we obtain
values of the energies,

g1 = —(epe ™ fe_ef - 1), (18) g1 =¢e(k) = —(exe 4 e_e™ — 1), (21)
whereP = 2%1 (¢(=0,1,...,L — 1) is the momentum of
the state. where we have used. +¢_ = 1.

An alternative way to solve (17) that will be easier to Comparing (21) with (18) we fix the spectral parameter
generalize for arbitrary values of is obtained by the re- &k as the momentum of the-particle eigenfunction? p),
placement " e k=P=2(1=0,1,..,L—1).

AW = AP B, (19) n =2. For two particles on the lattice the eigenvalue
whereA,, is a spectral parameter dependent matrix with the equation (16) gives fof¥, p) two types of relations de-
following commutation relation with the matrik, pending on the relative location of the particles. The am-

A plitudes corresponding to the configuratipn, z») where

EAY — ek AP p, (20) x5 > a1 + s will give the relation

]
e Tr (Efl*1A(S)EI2*I1*1A<S>EL*“2QP) = —e,Tr (Efl*Z‘A(S)EW“A(S)EL*“QP)
—e Tr (B AC Em 2 AW pEng, ) o Tr (BT A A plostig, )
e Tr (ExlflA(s)E;wf;pl A(s)EwaszQP> + 2Tr (Easl71A(5)Ew27w171A(S)EL73029P) ) (22)
[

A possible and convenient way to solve this equation is by  The relation (14) gives the commutation of these new
identifying the matricesA(*) as composed by two spectral matncesA(S with Qp, i. e.,
parameter-dependent new matrleéﬁ) andAﬁf e,
APQp =904, (j=1,2).  (26)
2
Al = ZA;‘?E%S, (23) Comparing the components of the configurati¢ns, )
i=1 and|xz; + m, 22 + m), and exploring the cyclic invariance

. . ) , of the trace, we obtain
that satisfy, as in (20), the commutation relation

| P =k +ko. (27)
EAY =t AVE (j=1,2). (24)
’ ! Up to now the commutation relations of the matriot$’
Inserting (23) in (22) and using (24) we obtain andA(S among themselves as well the spectral parameters,
that i |n general may be complex, are unknown. The eigen-
eo = (k1) + e(ka), (25) value equation (16) when applied to the components of the
configurationz,, z2) wherezs = 1 + s ("matching” con-
wheree(k) is given in (21). ditions) will give us the relation
]
e Tr (E””l‘lA(S)ES_lA(S)EL_“—SQP) — e, Tr (E““‘QA(S)ESA(S)EL‘“‘SQP)
—e Tr (B AW A T l0p) 4 T (BT AG BT A EE R, ) (28)

Using (23) to express thé(*) matrix in terms of the spectral ~ expression gives
parameter matriceA,(Cj) (j = 1,2), and (21) fore, the last

2
Z [6_ —e ki 4 €+e—i(k’j+kl):| A;(é)Agj) =0. (29)
7,1
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This last relation implies that the matricgs!; } should
obey the algebra '

5 S S S - S 2
AR AL = S(hs k)AL AL, @ #5), (AF)) =0,

(30)
where(l, j) = 1,2 and
R e etlkj+hk) _ cik;
S(kj,kl) - e+ c_eilkj+k) _ giki (31)
J

Tr (AI(CT)Ag)EszsHQP)

Francisco C. Alcaraz and Matheus J. Lazo

The complex spectral parametels; } are still free up to
now. The cyclic property of the trace together with the alge-
braic relations (14), (24), (26) and (30) and the fact that any
component should be uniquely related give us

o—i(L—25+2)k; Ty (A,(:)ELQSHA(S_)QP)

— —zk L 12k i(s—1) —7.P(s 1)-|—r (A(S)A(S)EL 2€+QQ )

_ e—ikjLemkj(3—1)6—1‘13(5—1)5(]{]_’ k) Tr (AéL)AI(é)EL—Qs+QQP) 7

or equivalently, sincd = k; + ko,

s—1
R Z (ks k) (eik-l) ., j=12 (j#1). (33)

(32

General n.

The above calculation can easily be extended to the case
wheren > 2. The eigenvalue equation (16) when applied
to the components of the eigenfunction corresponding to the
configuration of|¥,, p) where all the particles are at dis-

The energy and momentum are given by inserting the solu-tances larger than the sizef the particles, gives a general-

tion of (33) into (25) and (27), respectively.

e Tr (- B st T AC) pren a1 ()

_ Z{€+Tr ( L ETTio1=2 A(S) priti—m g(s) |

i=1

+e Tr ( L ETimTio—1 A(S) priti—wi=2 g (s) |

—Tr ( . pTimTio1—1 A(s) privi—mi—1 g(s) |

The solution is obtained by identifying thé(*) matrix asa
combination ofn spectral parameter-dependém } ma-
trices, namely,

AW =3 AP pr (35)

with the commutation relations with the matricBaandQ) p,

(s) _ _ik; 4(s)
EA,; =e Ak-j E,

A,(;;)QP _ eiP(I*S)QPAE) (j=1,...,n). (36)

ization of (22),

.A<s>EHnQP) _

(s) pL—n QP)
. AG) pL- $n+lQ
- ADEETQp ), (34)
|
with the cyclic property of the trace, we obtain
en:ie(kj), P:Xn:kj, (37)
j=1 j=1

for the energy and momentum pF,, p), respectively. The
eigenvalue equation (16) applied to the configuration where
a pair of particles located at; and x;,, are at the clos-
est position, i. e.x;+1 = x; + s, will give relations that
coincide with (30) and (31), but now with=1,2,...,n

The configurations df’,, ) corresponding to three or more
particles at the “matching” distances will demand that the al-
gebra satisfied by the matricgd, } in (30) is associative.
Equivalently, this means that a given component, expressed
in terms of a product of matricefs4,, } and E, should be

Inserting (35) into (34) and using the relations (36), together uniquely related to the other components. This is imme-
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diate for the present problem since the structure constantdeads to the well-known Yang-Baxter relations [42, 21].

S(k;, k;) of the algebra in (30) are constants with the prop- Once the algebra is defined all the component¥qfp)
erty can be uniquely determined only if this algebra has a well
S(kj, ki) S (ky, k) = 1. (38) defined trace, whose cyclic property will fix thecomplex

spectral parametersc; }. An analog procedure as in (32)
As we are going to see in section 4, this condition in general gives us the constraints

]

e’”“j ) sl €4 + €7€i(kj+kl) — €ikj (39)

n
ik; L n
et = (-1 - - — .
( ) (elkl €+ +6_el(kj+k1) _ e’LkT[
=1

This equation coincides with the Betlaesatzequations derived in [15] through the coordinate Bethsatzmethod. More-

over, an arbitrary componeif{z1, . .., z,) of the wave function¥,, p) given in (12) can be written as
flxy, .. xn) =
n n n
Z Z Z Tr (Em1—1A§€j)Ez2—r1+l—sAl(€j) . EI”’_I"_l—"_l_SA;;) EL—r,,+2—SQP) ) (40)
i1=114o=1 in=1 ! 2 "
2
Using the commutation relation (24) and the fact tﬁaf;‘;)) =0( =1,...,n), we can rewrite this last expression as
f(mla-- -7xn) =
S el ln ket D (AR B AR B B AR BRQp ). (a1)
i1yeenyin
Let us define the new matrices ~
AP =APE (j=1,...,n). (42)
It is simple to verify, from (36), that they satisfy
1(s) A(s o 1(s) A(s . 1(s 2
ADAY = Sk, k)AL AL, G, (A)) =0, (43)
where
~ eik}j s—1
S(kj, ki) = S(kj, ki) <€m> : (44)

- 2
Finally, in terms of these new matrices, and exploring the fact(th‘é‘g)) = 0, we can write

— ilkpy (@1 —1)+hpy (@2 —1) 4 +kp, (wa =] (1) F() . G(s) gL )
farnan) = 3 @l @ Tr (A AR AP BRQp), (45)
P1s--yPn
|
where the sum is over the permutatiops, {2, . . ., p,) of molecules with arbitrary size§sy, ss,...,s,} and whose
non repeated integers,@,...,n). The result (45) shows related Hamiltonian is given by (6). In this general case each

us that the amplitudes derived using the present matrixparticle is conserved separately, and since in the diffusion
productansatzare given by a combination of plane waves processes no interchange of particles are allowed, also the
with complex wave numbefk; }, and reproduce the results order {s1, sz, ..., s, } wWhere the particles appear is a con-
obtained previously [15] through the standard coordinate stant of motion, up to cyclic permutations. The eigenfunc-
Betheansatz tion corresponding to a given ordgty, so, . . ., s, } and mo-

Let us return to the general case where we have mentumpP can be written as

]

W myp) = SO ST frasen (o, ), (46)
{c} {=}
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wherefei>Sen (2, ... x,) is the component of a config- In order to formulate our matrix produensatzwe as-
uration where the particles of sizes, ..., s., are located  sociate with the sites occupied by the particles of size
at positionse, . . . ) T respectiv_ely. The summati_c{ra:} ex- (j =1,...,n)amatrixA®:) and with the remaining, — n
tends over all cyclic permutationg:, ..., ¢, } of integers  sjtes we associate, as before, the makixOur ansatzas-
{1,...,n}, and the summatiofiz} extends, fora givendis-  serts, in a generalization of (12), that the amplitudes of the
tribution {s,, ..., s., } of molecules, to increasing integers ejgenfunctions (46) are given by
satisfying
Tig1 —Ti > 8¢,y t=1,...,n—1
Sey S Tp —T1 S N — Scp - (47)
]
foresn (551, o 7«Tn) —Tr (Em—lA(h)Eﬂcz—wl—lA(SQ) . Ewn—wnq—1A(SH)EL—JJHQP) , (48)

where in order to ensure the momentithof the eigenstate  parameter matrices defined on (23), i. e.,

the matriceg A{*}} should satisfy ,

EQp=eFQpE, A®Qp =e"TQpA®). (49) Als) = ZAE?)EQ’S% (j=1,2), (50)
=1
Let us initially consider ouansatz(46)-(49) forn = 1 and ] ) .
n = 2 molecules. that satisfy, as (24), the commutation relations
n=1
For one particle on the chain we have the samsatzas EA,(jj) = eiklA,(ffJ)E, (1,1 =1,2). (51)
(12) and the energy given by (18).
n=2. The energys(,, 5,; end momentumP are related to the
In this case, if both particles have the same siges- spectral parameters by (25) and (27), respectively, and from

sy = s, we have the same situation considered previously (49) and (50) we have the commutation relations, generaliz-
in (22)-(33). The eigenfunctior|@, ., ») will be givenby  ing (26),
(12) and the energy by (24) with fixed by (33).

If the particles are distinct, the situation is new. The — AP*Qp = eP0=5)QpAP) (j1=1,...,n), (52)
eigenvalue equation when applied to the configurations
where the two particles of sizes ands; are located ai; withn = 2.
andx, > x1 + s1, respectively, will givemutatis mutandis If the two particles are at the closest distance =

an expression similar to (32). The corresponding situation z; + s; (“matching” condition) the expression (28) should
is obtained by introducing the generalization of the spectral be replaced by

]

E oo} T (E””l_1A(51)E51‘1A(52)EL‘””1‘31QP> — e, Tr (E”l‘QA(Sl)EslA(S2)EL‘“‘SIQP)
—e Tr (Ewl—lA(S1)ES1 A(Sz)EL—w1—81—1QP) + Tr (Ewl—1A(81)E81—1A(82)EL—w1—81 QP) )

Inserting the definition (50), the expression (25) £g, ., and using the algebraic relations (51) and (52), we obtain the
commutation relations for the matricési,(fj‘)},

APDALTD = S(kj, k) ALV ALY (G £m; Lr=1,2), APVAPY =0, (53)

r
J

whereS(k;, k., ) is given by the same expression as (31). It mutations relations (53) they are not interchanged and also
is interesting to notice that the structure constaftts;, k.., ) their commutation with th€ p matrix is size dependent (see
of the algebra in (53) are independent of the superscript of(52)).

the matricesﬁlgjl), and consequently the algebra among the ) .

(501 I ) ) The spectral parameteks andk; are fixed by the cyclic
{47} is the same as that of (30) with respect to the in- property of the trace, and we haveytatis mutandisa sim-
terchange of spectral parameters. However, the superscriplar expression as (32). Using the algebraic relations (51),
of these matrices cannot be neglected since in the com{52) and (53) we obtain
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Tr (A](cfl)Al(ch)EL_SI_S2+2QP> _
efikjLeikj(lersQ72)672'P(5271)S(kj, kl)Tr (Agz)A;‘jl)ELfslfsg+QQP> ) (54)

However, differently from (32), the traces on the left and on the right-hand side of the equation are not thessafe,if If
we repeat once more the commutations that lead to (54), we obtain the same trace in both sides and, consequently,

[e—ikjLeikj(31+sz—2)5<kj7 kz)} 2 e tP(s1ts2—1) _ | (55)

SinceP = ky + ko, this last expression is equivalent to

. Cop ik \ 51
kil = giFm <Zikz> S(kj k), m=0,1; j#1=1,2; s1# so, (56)

[

and n as compared with the indistinguishable case=£ s-).

_ 81T 82

§=—5— (57) General n.
is the average size of the two molecules. The expression In this case we have a general distribution of particles
(56) generalizes the expression (33) obtained for particleswith sizes{sy, ss,...,s,} and the corresponding eigen-
of equal sizes. We note however that simee= 0, 1 in (56) functions are given by (46) and (48). The eigenvalue equa-
we have two times more solutions than the correspondingtion when applied to the componenis, .. ., z,,), where all
one (33) for particles of equal sizes. This indeed should bethe particles are not at the closest distance, gives an equation
the case since particles of distinct sizes are distinguishablesimilar to (34) mutatis mutandisvhose solution is given by
and consequently the number of eigenfunctions is doubledthe generalization of (50), (52) and (51),

]
Alsi) — ZAgcslj)Ez—sj, A,(;j)Qp _ eipu—sj)QPA](ij)’ EAgjj) _ eikZAgjj)E’ (j=1,2), (58)
1=1
producing the energy and momentum given by
n n
En = Z (exe ™ 4e e —1), P= Z kj, (59)
Jj=1 j=1

respectively. The eigenvalue equation applied to the components where a pair of partictes, ) are located at the closest
distancey,;, 1 = z; + s; will give a generalization of (53),

ARDAR = S(hy )ALV AL, (G #£D, ALVALY =0, (il tu=1,...,n). (60)
The cyclic property of the trace in (48) will give, by using (58) and (60), a generalization of (54), namely, fo¢;gach

Tr (AECSE)A;CS;) o AI(:J-ZI)AI(S) o A}(j’;rt)EL*Z?:l(Sifl)QP) — etk Lgik; Tily(si—1) o—iP(s;—1)

(H S(k‘j, k.[)) Tr (Al(csln)AEczl) . A](ijil)Al(C‘j‘i)l o Alginfl)EL—Z?:Msi—l)QP) . (61)
=1
Similarly as happened in (54) the traces in both sides of the last equation are not the same pecause ., s,} #
{8n,$1,-..,8n—1}. But we can do the above commutationsmes until we reach the same distribution of sizes, whese
the minimum number of cyclic rotations &1, s, . .., s, } where the configuration repeats the initial one. In this case we
obtain .

leikjLeikj Y (si—1) H S(k;, kz)] e PR X (sim1) — 1 (62)

=1

SinceP = """, k;, we can rewrite this last expression as

n ik s—1
ik;L _ i2%m e _ .
eikil — i% ll:IIS(kj,kl)(eikl> , m=0,1,....,r—1, jl=1,...,n, (63)
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where, as in (57), the position of the molecule the coordinate of its leftmost
I monomer. The excluded volume of a particle in class
§=_) s (64)  given by its sizes. (c = 1,2,...,N) in units of lattice
i=1 spacing. The configurations of the molecules in the lattice
is the average size of the molecules in the distribution are described by defining at each lattice sigevariables;
{s1, 82,...,sn}. This equation gives us a number of solu- (: = 1,2,..., L), taking the valueg; = 0,1,...,N. The
tions of orden- times larger than the corresponding number valuesg; = 1, ..., N represent sites occupied by molecules
in the case where all the particles have the same size. of classc = 1,2,..., N, respectively. The sites attached

The equation (63) that sets the spectral parameters of thewith the values = 0 are the vacant sites or those excluded
matrices coincides with the Betharsatzquations derived  due to the size of the particles. As an examdlg} =
in [15]. Similarly as we did in (40) - (45), we can show that {1,0,2,0,2,0} may represent the configuration where in a
indeed the eigenfunctions we obtained by using our matrix L = 6 sites we have a particle of classand sizes; = 2 at
product ansatzcoincide with the ones derived in the frame- the sitel and two particles of classand sizes; = 1 located
work of the coordinate Bethansatz at the sites3 and5. The allowed configurations are given,
in general, by the s€t5;} (¢ = 1,2,..., L), where for each
) ] ) pair (31, 3;) # 0 with j > i we havej — i > sg,. The al-
IV The asymmetric diffusion model lowed stochastic processes in the problem are just given by
. : : . the exchange of particles or the asymmetric diffusion if the
with N classes of parthIeS with hi- constraint due to the size of particles is satisfied. The possi-
erarchical order ble motions of a given molecule are diffusion to the right,

The extension of the simple exclusion problem to the Bi Digr —0i Biya  (rate I'g), (65)
case where we havd’ distinct classes of particles: (=
1,2,..., N) diffusing asymmetrically is not exactly inte-
grable in general. However the integrability of the problem

diffusion to the left,

can be preserved if the diffusive transitions of the several Oi Biv1 = fi Biva (rate I'p), (66)
species happen in an hierarchical order. This problem was ; :

considered originally for the cagé = 2 as a model to de- and interchange of particles,

scribe shocks [25]-[27] in nonequilibrium. The stationary I A /

properties of theV = 2 [31] and N = 3 [43] models can Bi Birsy Bi Birsy (B<P) (rate Ir),
also be studied through a matrix produahsatz In [19] a Bi Biis, — Bi Bivs, (8>3 (rateTr),(67)

generalization of this problem was considered in which the
particles in each of théV classesd = 1,2,..., N) may with 8,5 = 1,2,..., N. As we see from (67), particles of
have distinct sizess(, . .., sy), respectively. The solution a classc interchange positions with those in classés> ¢
of this generalized problem was obtained through the coor-with the same rate as they, interchange, positions with the
dinate BetheansatZ19]. In the next section, we are going vacant sites (diffusion). However, the net effect of these
to show that the solution of this problem, similarly as we did motions is distinct from the diffusion processes, since by in-
in the last section, can also be obtained through an appropriterchanging positions, distinctly from the diffusion process,
ate matrix productansatz the particles move by, lattice units, accelerating its diffu-
In this generalized problem we consider the particles in sion if s > 1. The identification of the master equation as
each class: as composed by, monomers, thus occupy- a Schibdinger equation as in (5) will give us the Hamilto-
ing s. sites on the latticece(= 1,2,...). We consider as  nian [19]

]
L
H = DP>» H,P,
j=1
N
Hj = {Z [€+ aOE?f{l)'Pan ;JiH_'_e ( EOa JaJrOl),PEa OE;)+(¥1
a=1
N N
B, 0 10,3 0,0 3,8
ZZ E QE;]JrSfEJJrS _EaaE]Jrs/ijJrsa)}? (68)
with . .
D=Tp+T;, e,=—"2 e =—"L (e =1), 69
RTL e = e e (e ) (69)
€, a<p,
€ap=14 0, a=0p, (70)

e, a>p,
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and periodic boundary conditions. The matridé®? are At the end of the next section, we are going to present
(N + 1) x (N + 1)-dimensional matrices with a single the solution of an even further generalized model whose so-
nonzero elementE*?);; = 84i6p; (o, B3,i,5 =0,...,N). lution was not derived in [19]. The solution of this model

The projectorP in (68) projects out the configurations as- is quite complicated through the standard coordinate Bethe
sociated with the vectorg5}) representing molecules at ansatz As we shall see, however, its derivation is not diffi-
forbidden positions due to their finite size. Mathematically, cult through our matrix producansatz In this generaliza-
this condition means that for all j with 3;,3; # 0 we tion, instead of having all the particles in a given clagsth
should havegi — j| > sg, (j > 4). The constanD in (68) fixed sizes., each individual particle may have an arbitrary
fixes the time scale in the problem, and we chéke- 1. size. In this case the configurations on the lattice are given
The Hamiltonian (68) corresponding to the particular case by {3} = {3,, f,,..., 3.} wheref; = (¢, s) means that
where all the molecules have unit size is related to the spin-the lattice site (: = 1,2, ..., L) is occupied by a particle of
N/2 SUN + 1) anisotropic Sutherland chain [28, 44] or classc (c = 1,2,...,N) having sizes (s = 1,2,...). The
SUV + 1) Perk-Schultz model [29] with twisted boundary Hamiltonian related to this stochastic problem is given by a
conditions [3]. generalization of (68), namely

L
H = DP) H,P,

j=1
5.6 10,5 \ o 0.0 o3 6.5 1.0 \ > 1250 0.5
H = - Z[e+(1—Ef ESP)PEVPENS + e (1 - EYPETS)PE] Ejfl}
Iéj
3.3 23,0 10,7 3.6 200 3.5
+ Z Z cce (Bj TEL By — BB GBS ) ¢ (71)

B=(c,5) Fr=(c' ")

with €., e_ ande. (¢, = 1,2,...,N) given as in (69)  solution enables the extension to the more general problem
and (70). discussed in the last section and whose Hamiltonian was in-
troduced in (71).
) Let us initially consider the simple case where all the
V A matrix pI’OdUCt ansatzfor the particles in a given class: (= 1,..., N) have a fixed size

; : : : (sc = 1,2,...). Due to the conservation of particles in the
generahzed diffusion problem with diffusion and interchange processes, the total number of par-

N classes of partideg with hierar- ticlesin each class is conserved separately and we can split
the associated Hilbert space into block disjoint eigensectors

chical order labeled by the numbers,, no, ..., nx (n; = 0,1,...) of
particles on the classeégi = 1,2,..., N). We want to ob-
The exact solution of the asymmetric diffusion problem with tain the eigenfunctions:, . .., ny) of the eigenvalue equa-
N classes of particles, whose related Hamiltonian is giventjon
by (69) was obtained in [19] through the coordinate Bethe Hlni,...,nx) = éenlni,...,nx), (72)

ansatz In this section we are going to reobtain this solu-
tion by an appropriate matrix produghsatz Moreover our  where

]
N1y . ., NN) = ZZf(xhcu---;xmcn)\xhcu-~-;5Cn,cn>- (73)
{c} {z}
|
The ket|zy, 1. . . ; xy, ¢,,) Means the configuration where numbers{1,2,..., N} in which n; terms have the valug
particles of class; (¢; = 1,...,N) are located at po- (i = 1,...,N), while the summatiodz} = {z1,...,z,}
sition x; (z; = 1,...,L) and the total number of par- runs, for each permutatiofr}, over the set of the nonde-

ticles isn = ny + .-+ + ny. The summation{c} =
{c1,...,c,} extends over all the permutationsofinteger
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creasing integers satisfying The matrix productansatave propose asserts that an ar-
bitrary eigenfunctioniny, ..., ny) with momentumpP, will
Tiyn > xi+s.,, i=1,...,n—1, have the amplitudes in (73) given in terms of traces of the
s, < wn—m1<L—s,. (74) matrix product
|
f(l'lacﬂ T, Cn) - Tr |:Ew1—ly(01)Ew2—w1—ly(02) . Eﬂin—il?nfl—1y(C7L)EL—$nQPi| . (75)
The matrices”(©) (¢ = 1,..., N), E andQp will obey algebraic relations that ensure the validity of the eigenvalue equatior

(72). The momentun® of the state, analogously as in Séc¢is fixed by requiring the relation
EQp=ePQpE, YOQp = QpY©, ¢=1,...,N. (76)

Let us consider the simplest caseswof 1 andn = 2 particles before considering the case wheis general.

n=1

In this case the problem is the same as that of seétamd we obtain the energies given by (18).

n=2.

For two particles of classes andcs (c1,c2 = 1,..., N) on the lattice we have two distinct types of relations depending
if the amplitudes are related or not to the configurations where two particles are at the closest distanee + s.,. The
eigenvalue equation when applied to the components where the particles of dashk:, are at positionsa(z, 1), such that
T2 > w1 + S, gives the relation

e Tr [E:cl—1y(c1)E:cz—xl—ly(cz)EL—wQQP} = —e,Tr {Em—2y(cl)Ewg—wly(cz)EL—wQP}
e Tr [E”“Y("’I)E“*““*QY(CQ)EL*“QP} — e, Tr [EwrlY(Cl)Eer?y(cQ) EHQHQP}

e Tr [EII*1Y<61>Ef2*11Y<C2>EL*f2*1§2p} S oTr [Exl*1Y(CI>EI2*“*1Y<C2>EL*I2QP} . 77)

A solution of this equation is obtained by identifying the matri3€§) as composed by two spectral parameter-dependent
new matricesY,ff) andka), i e,

2
Y@ =3yt (78)
i=1

which, as in Eq. (24), satisfies the commutation relation
EYk(jC) = eiks Y,j_?E. (79)
In terms of the unknown spectral parametergj = 1, 2), the energy and momentum are given by
eo =¢e(k1) +e(ka), P =ky+ ko, (80)
wheres(k) = —(e; e + e_e’* — 1). As a consequence of (76) and (78), we also have
Vi90p = eP090,1) (j=1,2 c=1,...,N). (81)

The eigenvalue equation (72) when applied to the components of (73) where the two particles are at the closest distance
ZTo = X1 + S¢y, QiVES

e Tr [ B0 1y @) pra =ty @ plon=saqp| — —e, Tr [p-2y (@) pray ) plon=raq,)|
— e Tr[Enly @ pray e plensiatigp] e, Tr B0y () prasly @) phon e qp]
+2(1 4 €yey)Tr [E-*l—1Y(°‘1>E301—1Y<C2)EL—9“—301 QP} . (82)
Substituting (78) and (80) in this last expression and using (79) we obtain

T {[ere 080 )+ 1] 1 [ )

lm

N L e A I S0 (83)
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This last equation is satisfied by imposing the following commutation relations among the opél@%ﬂ»s

Z Z{ Dim + 7 (1 — e, e)] Y(cl)ylicf) + ecwleik,,nyk(lCz)Yé::)} =0, (84)
where ,
Dym = —(eg +e_e/Frthm)), (85)
It is interesting to consider separately the cases where the two particles belong to the same-clastom the case where
c1#colfeg =co=c(c=1,...,N),sincee.. = 0andD; , + e*n # D,,; + e* for | # m, we obtain
y(© c, Oy ©)°
Y = S8k, k) VOV (14 m), (Ykl ) —0, (86)
where o) "
o | € Fe_eltTEn) — et
Seie (ki k) = e + e_eilkiThm) _ gikm (87)
and{,m =1,2; c¢=1,...,N). Therelation (84) in the cases whefe+ ¢, gives the equations in matrix form,
2 Dim + €ey e, €Fm 602701eikm Y(Cl)y(cz)
Z Tk ik ((32 C1) =0 (88)
= €cy,c0€ Dl,m + €cy,c0€ Y km

Similarly as in [19], the above equation can be rearranged straightforwardly by giving us the algebraic relations

N

VYD = 3D S kYR (ki ),
c,ch=1
yylel = o, (89)
where (,m = 1,2), ¢, c2 = 1,..., N and the “structure constants” of the algebra are the componentsShaatrix whose
non-zero components are given by (87) and
55217212( kg) = [1—601702©(k1,k2)]5511 gll(kl,kz) (61,62 = 1,...,]\[)7
Sevz(k1,k2) = €cpren®(k1, k2)Selct (R, ke) (e1,c2=1,...,N; 1 # c2), (90)
|
where E,
etk _ gikz EY) = efy B (j=1,....n; c=1,2,...,N),
Pk, k2) = etkr — e, —e_elikitha)’ (1) ' ' (93)
and, from (76),
The complex parameters(, k2), that are free up to now, are 4
going to be fixed by the cyclic property of the trace in (75) Y 90p = P05,y
and the algebraic relations (76), (78), (79) and (81). 7 !
Instead of solving for the spectral parametersifor 2, G=1L...,n; e=12,...,N). (94)
let us consider the case of genetal The energy and momentum in terms of the spectral parame-
General n ter {k;} are given by the generalizations of (80), namely,
In this case the eigenvalue equation (72), when applied
to the components of the eigenfunction corresponding to the - -
configuration where all particles are at distances larger than €n = ZE (k;), P= Z kj- (95)
the closest distance, gives a generalization of (77) that is i=1 J=1
promptly solved by identifying, as in (78), the matrices’) The components of the eigenfunctions corresponding to the
as combinations of spectral parameter matrices, configurations where a pair of particles of classeandc,

are located at the closest positionsandz; 1 = x; + s,
will give relations that reproduce (89) - (91).

Since in the general case we have the produeat @per-
ators{Yk(f)}, the algebraic relations (76), (79), (81) and (89)
satisfying the following algebraic relations with the matrices should provide a unique relation among these products. For

Y© =3y g, (92)
i=1



546 Francisco C. Alcaraz and Matheus J. Lazo

example the produc-t--Y,ff)Y,ff)Y,f;) ... can be related Either by performing the commutationg3y — fay —

to the product. .. Yk(’Y)Yk(ﬁ)Yk(O() c. by two distinct ways. ﬁ’}’a o /VIBO[ or by aﬁ’y - O[’}/,B - ’706,6 - Wﬁa Conse-
s Tk Tk quently, we should have

]
N ! 1 ’ 1
S G k) SY O k) ST O ) =
=1
N o " ’
Z S,‘;(/:,;xu (kQ, kS)S,?:g// (k17 kS)ngg/ (klv kz)ﬂ (96)

v =1

fora,a’,a”,3,0,8" =1,...,N. This last relation is just  through the coordinate Betlansatz has the advantage that
the Yang-Baxter relations [42, 21] of thematrix defined the derivedS-matrix does not depend on the size of the parti-
in (87) and (90). Actually, the condition (96) is enough to cles and the associativity condition or Yang-Baxter relation
ensure that any matrix product is uniquely related and it im- (96) is easier to be verified since it is the same, indepen-

plies the associativity of the algebra of the operafar§”}.  dently of the particle sizes. _ _

We can verify that the Yang-Baxter relation (96), wigh The spectral parameterd;; } are fixed by the cyclic
given by (87) and (90), is satisfied by an arbitrary number Property of the trace in (75). For each spectral parameter
of distinct species of particled’. It is interesting to remark ~ *3 U = 1,...,n), the commutations relation (76), (78),

that in our solution, as compared to that presented in [19] (79) a”‘_j (81) applieg times enable us to move the oper-
atorYk(f”) to the left,

Tr [Yk(lm) .. .Yk(;i'zl)ylf;j) . Yk(j")EL_Z;V:l nJSﬁ-nQP} _ eikj(L—Zj-v:l n;s;+n)

iP(s" —1 Cl,C” Cj_g,C,~/71 Cj—1,Cj
Z Z Z {el (e )Sc’ ’Q’(khkj)sc’ c’J.’ (k]*Qak])Sc’] 1 ci’ l(kjflvkj)
j—=27 J—=1""5—
1"

! 11 / / /7 1,61 -2 ]72
ey, g ey, cl,cf
T [Yk(lc/l) o Yk(;i:ﬂyk(jﬁﬂ) o Y/{E:n)ylfjfﬂ/)EL—Zyzl n_is_i—&-nQP} } ) 97)

Moving the operatoiY(,C/l/) for additionaln — j times to the left and using the identity
k]

N
> S:j:j“ (kj, kj) = —1, (98)
¢ ey =1
we can write
Tr [Yk(lcl) . Yk(:n)EL_ZJN:l njsj--i-nQP} — eilcj(L—Z;V:l njs;+mn)
Z <cty.oen|T|c, . d, > Tr {Yk(f,l) e Y]:j;')Esz;yzl ”jsj+"QP] ; (99)
AR el
where ., " "
AMNTHEY >= D0 {STG (k) S8 (k) -+ S5Ek (s ) PE D (100)

1 /7
C1oCn
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We identify in (100) 7 (k;;{k;}) as the N x N"- {k;} reduces to the evaluation of the eigenvalues of the
dimensional transfer matrix of an inhomogeneous vertex transfer matrix (100). This can be done straightforwardly
model (inhomogeneitied%;}) with Boltzmann weights  through the coordinate Bettansatzas in [19]. Extracting
given by (87) and (90). The model is defined on a cylin- these eigenvalues from [19] we obtain equations that coin-
der of perimeten with a seam along its axis producing the cide with the Beth@nsatzequations for this general model

twisted boundary condition (see Egs. (71)-(73) in [19]).
o o " o, Let us consider the more general Hamiltonian given in
Sy (ks k) = S50 (k, k)e”1 7D (101)  (71), where now each molecule has an arbitrary size, in-

dependently of the sizes of the other molecules belonging

where as alway#® is the momentum of the eigenstate. The to its class. The solution of this problem was not derived
relation (99) gives the conditions for the spectral parameters,through the coordinate Bethansatzsince it is not simple

‘ N in that formulation. The Hamiltonian (71) is composed by

emthibAn= i mis) = N(k; {ki}), j=1,...,n, block disjoint eigenvectors labeled Hy1, s1;...;¢n, 80}

(102) (¢;j=1,...,N; s; =1,2,...; j=1,...,n) that specifies

whereA(k;, {k;}) are the eigenvalues of the transfer ma- the classes and sizes of each individual particle. An arbitrary
trix (100). The problem of fixing the spectral parameters eigenfunction of (71) is given by a generalization of (73),

|
C1,815-+.;Cn, 57L> = Z Z f(xlv C1,815-+.35%n,Cn, Sn)|1'1,01, S15++-3%n,Cn, S7l>a (103)
{e,s} {a}~
[
where|z1,c1, 815 ... ;Tn, Cn, Sn) denotes the configuration  set of non-decreasing integers satisfying
where the particle locatedat (i = 1, ..., L) belongs to the
classe; (¢; =1,...,N)and has size; (s; = 1,2,...). The Ty, > Ti+s, t=1,...,n—1,
summations{c, s} = {cp,, Spy;---3Cp,s Sp, + €Xtend over s < xp—x1<L—s,. (104)
all the permutations of particles. The summatiar}* =
{x1,...,2,}" runs, for each permutatiofr, s}, over the  Our matrix productansatzasserts that the eigenfunctions
with a given momentun® have amplitudes
|

Tr Eml—ly(cl,sl)E:cQ—:cl—1y((:2,52) . E.’cn—xn,l—1y(cn,sn)EL—3:nQP ,

where the matrice& are associated with the empty sites, &%) with the sites occupied by particles of clagsand
having a sizes; (j = 1,...,n). The matrice$2p, as before, fix the momentuid of the eigenstates,
EQp =" PQpE, YI)Op = PQpy (e, (105)

The solution of this general problem followsutatis mutandisthe derivation we did in (77)-(102). The energy and momen-
tum of the eigenstate are given by (95), where the spectral parameters are introduced by the generalization of (92),

Y(C,S) — Z Y]jf7S)E2_S, (106)

i=1
where the spectral parameter matri&’éjé’s) satisfy the algebra
EY,j;’S) = ekak(jC’S)E G=1,....n; ¢=1,2,....N; s=1,2,...), (107)
and, from (105),
kaj’S)QP = eiP(l—s)QpY,jf*S) G=1,....,n; c=1,2,...,N; s=1,2,...). (108)
The algebraic relations among tbb’k(f’s)} are given by the generalization of (89),

N
vyl = N (k) VY (£ ),

! v
ci,co=1

Yk(lChSl)Yk(lCzasz) = 0, (109)
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where ((m = 1,...,n), c1,ce = 1,...,N andell"Z,';’(kl, k.,) are the samé&-matrix defined in (87), (90) and (91). Itis
interesting to observe that the condition of existence of a single relation among the~ond1§’sl)Y,ff’”)Yk(”’s?’) -+ and

3
. ~Y,§3’SI)YI§5’52)Y,§;’S3) --- reproduces the Yang-Baxter relation (96), as before.
The spectral parametefs; }, as before, are fixed by the cyclic property of the trace and the algebraic relations (105)-(10¢

Using these relations we can move the operﬁﬁjﬁf’sﬁ) to the left as in (97)-(100),
Tr |:Yk(lcl781)yk-(202732) e Yk(:"ﬁ")EL*Z;V:ﬂSj*1)QP:| = eikj[L*E;V:ﬂSj*1)]67513(51*1)

Z <cryo.enlTle), ... e > Tr [qu(lc/l’s2)ylc(;/2’53) . Yk(’::wsl)EL—Z;v:l(Sj—I)QP:| ’ (110)

! !
ClrCpy

where now ) . .
<AMNTHCY >= 30 {855 o ky) - S0 (o ) | (111)

S el
C1> Cn

is different from (100), since it corresponds to a transfer matrix of a vertex model in a cylinder of peninvetarno seam
(periodic boundary condition). If we iterate— 1 times the procedure used in obtaining (110), we obtain

Tr |:Y]€(1<31781)Yk(202782) . Yk(:n,,sn)EL—Zyzl(s_j—l)QP:| _ einkj [L—Z;vzl(s_.j—l)]eip P j=i(si—1)

S < el > T [Yk(f'vsﬁ . ..Yk(:/"’S")EL_Z;V=1(SJ'_1)QP} . (112)

CaeesCh
Consequently, the spectral parametgrs} should satisfy
e thi(LAn=0 iy s) — ei%reip(g_l)/i(kj, {ki}); 7=1,...,n; r=0,1,...,n—1, (113)

where A(k;, {k;}) is an eigenvalue of the transfer matfix given in (111), ands = >0j=1 * is the average size of the

particles. The eigenvaluerj, {k;}) can be obtained from the diagonalization of (111) through the coordinate Besaéz
and they are given by Eqgs. (67) and (70) with = 1 [19]. We finally have the conditions that fix the spectral parameters of
this general problem,

n i(kj+k, ik;
etk [L+n=37_y s;] _ (_1)71,—1ei27#reip(§—1) €4 tee (kg ki) — giks
) . ) 6+ + e_ei(kj+kj/) _ eikj/
J'=1(4'#3)
mi ik ik,
€qxle™ —e .
X +( .k(l) k ) . b ]:1727"'7’”7 (114)
1—1 €+ -+ 6761( Py J') — elkj
where the auxiliary complex paramete{#sg”, 1=0,...,N—1; j=1,...,m} are fixed by the equations
my i+ ik® myqo i+ i+
(@ ) ex(ets T — k)
PV INO) O a2 O+ oA+
poi ey +eelhe TR _ oiky jo1 €4 +eellhs THka ) pika
T e e STOHRGTY) ikl
< |1 1=01,....N—-2, a=1,...,my, (115)

a+D, (+D =R
(ke +k ik
a'=1 (a/#a) €+ T €—€ ( o) — gthar

wheren; (j = 1,..., N), as before, is the number of parti- the particles now are completely distinguishable.

cles on clasg andm; = Y2 'n;, 1=0,...,N; mg =

0 .
n,my = 0, andk§. ) — k;. The energies and momentum VI Conclusions and generalizations
are given in terms ofk;} by (95). We can see from (114)
and (115), since for each valuesofr = 0,1,...,n—1) we We have shown that all the exact results derived for the

have distinct solutions, that the number of solutions is higherasymmetric exclusion problem and generalizations through
than that previously obtained. This should be expected sinc&né coordinate Bethansatzcan also be obtained in an el-



Brazilian Journal of Physics, vol. 33, no. 3, September, 200

egant and unified view by an appropriate matrix product
ansatz According to thisansatz the amplitudes of the
eigenfunctions of the associated Hamiltonian are given by

traces of a product of matrices. The algebraic properties of

the matrices appearing in tlamsatzare fixed by the eigen-

value equation of the Hamiltonian. The existence of a well
defined ratio among the several amplitudes of any eige
function implies the associativity of the algebra ruling the
matrices defining thansatz In the case where we have

more than a single kind of particle the condition of asso-
ciativity of the algebra (see (96)) coincides with the Yang-
Baxter relations [42, 21]. Once the algebraic relations of

the matrices are fixed the eigenfunctions we obtain coincide [6]

with those obtained through the coordinate Bethsatz As
an example, see (45) for the case of diffusion of one kind of
particle with a fixed size.

Differently from the Betheansatzsolutions presented
in [15], [18] and [19] the matrix produansatzwe formu-
late allow us to treat in a unified way the hard-core exclusion
effects produced by the size of the particles. This virtue al-
lowed a simple derivation of the quite complicated problem
(see (114) and (115) in sectid@h where we haveV types
of particles hierarchically ordered, but each particle being
distinguishable and with a given specified size. The corre-
sponding calculation through the coordinate Betheatzs
rather difficult.

The extension of the solution presented in sectidar
the cases where the molecules are allowed to have a zer
size is immediate and follows the same reasoning of sec
tions 2 and 3. In the case of a single species of molecule
we can also extend our models allowing the molecules to
have negative sizes(= —1, —2,...) as in [45]. In this case,
since we do not have the interchange process, the particle
have a well defined order on the lattice, apart of cyclic ro-
tations, i. e, 1 < a2 < --- < x,). A particlei with
negative sizes allows a partial break of this ordering, i. e.,
(1 <@ <<y — s <y Sy < -- <y

We may also extend the matrix prodaetsatzpresented

in this paper to the cases where the lattice size has open

o1

ends [41]. In those cases, instead of the trace operatio
defining the amplitudes of the eigenfunction, we have a sin
gle undefined matrix product that can be fixed by a normal-
ization of the corresponding eigenfunction.

The success of our matrix produatsatzcan also be
tested [41] on an enormous variety of known exactly inte-
grable models, irrespective if the Hamiltonian is related or
not to nonequilibrium stochastic models. We have shown
that our matrix producainsatzcan provide the exact solu-
tions of the XXZ chain with arbitrary exclusion effects [46],
the Fateev-Zamolodchikov model [47], the 1zergin-Korepin
model [48], thet-J model [49], the Hubbard model [50] as

well as the generalized integrable models presented in [51]
and [52]. In conclusion, our results suggest the conjecture

that all exact integrable models may have their eigenfunc-
tions given by an appropriate matrix prodactsatz
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