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The long-range bond-percolation problem, on a linear chéia: (1), in the presence of diluted sites (with an
occupancy probabilitys for an active site) is studied by means of a Monte Carlo simulation. The occupancy
probability for a bond between two active siteand j, separated by a distaneg; is given byp;; = p/r7;,

wherep represents the usual occupancy probability between nearest-neighbor sites. This model allows one to
analyse the competition between long-range bonds (which enhance percolation) and diluted sites (which weaken
percolation). By varying the paramet@i« > 0), one may find a crossover between a nonextensive regime and

an extensive regime; in particular, the cases 0 anda — oo represent, respectively, two well-known limits,
namely, the mean-field (infinite-range bonds) and first-neighbor-bond limits. The percolation order parameter,
P, was investigated numerically for different valuescofndps. Two characteristic values of were found,

which depend on the site-occupancy probabjlity namely,a: (ps) andas (ps) (az2(ps) > a1(ps) > 0). The
parameterP., equals unityVp > 0, for 0 < a < ai(ps) and vanishesyp < 1, for a > a2(ps). In the
intervalai (ps) < a < az(ps), the parameteP., displays a familiar behavior, i.e., 0 for< p.(«) and finite
otherwise. It is shown that botl (ps) andaz(ps) decrease with the inclusion of diluted sites. For a fixed

it is shown that a convenient variabjg, = p*(p, o, N'), may be defined in such a way that plotsidf versus

p* collapse for different sizes and valuescoin the nonextensive regime.

I Introduction mention that site-diluted long-range bond-percolation mod-
els are closely related to real situations in a wide variety

. . . of complex networks, such as internet, www, small-world
Percolation [1, 2] represents one of the most interesting

) . . . S economic networks [3, 4], and the network of the Brazilian
problems in §tat|st|cal physics. Many phy§|cal situations de- Popular Music [5]. Due to the presence of long-range bond
pend essentially on th_e geometric propertle§ of random Clus'occupancy probabilities, such a system may also present in-
ters, e.g., random resistor networks, forest fires, and the ﬂowteresting nonextensive behavior [4, 6]
of fluids in porous media. The study of such clusters, and, . T ) .
in particular, the existence of an infinite connected cluster ~ 1he extensivity of some thermodynamical quantities,
which spans the system in question, is the subject of perco-'[ke the internal and free energies, is one of th_e main proper-
lation theory. The percolation order paramet@y,, is de- ties of.the standard Bo]tz_rnann—Glbbs stat!stlcal—mechanlcs
fined as the fraction of sites of the system that belong to theformalism [7, 8, 9].  Within such a formalism, the exten-
infinite cluster. ObviouslyP,, attains its maximum value ~ SiVe quantities increase linearly with the size of the system
(P.. = 1) when all the sites of the system appear inside the (€-9-, the number of particlesy), in such a way that the
infinite cluster, wherea®,. — 0 below a certain threshold, ~Internal energy per particle, or the free-energy per particle,
when it is not possible to produce an infinite cluster. For @PProach well-defined values (independentgin the ther-
the bond-percolation problem, wheseepresents the usual Modynamic limit. However, only a few textbooks [10] em-
occupancy probability between nearest-neighbor sites, thePhasize that the extensivity property does not hold in gen-
one-dimensional problem is trivial: one has tat = 1 eral, being dlreqtly re!ated to the characte_rlstlcs of the sys-
for p = 1 andP,, = 0 Vp < 1. Also, if one introduces a di- €M under consideration, e.g., the interactions among parti-
lution of sites in the system (with an occupancy probability cles must be shortjran.ged. When_long-range mteracno_ns are
», for an active site), one gets thBt, = 0 (even forp = 1) present, each particle interacts with all thg others, leading to
Vp, < 1. However, this trivial situation changes completely @ free energy that depends more than linearly’\onand
if one introduces long-range effects, i.e., bond-occupancy ©PViously, the extensivity property looses its validity. As a
probabilities associated with two active sites further than consequence of this, additivity does not hold, in the sense
nearest-neighboring ones. An interesting competition may that the total free energy is not equal to the sum of the free
occur in such a case between the dilution of sites and the€nergies of the macroscopic parts of the system.
range of the bond-occupancy probability. It is important to A lot of interest has been dedicated to the study of
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nonextensive systems lately. Nonextensive behavior haswherer;; represents the distance between sites (in crys-
been found in many physical systems, and may be producedalline units,;; = 0,1,2,---) and p denotes the first-

by a variety of physical ingredients, like long-range inter- neighbor bond occupancy probability. The exponebn-
actions and long-time memory, among others. Clear limita- trols the range of the bonds in the chain, yielding two well-
tions have been identified on standard formalisms, e.g., theknown particular cases, namely, the first-neighlor£ o)
powerful Boltzmann-Gibbs statistical mechanics was shownand infinite-range, i.e., mean-field-likex (= 0), bond-

to fail in providing a satisfactory description of a wide va- percolation limits. Such a crossover was found to occur at
riety of theoretical models and experimental realizations « = «; = 1, in such a way that foé < o < a3 (nonex-
[11, 12, 13], in such a way that a completely new physics is tensive regime) the percolation order parameter is always
emerging for dealing with such systems, in the recent years.maximum. The extensive regime holds for all> «4, al-

In order to deal with such systems, the most successful al-though only fora > as (e = 2), the percolation order
ternative for the standard Boltzmann-Gibbs formalism, so parameter presents the usual behavior characteristic of the
far, appears to be the nonextensive thermostatistics, due t@ne-dimensional first-neighbor bond-percolation, vanishing

Tsallis, based on the generalized entropic form [14] Vp < 1. Inthe intervale; < o < as, the order parame-
ter presents a nontrivial behavior, varying witbetween its
[1 — ZiVL pj} minimum and maximum possible values.
Sq=k 1 ; (1) By introducing a site dilution [probabilitieps and

(1 — ps) for a site to be present or vacant, respectively],

in the above-mentioned long-range one-dimensional bond-
percolation problem [4], we shall investigate herein the com-
L . ; petition between the long-range bonds and the site dilution.
The entropic indexy (for which the par_tlcular casg = In particular, the values af defining the nonextensive and

1 recovers the standard Boltzmann-Gibbs entragy, = extensive regimes, will now depend pn i.e.,a; = a1 (ps)

—k>_i—y piInp;) is responsible for the nonextensivity in  anda, = ay(p,). Inthe next section we present and discuss
the t_hermodynam|c quantities. For instance, if one considersgyr results: finally, in section 3 we present our conclusions.
two independent systemd,and B, one gets that,

wherek is a positive constant)’ represents the total num-
ber of microscopic possibilities angl stands for the oc-
currence probability of the microscopic configuration

Sq(A+ B) = 54(A) +54(B) + (1 = q)5,(A)S4(B), (2)

which breaks the usual additivity property of the entropy for

I Results and Discussion

anyq # 1. . - We have simulated open linear chains of several sizes vary-
Clear evidence of breakdown of ergodicity has been ing from N = 100 up to N = 1000; in each case, we have

found recently on Hamiltonian systems with long-range in- computedP.-.. by considering averages over 10000 samples
teractions [15, 16, 17, 18, 19, 20], through the appearance P o OY 9 9 p

of a metastable state, before the terminal equilibrium state(l'e" different co.nﬂguratlons of bonds and dIIUte.d sites).
is attained. For a finite number of particles, if one waits a The percolatlon_ order param.eté’@o (p), for typlcgl val-
sufficiently long time, the system experiences a crossovery®s ofa, s andN is presented in Figs. 1-3. In Fig. 1 we
from the metastable state to a terminal equilibrium state, STOW o (p) for fixed values ok (o = 0.8) and N (N =

that presents some properties in agreement with the usuapV?). and several values of (p, = 0'820'6’0'4’0'2)' One
Boltzmann-Gibbs formalism. However, the metastable-state S€€S cléarly that the order parameter is weakened by the dilu

survival time increases with the size of the system, in such ation of sites, leading to an increase in the critical value of the
way that if one performs the thermodynamic limit before the first-neighbor bond occupancy probabilipy, below which

long-time limit, the system will remain in this regime for- P becomes zero. As expected, fluctuations get enlarged,

ever. Therefore, since the terminal equilibrium may never for higher fractions of diluted sites (cf. the case = 0.2
Fig. 1), in such a way that a larger computational effort

be attained, one needs an appropriate statistical-mechanic¥! o ; :
formalism to deal with such a metastable state; in fact, some!> required in order to get r_ehabl_e _results n such cases. In
of its physical properties are in agreement with Tsallis’s pre- F|g._2 the ord de](fp?\r]aTeter IS eé(h'b'ted lfor :‘|xedq\)/fa!ue;ﬁsof
scription. However, for a finite number of particles, the sys- (s = Oé) an ( :300) gn severa Vr? uefs N Itl € |
tem displays a crossover from the metastable state (wheréangeo‘ = 0-2uptoa = 2.0. One notices that, for small val-
the nonextensive thermodynamics seems to apply) to theUes ofa one is found in the nonextensive regime, for which

terminal equilibrium state (where extensivity is recovered) ,P°° equ_als unityp > 0, leading top(a) = 0'. However, for
[18, 19]. increasing values af, one get.(«) > 0, in such a way

A crossover between nonextensive and extensivethat as one approaches the first-neighbor bond-percolation
regimes has been found also in the long-range one-“m't (typically, « ~ 2), large fluctuations are observed, due

dimensional bond-percolation problem [6]. In this problem, t© finite size effects; in such a case, one should get, in the

one considers a bond occupancy probability between any;hermogynarrrlc “Ln't’POdo = 0 andp.(e) IZ L. !nh Ffl1g. .
two sitesi and; of the linear chain as, we show how the order parameter evolves with the size

of the system; we consider two different site concentrations
(ps = 0.6 andps = 0.2) and a fixed value oft (o« = 0.8).

ij = o (0<p<l;a=>0), 3 ; O
Pij (Ospslia ) 3) Once again, one observes that the finite-size effects become



Brazilian Journal of Physics, vol. 33, no. 3, September, 2003

more relevant for lower site concentrations (cf. the differ-
ent sizes considered for the cagse = 0.2 of Fig. 3), in
such a way that more reliable estimatesRf andp.(«)

are obtained at large system sizes (typicaly,= 1000).

By locating, for finite values ofV, the abcissa points given
by the linear continuations of the curves{, (p), and then
extrapolating forN — oo, one may estimate the critical
values of the first-neighbor bond occupancy probability, for
fixed values ofp, and different values af, p.(«).

JAY
AA
AA
A
oo A <§§>
A
06fF o , & N=300
o A & a=0.8
8 oy & op=08
ol " R <§§> 0p=06
04+ o Ap=0.4
eo AA & op=0.2
o
4 OO¥
02 o7, A
ODD A 00%
A%
O oSy
0.0 salRERRSCY . . .
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. The percolation order paramentey,, versus the first-
neighbor bond-percolation occupancy probabilityfor fixed val-
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Figure 3. The percolation order paramentey,, versus the first-
neighbor bond-percolation occupancy probabiljty,for a fixed
value ofq, two different site-occupancy probabilities, and several
system sizes.

In Fig. 4 we exhibit how,.(«) varies witha for a typ-

ical value of the site concentrationpi;, = 0.6. The error
bars express the accuracy of the linear continuations, to-
9 gether with the thermodynamic-limit extrapolations, of the
curves of the paramete?,,. By comparing the results of
Fig. 4 with those obtained for different site concentrations,
one notices that the two characteristic values.pév; (ps ),
below which P, equals unitVp > 0, andaz(ps), above
which P, = 0, Vp < 1, decrease as the site concentration
decreases. In analogy to what happens in the case of no site
dilution (p; = 1.0) [6], the characteristic value; (ps) sets

in a crossover between the nonextensive a < a1 (ps)]

ues of N anda, and several values of the site-occupancy probabil- and extensived > a1 (p;)] regimes. On the other hand,

ity ps.

Figure 2. The percolation order parament@y,, versus the first-
neighbor bond-percolation occupancy probabilityfor fixed val-
ues of N andp;, and typical values of:.

ps = 0.8:
ps = 0.6:
ps = 0.4:

a1(ps) = 0.5 4 0.09;
The above results, together with those for the gase 1.0,
i.e.,a1(ps) = 1.0 andas(ps) = 2.0 [6], do surely indicate

as(ps) defines the onset of the well-known first-neighbor
one-dimensional percolation behavior; as a consequence of
this, the region right belows (p; ) is very delicate from the
numerical point of view. In Fig. 4, the last point to the
right corresponds to the estimate @f{«) associated with

the value ofa that is as close as possible (in the sense that
one may still get a reliable estimate, within the computa-
tional effort employed herein) tas(p). For slightly higher
values ofu, strong fluctuations, driven by finite-size effects,
occur; in this region, in order to observe the behavior of the
order parameteP,, (i.e., whether it drops to zeitp < 1, or

not) one needs to run much larger system sizes, as well as to
increase reasonably the number of samples, as compared to
those used in the present work. Besides the site-occupancy
probability p;, = 0.6, we have also investigated the cases
ps = 0.4 andp, = 0.8; the corresponding plots are similar

to the one exhibited in Fig. 4, except that the characteristic
valuesa; (ps) andas(ps) are different. Below, we present
our estimates for the two characteristic values ofor each

one of site concentrations considered,

a1 (ps) = 0.7 £ 0.05;
a1(ps) = 0.6 +0.07;

as(ps) = 1.9 £ 0.06;
as(ps) = 1.8 +£0.07;
aa(ps) = 1.7 £ 0.10.
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that the characteristic values @fdecrease with the concen- 10
tration of sites.
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T Figure 5. Data collapse of curves for different values\oanda,
0.0 .3 ) ) of the order parametd?P., as a function of the variablg®, for the
0.0 1.0 a 20 30 caseps = 0.6.
Figure 4. The critical value of the first-neighbor bond occupancy
probability versusy, for the casens = 0.6.
[l Conclusion

We shall now concentrate on small valuesxafroughly
speaking, values af inside the nonextensive region); let us
define a rescaled occupancy probability,

We have investigated the competition between the dilution
of sites (with a site occupancy probabilipg) and long-
range bonds in the one-dimensional bond-percolation prob-
lem, by means of Monte Carlo simulations. The range of
the bonds is controlled by a parameterin such a way
. N*oe ., N« -1 that two well-known limits may be recovered, namely, the
l-p"=01-p) ;o NT=—— a (4) mean-field & = 0), and the first-neighbor bond percolation
(a« — o0) ones. We have shown that two characteristic val-
S ) ) ues ofa occur, whose values depend on the site-occupancy
By considering the percolation order parameter in terms of probability, a; (p,) and az(ps) [az(ps) > ai(ps) > 0].
such a variable, i.e.P.(p*), we have verified that, for a g, < a < ay(ps), the percolation order parametgr,
fixed value ofp,, the curves associated with different values g always maximum (equal to unit), indicating that one is
of « and]\_f collgpse. In Fig. '5, where we exhibit curves n 3 nonextensive regime, whereas for> as(ps), the
for the typical site concentration, = 0.6, one sees a rea- rder parameter is always zero, in such a way that one
sonably good data collapse (except for the vicinity of the js found in the well-known first-neighbor one-dimensional
critical point). Therefore, one may define a critical rescaled bond-percolation regime. The crossover between the nonex-
occupancy probability yvhich depends on the site occupancy,tensive and extensive regimes takes place at a(p)
pe = pi(ps), below whichP (p*) = 0. It should be men- 4 fora;(ps) < a < az(p,) the order parameter displays
tioned that our data collapse works for valuesnobelow, a familiar behavior, i.e., varying monotonically between its
or slightly above, the characteristic valdg(ps), but not  minimum and maximum possible values. We have shown
fqr valugs ofa far abovea; (ps), i.e., far inside the exten-  hat the two characteristic values of a1 (ps) andasa(ps),
sive region. We have also worked out data collapses for thegacrease with the inclusion of diluted sites. Finally, we have
site concentrationg; = 0.4 andp, = 0.8, leading to plots  yerified that, for the nonextensive region, it is possible to de-
similar to those of Fig. 5. The estimated critical rescaled fine 5 convenient variable in such a way that curves for fixed
occupancy probabilities are listed below, values ofp, are unified.
ps =0.8:  pi(ps) =0.6£0.05;
ps = 0.6:  pi(ps) =0.7+£0.04;
ps = 04:  pi(ps) = 0.8+ 0.05,

which, at least for the values of, investigated, decrease It is a pleasure to thank D. Stauffer, C. Tsallis, and
with p, according to a straight line. Therefore, in analogyto H. H. A. Rego for fruitful conversations. The par-

what has been verified for the case= 1 [6], the nonexten-  tial financial supports from CNPq, CAPES, Pronex/MCT,
sive region may be unified in terms of a conveniently defined and ANP/CTPETRO/CENPES/Petrobras (Brazilian agen-

variable. cies) are acknowledged.
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