
Brazilian Journal of Physics, vol. 33, no. 3, September, 2003 645

Competing Long-Range Bonds and Site Dilution in
the One-Dimensional Bond-Percolation Problem

U. L. Fulco1, L. R. da Silva2 , F. D. Nobre2, and L. S. Lucena2
1Departamento de F́ısica, Universidade Federal do Piauı́, 64049-550, Teresina-PI, Brazil

2Departamento de F́ısica Téorica e Experimental,
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The long-range bond-percolation problem, on a linear chain (d = 1), in the presence of diluted sites (with an
occupancy probabilityps for an active site) is studied by means of a Monte Carlo simulation. The occupancy
probability for a bond between two active sitesi andj, separated by a distancerij is given bypij = p/rα

ij ,
wherep represents the usual occupancy probability between nearest-neighbor sites. This model allows one to
analyse the competition between long-range bonds (which enhance percolation) and diluted sites (which weaken
percolation). By varying the parameterα (α ≥ 0), one may find a crossover between a nonextensive regime and
an extensive regime; in particular, the casesα = 0 andα →∞ represent, respectively, two well-known limits,
namely, the mean-field (infinite-range bonds) and first-neighbor-bond limits. The percolation order parameter,
P∞, was investigated numerically for different values ofα andps. Two characteristic values ofα were found,
which depend on the site-occupancy probabilityps, namely,α1(ps) andα2(ps) (α2(ps) > α1(ps) ≥ 0). The
parameterP∞ equals unit,∀p > 0, for 0 ≤ α ≤ α1(ps) and vanishes,∀p < 1, for α > α2(ps). In the
intervalα1(ps) < α < α2(ps), the parameterP∞ displays a familiar behavior, i.e., 0 forp ≤ pc(α) and finite
otherwise. It is shown that bothα1(ps) andα2(ps) decrease with the inclusion of diluted sites. For a fixedps,
it is shown that a convenient variable,p∗ ≡ p∗(p, α, N), may be defined in such a way that plots ofP∞ versus
p∗ collapse for different sizes and values ofα in the nonextensive regime.

I Introduction

Percolation [1, 2] represents one of the most interesting
problems in statistical physics. Many physical situations de-
pend essentially on the geometric properties of random clus-
ters, e.g., random resistor networks, forest fires, and the flow
of fluids in porous media. The study of such clusters, and,
in particular, the existence of an infinite connected cluster
which spans the system in question, is the subject of perco-
lation theory. The percolation order parameter,P∞, is de-
fined as the fraction of sites of the system that belong to the
infinite cluster. Obviously,P∞ attains its maximum value
(P∞ = 1) when all the sites of the system appear inside the
infinite cluster, whereasP∞ = 0 below a certain threshold,
when it is not possible to produce an infinite cluster. For
the bond-percolation problem, wherep represents the usual
occupancy probability between nearest-neighbor sites, the
one-dimensional problem is trivial: one has thatP∞ = 1
for p = 1 andP∞ = 0 ∀p < 1. Also, if one introduces a di-
lution of sites in the system (with an occupancy probability
ps for an active site), one gets thatP∞ = 0 (even forp = 1)
∀ps < 1. However, this trivial situation changes completely
if one introduces long-range effects, i.e., bond-occupancy
probabilities associated with two active sites further than
nearest-neighboring ones. An interesting competition may
occur in such a case between the dilution of sites and the
range of the bond-occupancy probability. It is important to

mention that site-diluted long-range bond-percolation mod-
els are closely related to real situations in a wide variety
of complex networks, such as internet, www, small-world
economic networks [3, 4], and the network of the Brazilian
Popular Music [5]. Due to the presence of long-range bond
occupancy probabilities, such a system may also present in-
teresting nonextensive behavior [4, 6].

The extensivity of some thermodynamical quantities,
like the internal and free energies, is one of the main proper-
ties of the standard Boltzmann-Gibbs statistical-mechanics
formalism [7, 8, 9]. Within such a formalism, the exten-
sive quantities increase linearly with the size of the system
(e.g., the number of particles,N ), in such a way that the
internal energy per particle, or the free-energy per particle,
approach well-defined values (independent ofN ) in the ther-
modynamic limit. However, only a few textbooks [10] em-
phasize that the extensivity property does not hold in gen-
eral, being directly related to the characteristics of the sys-
tem under consideration, e.g., the interactions among parti-
cles must be short-ranged. When long-range interactions are
present, each particle interacts with all the others, leading to
a free energy that depends more than linearly onN , and
obviously, the extensivity property looses its validity. As a
consequence of this, additivity does not hold, in the sense
that the total free energy is not equal to the sum of the free
energies of the macroscopic parts of the system.

A lot of interest has been dedicated to the study of
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nonextensive systems lately. Nonextensive behavior has
been found in many physical systems, and may be produced
by a variety of physical ingredients, like long-range inter-
actions and long-time memory, among others. Clear limita-
tions have been identified on standard formalisms, e.g., the
powerful Boltzmann-Gibbs statistical mechanics was shown
to fail in providing a satisfactory description of a wide va-
riety of theoretical models and experimental realizations
[11, 12, 13], in such a way that a completely new physics is
emerging for dealing with such systems, in the recent years.
In order to deal with such systems, the most successful al-
ternative for the standard Boltzmann-Gibbs formalism, so
far, appears to be the nonextensive thermostatistics, due to
Tsallis, based on the generalized entropic form [14]

Sq = k

[
1−∑W

i=1 pq
i

]

q − 1
, (1)

wherek is a positive constant,W represents the total num-
ber of microscopic possibilities andpi stands for the oc-
currence probability of the microscopic configurationi.
The entropic indexq (for which the particular caseq =
1 recovers the standard Boltzmann-Gibbs entropy,S1 =
−k

∑W
i=1 pi ln pi) is responsible for the nonextensivity in

the thermodynamic quantities. For instance, if one considers
two independent systems,A andB, one gets that,

Sq(A+B) = Sq(A)+Sq(B)+ (1− q)Sq(A)Sq(B), (2)

which breaks the usual additivity property of the entropy for
anyq 6= 1.

Clear evidence of breakdown of ergodicity has been
found recently on Hamiltonian systems with long-range in-
teractions [15, 16, 17, 18, 19, 20], through the appearance
of a metastable state, before the terminal equilibrium state
is attained. For a finite number of particles, if one waits a
sufficiently long time, the system experiences a crossover
from the metastable state to a terminal equilibrium state,
that presents some properties in agreement with the usual
Boltzmann-Gibbs formalism. However, the metastable-state
survival time increases with the size of the system, in such a
way that if one performs the thermodynamic limit before the
long-time limit, the system will remain in this regime for-
ever. Therefore, since the terminal equilibrium may never
be attained, one needs an appropriate statistical-mechanics
formalism to deal with such a metastable state; in fact, some
of its physical properties are in agreement with Tsallis’s pre-
scription. However, for a finite number of particles, the sys-
tem displays a crossover from the metastable state (where
the nonextensive thermodynamics seems to apply) to the
terminal equilibrium state (where extensivity is recovered)
[18, 19].

A crossover between nonextensive and extensive
regimes has been found also in the long-range one-
dimensional bond-percolation problem [6]. In this problem,
one considers a bond occupancy probability between any
two sitesi andj of the linear chain as,

pij =
p

rα
ij

; (0 ≤ p ≤ 1 ; α ≥ 0), (3)

where rij represents the distance between sites (in crys-
talline units, rij = 0, 1, 2, · · · ) and p denotes the first-
neighbor bond occupancy probability. The exponentα con-
trols the range of the bonds in the chain, yielding two well-
known particular cases, namely, the first-neighbor (α →∞)
and infinite-range, i.e., mean-field-like (α = 0), bond-
percolation limits. Such a crossover was found to occur at
α ≡ α1 = 1, in such a way that for0 ≤ α ≤ α1 (nonex-
tensive regime) the percolation order parameter is always
maximum. The extensive regime holds for allα > α1, al-
though only forα > α2 (α2 = 2), the percolation order
parameter presents the usual behavior characteristic of the
one-dimensional first-neighbor bond-percolation, vanishing
∀p < 1. In the intervalα1 < α < α2, the order parame-
ter presents a nontrivial behavior, varying withp between its
minimum and maximum possible values.

By introducing a site dilution [probabilitiesps and
(1 − ps) for a site to be present or vacant, respectively],
in the above-mentioned long-range one-dimensional bond-
percolation problem [4], we shall investigate herein the com-
petition between the long-range bonds and the site dilution.
In particular, the values ofα defining the nonextensive and
extensive regimes, will now depend onps, i.e.,α1 ≡ α1(ps)
andα2 ≡ α2(ps). In the next section we present and discuss
our results; finally, in section 3 we present our conclusions.

II Results and Discussion

We have simulated open linear chains of several sizes vary-
ing from N = 100 up toN = 1000; in each case, we have
computedP∞ by considering averages over 10000 samples
(i.e., different configurations of bonds and diluted sites).

The percolation order parameter,P∞(p), for typical val-
ues ofα, ps andN is presented in Figs. 1–3. In Fig. 1 we
showP∞(p) for fixed values ofα (α = 0.8) andN (N =
300), and several values ofps (ps = 0.8, 0.6, 0.4, 0.2). One
sees clearly that the order parameter is weakened by the dilu-
tion of sites, leading to an increase in the critical value of the
first-neighbor bond occupancy probability,pc, below which
P∞ becomes zero. As expected, fluctuations get enlarged,
for higher fractions of diluted sites (cf. the caseps = 0.2
in Fig. 1), in such a way that a larger computational effort
is required in order to get reliable results in such cases. In
Fig. 2 the order parameter is exhibited for fixed values ofps

(ps = 0.8) andN (N = 300) and several values ofα, in the
rangeα = 0.2 up toα = 2.0. One notices that, for small val-
ues ofα one is found in the nonextensive regime, for which
P∞ equals unit,∀p > 0, leading topc(α) = 0. However, for
increasing values ofα, one getspc(α) > 0, in such a way
that as one approaches the first-neighbor bond-percolation
limit (typically, α ∼ 2), large fluctuations are observed, due
to finite size effects; in such a case, one should get, in the
thermodynamic limit,P∞ = 0 and pc(α) = 1. In Fig.
3 we show how the order parameter evolves with the size
of the system; we consider two different site concentrations
(ps = 0.6 andps = 0.2) and a fixed value ofα (α = 0.8).
Once again, one observes that the finite-size effects become
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more relevant for lower site concentrations (cf. the differ-
ent sizes considered for the caseps = 0.2 of Fig. 3), in
such a way that more reliable estimates ofP∞ andpc(α)
are obtained at large system sizes (typically,N = 1000).
By locating, for finite values ofN , the abcissa points given
by the linear continuations of the curves ofP∞(p), and then
extrapolating forN → ∞, one may estimate the critical
values of the first-neighbor bond occupancy probability, for
fixed values ofps and different values ofα, pc(α).
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Figure 1. The percolation order paramenter,P∞, versus the first-
neighbor bond-percolation occupancy probability,p, for fixed val-
ues ofN andα, and several values of the site-occupancy probabil-
ity ps.
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Figure 2. The percolation order paramenter,P∞, versus the first-
neighbor bond-percolation occupancy probability,p, for fixed val-
ues ofN andps, and typical values ofα.
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Figure 3. The percolation order paramenter,P∞, versus the first-
neighbor bond-percolation occupancy probability,p, for a fixed
value ofα, two different site-occupancy probabilities, and several
system sizes.

In Fig. 4 we exhibit howpc(α) varies withα for a typ-
ical value of the site concentration:ps = 0.6. The error
bars express the accuracy of the linear continuations, to-
gether with the thermodynamic-limit extrapolations, of the
curves of the parameterP∞. By comparing the results of
Fig. 4 with those obtained for different site concentrations,
one notices that the two characteristic values ofα, α1(ps),
below whichP∞ equals unit,∀p > 0, andα2(ps), above
which P∞ = 0, ∀p < 1, decrease as the site concentration
decreases. In analogy to what happens in the case of no site
dilution (ps = 1.0) [6], the characteristic valueα1(ps) sets
in a crossover between the nonextensive [0 ≤ α ≤ α1(ps)]
and extensive [α > α1(ps)] regimes. On the other hand,
α2(ps) defines the onset of the well-known first-neighbor
one-dimensional percolation behavior; as a consequence of
this, the region right belowα2(ps) is very delicate from the
numerical point of view. In Fig. 4, the last point to the
right corresponds to the estimate ofpc(α) associated with
the value ofα that is as close as possible (in the sense that
one may still get a reliable estimate, within the computa-
tional effort employed herein) toα2(ps). For slightly higher
values ofα, strong fluctuations, driven by finite-size effects,
occur; in this region, in order to observe the behavior of the
order parameterP∞ (i.e., whether it drops to zero∀p < 1, or
not) one needs to run much larger system sizes, as well as to
increase reasonably the number of samples, as compared to
those used in the present work. Besides the site-occupancy
probability ps = 0.6, we have also investigated the cases
ps = 0.4 andps = 0.8; the corresponding plots are similar
to the one exhibited in Fig. 4, except that the characteristic
valuesα1(ps) andα2(ps) are different. Below, we present
our estimates for the two characteristic values ofα, for each
one of site concentrations considered,
ps = 0.8: α1(ps) = 0.7± 0.05; α2(ps) = 1.9± 0.06;
ps = 0.6: α1(ps) = 0.6± 0.07; α2(ps) = 1.8± 0.07;
ps = 0.4: α1(ps) = 0.5± 0.09; α2(ps) = 1.7± 0.10.
The above results, together with those for the caseps = 1.0,
i.e.,α1(ps) = 1.0 andα2(ps) = 2.0 [6], do surely indicate
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that the characteristic values ofα decrease with the concen-
tration of sites.
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Figure 4. The critical value of the first-neighbor bond occupancy
probability versusα, for the caseps = 0.6.

We shall now concentrate on small values ofα (roughly
speaking, values ofα inside the nonextensive region); let us
define a rescaled occupancy probability,p∗,

1− p∗ = (1− p)N∗2α

; N∗ ≡ N1−α − 1
1− α

. (4)

By considering the percolation order parameter in terms of
such a variable, i.e.,P∞(p∗), we have verified that, for a
fixed value ofps, the curves associated with different values
of α andN collapse. In Fig. 5, where we exhibit curves
for the typical site concentrationps = 0.6, one sees a rea-
sonably good data collapse (except for the vicinity of the
critical point). Therefore, one may define a critical rescaled
occupancy probability which depends on the site occupancy,
p∗c ≡ p∗c(ps), below whichP∞(p∗) = 0. It should be men-
tioned that our data collapse works for values ofα below,
or slightly above, the characteristic valueα1(ps), but not
for values ofα far aboveα1(ps), i.e., far inside the exten-
sive region. We have also worked out data collapses for the
site concentrationsps = 0.4 andps = 0.8, leading to plots
similar to those of Fig. 5. The estimated critical rescaled
occupancy probabilities are listed below,

ps = 0.8: p∗c(ps) = 0.6± 0.05;

ps = 0.6: p∗c(ps) = 0.7± 0.04;

ps = 0.4: p∗c(ps) = 0.8± 0.05,

which, at least for the values ofps investigated, decrease
with ps according to a straight line. Therefore, in analogy to
what has been verified for the caseps = 1 [6], the nonexten-
sive region may be unified in terms of a conveniently defined
variable.
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Figure 5. Data collapse of curves for different values ofN andα,
of the order parameterP∞ as a function of the variablep∗, for the
caseps = 0.6.

III Conclusion

We have investigated the competition between the dilution
of sites (with a site occupancy probabilityps) and long-
range bonds in the one-dimensional bond-percolation prob-
lem, by means of Monte Carlo simulations. The range of
the bonds is controlled by a parameterα, in such a way
that two well-known limits may be recovered, namely, the
mean-field (α = 0), and the first-neighbor bond percolation
(α → ∞) ones. We have shown that two characteristic val-
ues ofα occur, whose values depend on the site-occupancy
probability, α1(ps) and α2(ps) [α2(ps) > α1(ps) ≥ 0].
For 0 ≤ α ≤ α1(ps), the percolation order parameterP∞
is always maximum (equal to unit), indicating that one is
in a nonextensive regime, whereas forα > α2(ps), the
order parameter is always zero, in such a way that one
is found in the well-known first-neighbor one-dimensional
bond-percolation regime. The crossover between the nonex-
tensive and extensive regimes takes place atα = α1(ps)
and forα1(ps) < α < α2(ps) the order parameter displays
a familiar behavior, i.e., varying monotonically between its
minimum and maximum possible values. We have shown
that the two characteristic values ofα, α1(ps) andα2(ps),
decrease with the inclusion of diluted sites. Finally, we have
verified that, for the nonextensive region, it is possible to de-
fine a convenient variable in such a way that curves for fixed
values ofps are unified.
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