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Stability of a Two-Sublattice Spin-Glass Model
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We study the stability of the replica-symmetric solution of a two-sublattice infinite-range spin-glass model,
which can describe the transition from an antiferromagnetic to a spin-glass state. The eigenvalues associated
with replica-symmetric perturbations are in general complex. The natural generalization of the usual stability
condition is to require the real part of these eigenvalues to be positive. The necessary and sufficient conditions
for all the roots of the secular equation to have positive real parts is given by the Hurwitz criterion. The
generalized stability condition allows a consistent analysis of the phase diagram within the replica-symmetric
approximation.

1 Introduction

The infinite-range Sherrington-Kirkpatrick (SK) model [1]
for a spin glass has attracted considerable attention over
the past decades [2, 3, 4]. These investigations have re-
vealed highly non-trivial properties such as the instability
of the replica-symmetric (RS) solution [5] and the replica-
symmetry-breaking scheme to produce a stable solution [6-
9]. Most studies have concentrated on situations where the
exchange distributions are either symmetric or with an ad-
ditional ferromagnetic interaction. More recently a two-
sublattice version of the SK model was introduced [10-13]
to allow for antiferromagnetic interactions between differ-
ent sublattices. Such extension is quite natural in view
of the existence of many experimental systems such as
FexMg1−xCl2[14-16] and FexMn1−xTiO3[17, 18], which
exhibit a transition from an Ising antiferromagnetic into an
Ising spin glass state for a certain range ofx values. In con-
trast to the standard SK model, in the two-sublattice SK
model with antiferromagnetic intersublattice interactions,
the ordered (antiferromagnetic) phase extends to finite fields
and the de Almeida-Thouless instability line [5] has dis-
tinct branches in the paramagnetic and antiferromagnetic
phases, which do not meet at a first-order transition [10-13].
Experimental determination of the field-temperature phase
diagram in FexMn1−xTiO3, as well as the de Almeida-
Thouless instability line [19], are in qualitative agreement
with mean-field results [13].

In the previous studies of this model the stability of the
RS solution against transversal fluctuations, i.e., outside the
RS space, has already been investigated [10-13], and the
stability against longitudinal fluctuations, i.e., inside the RS
space, was also briefly considered [12]. The stability of the

RS solution against transversal fluctuations is important to
establish whether replica symmetry breaking is necessary.
The stability against longitudinal fluctuations, however, is
also necessary to ensure the validity of RS solution. For cer-
tain parameter values of the two-sublattice SK model there
may be up to three RS solutions, all of them stable against
transversal fluctuations. In such a situation the analysis of
the stability against longitudinal fluctuations is important for
a consistent study of the phase diagram by eliminating un-
stable solutions.

In this work we remedy the lack of such investigation by
a detailed numerical and analytical study of the eigenvalues
associated with longitudinal fluctuations. Surprisingly, these
eigenvalues are in general complex. It is natural to assume
that stability condition should require the real part of these
eigenvalues to be positive. The necessary and sufficient con-
dition for all the roots of the secular equation to have pos-
itive real parts is given by the Hurwitz criterion. We show
that this generalized stability condition allows a consistent
study of the phase diagram within the RS approximation.

2 The model

We consider a system of2N Ising spinsSi = ±1 located at
the sites of two identical sublatticesA andB. The interac-
tions are described by the Hamiltonian

H = −
∑

i∈A,j∈B

JijSiSj −
∑

(ij)∈A

J ′ijSiSj

−
∑

(ij)∈B

J ′ijSiSj −H
∑

i

Si, (1)
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where the first sum is over all distinct pairs of spins belong-
ing to different sublattices, the second and third ones refer to
all distinct pairs of spins belonging to the same sublattices,
and the last sum is over all spins in the two sublattices.Jij

is the exchange interaction between spins in different sub-
lattices,J ′ij is the exchange interaction between spins in the
same sublattice, andH is the applied magnetic field. The
exchange interactions are independent, quenched, Gaussian
random variables with mean values

〈Jij〉J =
J0

N
, 〈J ′ij〉J =

J ′0
N

, (2)

and variances

〈J2
ij〉J − 〈Jij〉2J =

J2

N
, 〈J ′ 2ij 〉J − 〈J ′ij〉2J =

J ′ 2

N
. (3)

The mean intrasublattice interactions will always assumed
to be ferromagnetic (J ′0 > 0), whereas the mean intersublat-
tice interactions may be ferromagnetic (J0 > 0) or antifer-
romagnetic (J0 < 0).

The standard approach to compute the quenched average
is to introducen non-interacting replicasα = 1, 2, . . . , n of
the system, calculate the annealed averages and then take the
limit n → 0 [2, 4]. In this replica method the free energy
per spinf is given by

f =
1
2β

lim
n→0

1
n

φ, φ = − lim
N→∞

1
N

ln 〈Zn〉J , (4)

whereβ = 1/kBT and Zn is the partition function ofn
replicas of the system. Performing the average ofZn over
the random couplings we find

c

〈Zn〉J = Tr exp−N

{
−β2J2n

2
+ βJ ′0

n

N
− β2J ′ 2n

2

(
1− n

N

)
− βH

∑
α

(mα
A + mα

B)

− βJ0

∑
α

mα
Amα

B −
βJ ′0
2

∑
α

[
(mα

A)2 + (mα
B)2

]
− β2J2

∑

(αβ)

qαβ
A qαβ

B

−β2J ′ 2

2

∑

(αβ)

[(
qαβ
A

)2

+
(
qαβ
B

)2
]

 , (5)

where(αβ) denotes distinct pairs of replicas and we have introduced the sublattice magnetization and sublattice overlap
function of the replicas,

mα
X =

1
N

∑

i∈X

Sα
i , qαβ

X =
1
N

∑

i∈X

Sα
i Sβ

i , (X = A,B). (6)

The trace over the spin variables in (5) can be performed by taking into account the constraints (6) by means of the identities

1 =
∫ ∞

−∞
dmα

X

∫ i∞

−i∞

Ndλα
X

2πi
exp

[
−Nλα

X

(
mα

X − 1
N

∑

i∈X

Sα
i

)]
(X = A,B), (7)

and

1 =
∫ ∞

−∞
dqαβ

X

∫ i∞

−i∞

Ndλαβ
X

2πi
exp

[
−Nλαβ

X

(
qαβ
X − 1

N

∑

i∈X

Sα
i Sβ

i

)]
(X = A,B). (8)

We then obtain

〈Zn〉J =
∏
α

∫ ∞

−∞
dmα

A

∫ i∞

−i∞

Ndλα
A

2πi

∫ ∞

−∞
dmα

B

∫ i∞

−i∞

Ndλα
B

2πi

∏

(αβ)

∫ ∞

−∞
dqαβ

A

∫ i∞

−i∞

Ndλαβ
A

2πi

×
∫ ∞

−∞
dqαβ

B

∫ i∞

−i∞

Ndλαβ
B

2πi
exp

[
−Nφ(mα

A,mα
B , qαβ

A , qαβ
B ; λα

A, λα
B , λαβ

A , λαβ
B )

]
, (9)

where

φ = −β2J2n

2
+ βJ ′0

n

N
− β2J ′ 2n

2

(
1− n

N

)
− βH

∑
α

(mα
A + mα

B)− βJ0

∑
α

mα
Amα

B

− βJ ′0
2

∑
α

[
(mα

A)2 + (mα
B)2

]
− β2J2

∑

(αβ)

qαβ
A qαβ

B − β2J ′ 2

2

∑

(αβ)

[(
qαβ
A

)2

+
(
qαβ
B

)2
]

+
∑
α

(λα
Amα

A + λα
Bmα

B) +
∑

(αβ)

(
λαβ

A qαβ
A + λαβ

B qαβ
B

)
− ln Tr expHA − ln Tr expHB , (10)
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with HA andHB denoting the “effective sublattice Hamiltonians”,

HX =
∑
α

λα
XSα +

∑

(αβ)

λαβ
X SαSβ (X = A, B). (11)

In the limit of largeN the integrations over theλ variables in (9) can be performed by the saddle-point method. The saddle
point is given by

mα
X =

Tr Sα expHX

Tr expHX

, qαβ
X =

Tr SαSβ expHX

Tr expHX

, (X = A,B). (12)

These equations determineλ variables in terms ofm andq variables. The remaining integrations over them andq variables
in (9) can be performed by the Laplace method in the limit of largeN . The stationary-point equations are given by

λα
X = βH + βJ ′0m

α
X + βJ0m

α
X

, λαβ
X = β2J ′ 2qαβ

X + β2J2qαβ

X
, (X = A,B), (13)

whereX is the sublattice complementary toX, i.e., if X = A thenX = B, and vice versa. Substituting these results in the
expression ofφ given by Eq. (10) we find

φ = −β2n

2
(J2 + J ′ 2) + βJ0

∑
α

mα
Amα

B +
βJ ′0
2

∑
α

[
(mα

A)2 + (mα
B)2

]
+ β2J2

∑

(αβ)

qαβ
A qαβ

B

+
β2J ′ 2

2

∑

(αβ)

[(
qαβ
A

)2

+
(
qαβ
B

)2
]
− ln Tr expHA − ln Tr expHB , (14)

where we have discarded terms that vanish in the limit of largeN . Analogously, the effective sublattice Hamiltonians (11)
become

HX = β
∑
α

(
H + J ′0m

α
X + J0m

α
X

)
Sα + β2

∑

(αβ)

(
J ′ 2qαβ

X + J2qαβ

X

)
SαSβ , (X = A,B). (15)

To evaluate the general expressions obtained thus far it is necessary to impose some structure onm and q variables.
The simplest assumption corresponds to the RS solution[2, 4] obtained by assuming order parameters independent of replica
indices,

mα
X = mX , qαβ

X = qX , (X = A,B). (16)

Proceeding in the usual way [2, 4], one finds that the saddle-point equations (12) and stationary-point equations (13) give the
equations of state

mX = 〈tanh HX〉 , qX =
〈
tanh2 HX

〉
, (X = A,B), (17)

where

HX = β

(
H + J ′0mX + J0mX +

√
J ′ 2qX + J2qX x

)
, (X = A,B), (18)

and the brackets without subscript〈· · · 〉 denote Gaussian averages,

〈· · · 〉 =
∫ ∞

−∞

dx√
2π

e−x2/2(· · · ). (19)

Analogously, the free energy per spin (4) becomes

f = −βJ2

4
(1− qA) (1− qB)− βJ ′ 2

8

[
(1− qA)2 + (1− qB)2

]
+

J0

2
mAmB +

J ′0
4

(
m2

A + m2
B

)

− 1
2β

〈ln 2 cosh HA〉 − 1
2β

〈ln 2 cosh HB〉 . (20)

d

3 The stability of replica-symmetric
solution

The validity of the RS solution (17) rests on the applicabil-
ity of Laplace method used to perform the integrations over

m andq variables for largeN . The integral converges only
if the stationary point (13) is a minimum ofφ, i.e., only if
the eigenvalues of the Hessian matrix formed by the second
derivatives of the functionφ given by equation (10) with
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respect to them and q variables are all positive. We can
equivalently considerφ as a function ofλ variables, related
to m andq variables by means of Eq. (12). We will follow

the latter approach because it leads to simpler calculations.
The Hessian is a[n(n + 1)/2]× [n(n + 1)/2] matrix whose
elements are2× 2 matrices given by

c

Gαβ =
(

Gαβ
AA Gαβ

AB

Gαβ
BA Gαβ

BB

)
,Gα(βγ) =

(
G

α(βγ)
AA G

α(βγ)
AB

G
α(βγ)
BA G

α(βγ)
BB

)
,G(αβ)(γδ) =

(
G

(αβ)(γδ)
AA G

(αβ)(γδ)
AB

G
(αβ)(γδ)
BA G

(αβ)(γδ)
BB

)
, (21)

where

Gαβ
XY =

∂2φ

∂λα
X∂λβ

Y

, G
α(βγ)
XY =

∂2φ

∂λα
X∂λ

(βγ)
Y

, G
(αβ)(γδ)
XY =

∂2φ

∂λαβ
X ∂λγδ

Y

(X,Y = A, B). (22)

At the stationary point of the RS solution (17) there are seven different types of2 × 2 elements of the Hessian matrix. We
denote these elements by [5]

Gαα = A, Gαβ = B, Gα(αβ) = C, G(αβ)α = C̃, Gα(βγ) = D,

G(αβ)γ = D̃, G(αβ)(αβ) = P, G(αβ)(αγ) = Q, G(αβ)(γδ) = R,
(23)

d

where the indicesα, β, γ andδ are all distinct and the tilde
denotes the transpose of the matrix. We do not quote the
lengthy expressions for these elements because only their
linear combinations are needed in the calculation of the
eigenvalues.

The eigenvalues of the Hessian matrix can now be de-
termined by finding the eigenvectors that divide the space
into orthogonal subspaces closed to the permutation oper-
ation. The procedure are analogous to the case of the SK
model [5] except that now the elements of the Hessian ma-

trix are 2 × 2 matrices (23). These eigenvectors are [20]:
n(n− 3) transversal or replicon eigenvectors depending on
two replica indices,4(n−1) anomalous eigenvalues depend-
ing on a single replica index, and 4 longitudinal eigenvectors
independent of replica indices.

The eigenvalues associated with the transversal eigen-
vectors are found to be the eigenvalues of the2× 2 matrix

T = P− 2Q + R, (24)

with elements

c

T11 = (1− 2qA + rA)− (βJ ′)2(1− 2qA + rA)2, (25)

T12 = T21 = −(βJ)2(1− 2qA + rA)(1− 2qB + rB), (26)

T22 = (1− 2qB + rB)− (βJ ′)2(1− 2qB + rB)2, (27)

where
tX =

〈
tanh3 HX

〉
, rX =

〈
tanh4 HX

〉
, (X = A,B). (28)

The necessary and sufficient condition for all the eigenvalues to be positive are

T11 + T22 > 0 and T11T22 − T 2
12 > 0, (29)

which are equivalent to the conditions

T1 = 2− (βJ ′)2(1− 2qA + rA)− (βJ ′)2(1− 2qB + rB) > 0, (30)

T2 = [1− (βJ ′)2(1− 2qA + rA)][1− (βJ ′)2(1− 2qB + rB)]
− (βJ)4(1− 2qA + rA)(1− 2qB + rB) > 0, (31)

in agreement with previous studies [10, 13]. A RS solution satisfying these conditions will be called transversally (T) stable,
and T unstable otherwise.

The eigenvalues associated with anomalous and longitudinal eigenvectors are the same in the limitn → 0. They are found
to be the eigenvalues of the4× 4 matrix

L =
(

A−B D−C
2C̃− 2D̃ P− 4Q + 3R

)
, (32)
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where

L11 = (1− qA)− βJ ′0(1− qA)2 + 2(βJ ′)2(tA −mA)2, (33)

L22 = (1− qB)− βJ ′0(1− qB)2 + 2(βJ ′)2(tB −mB)2, (34)

L12 = L21 = −βJ0(1− qA)(1− qB) + 2(βJ)2(tA −mA)(tB −mB), (35)

L13 = −1
2
L31 = (tA −mA)[1− βJ ′0(1− qA)− (βJ ′)2(1− 4qA + 3rA)], (36)

L24 = −1
2
L42 = (tB −mB)[1− βJ ′0(1− qB)− (βJ ′)2(1− 4qB + 3rB)], (37)

L14 = −1
2
L41 = −βJ0(tB −mB)(1− qA)− (βJ)2(tA −mA)(1− 4qB + 3rB), (38)

L23 = −1
2
L32 = −βJ0(tA −mA)(1− qB)− (βJ)2(tB −mB)(1− 4qA + 3rA), (39)

L33 = (1− 4qA + 3rA)[1− (βJ ′)2(1− 4qA + 3rA)] + 2βJ ′0(tA −mA)2, (40)

L44 = (1− 4qB + 3rB)[1− (βJ ′)2(1− 4qB + 3rB)] + 2βJ ′0(tB −mB)2, (41)

L34 = L43 = −(βJ)2(1− 4qA + 3rA)(1− 4qB + 3rB) + 2βJ0(tA −mA)(tB −mB). (42)

d

The characteristic equation has the form

λ4 − a1λ
3 + a2λ

2 − a3λ + a4 = 0, (43)

where the coefficientsan aren-th order traces of the matrix
L. A numerical study of equation (43) shows that the eigen-
values are complex for some values of the parameters of the
model, in contrast with one-sublattice SK model in which
the anomalous and longitudinal eigenvalues never become
complex [5]. Even though the Hessian matrix (21) forn > 1

is real and symmetric, in the limitn → 0 there is no guar-
antee that the eigenvalues will be real. In fact, complex lon-
gitudinal and anomalous eigenvalues also arise in the spin 1
one-sublattice infinite-range spin-glass model with crystal-
field anisotropy [21, 22]. In general, therefore, the stability
condition should require the real part of the eigenvalues to
be positive. According to the Hurwitz criterion [23], the nec-
essary and sufficient condition for all the roots of equation
(43) to have positive real parts are

c

D1 = a1 > 0, D2 =
∣∣∣∣

a1 a3

1 a2

∣∣∣∣ = a1a2 − a3 > 0, (44)

D3 =

∣∣∣∣∣∣

a1 a3 0
1 a2 a4

0 a1 a3

∣∣∣∣∣∣
= a3D2 − a2

1a4 > 0, D4 =

∣∣∣∣∣∣∣∣

a1 a3 0 0
1 a2 a4 0
0 a1 a3 0
0 1 a2 a4

∣∣∣∣∣∣∣∣
= a4D3 > 0. (45)

d

These condition are equivalent to the following four condi-
tions:

L1 = a1 > 0, (46)

L2 = D2 = a1a2 − a3 > 0, (47)

L3 = D3 = a1a2a3 − a2
3 − a4a

2
1 > 0, (48)

L4 = a4 > 0. (49)

A RS solution satisfying these conditions will be called lon-
gitudinally (L) stable, and L unstable otherwise.

4 Results of the stability analysis

In this section we present the results of the stability analysis
of the RS solution for different values of the parameters of
the model. Since the Hamiltonian (1) is invariant under the
simultaneous transformations

H → −H, Si → −Si, (50)

it is sufficient to consider fieldsH ≥ 0. ForH = 0 only one
of the two solutions related by the global inversion symme-
try has to be considered.



904 Carlos S. O. Yokoi and Francisco A. da Costa

4.1 Zero applied field

4.1.1 Ferromagnetic intersublattice interaction

In zero applied field (H = 0) and ferromagnetic intersub-
lattice interactions (J0 > 0) the solutions of the set of equa-
tions (17) are of the form

mA = mB = m, qA = qB = q. (51)

Three types of solutions are possible:

• Paramagnetic (P) solution:m = 0, q = 0.

• Spin Glass (SG) solution:q > 0,m = 0.

• Ferromagnetic (F) solution:q > 0,m > 0.

Fig. 1 shows the lines delimiting the regions where different
types of solutions can be found in the plane of temperature
versusJ0 + J ′0.

The P solution is always possible. However it is L stable
only above the line (b) and the left portion of line (a), and T
stable above line (a). The L instability of P solution occurs
due to the violation of the condition (49), which is given in
the case of P solution by

L4 = [1− β2(J ′ 2 − J2)][1− β2(J ′ 2 + J2)]

[1− β(J ′0 − J0)][1− β(J ′0 + J0)] > 0. (52)

For (J0 + J ′0)/
√

J2 + J ′ 2 ≤ 1/2, the second factor of in
(52) becomes negative below line (a). Thus the left portion
of line (a) is determined by

β2(J ′ 2 + J2) = 1. (53)

On the other hand, for(J0 + J ′0)/
√

J2 + J ′ 2 > 1/2 the
fourth factor in (52) becomes negative below line (b). Thus
the equation for line (b) is

β(J ′0 + J0) = 1. (54)

0 1 2 3
J0+J0’

0

1

2

3

T

(a)

(b)

(c)
(d)

(a)

Figure 1. Regions of the zero-field phase diagram where different
types of solution are possible. For ferromagnetic intersublattice in-
teraction (J0 > 0), the P solution is L stable above line (b) and the
left portion of line (a), the F solution between lines (b) and (c), and
SG solution between the left portion of line (a) and line (c). The
P solution is T stable above line (a), the F solution between lines
(b) and (d). The SG solution is T unstable between the left side of
line (a) and line (c), and F solution between lines (c) and (d). For
antiferromagnetic intersublattice interaction (J0 < 0) the F solu-
tion is replaced by AF solution and the label of horizontal axis by
−J0 + J ′0. The temperature and energy units in the axis are such
that

√
J2 + J ′ 2 = 1 andkB = 1.

The T instability of the P solution is due to the violation of
the condition (31), which is given in the case of P solution
by

T2 = [1− β2(J ′ 2 − J2)][1− β2(J ′ 2 + J2)] > 0. (55)

The second factor in (55) becomes negative below line
(a) for all values ofJ0 + J ′0. Thus line (a) is given by
equation (53) for allJ0 + J ′0. The T and L instabilities
of the P solution occur simultaneously on the line (a) for
(J0 + J ′0)/

√
J2 + J ′ 2 ≤ 1/2.

The SG solution is possible only below line (a). It is T
unstable throughout this region and L stable to the left of
line (c). The L instability of the SG solution occurs due to
the violation of the condition (49), which is given in the case
of SG solution by

c

L4 = (1− q)2(1− 4q + 3r)2 [1− β2(J ′ 2 − J2)(1− 4q + 3r)][1− β2(J ′ 2 + J2)(1− 4q + 3r)]
× [1− β(J ′0 − J0)(1− q)][1− β(J ′0 + J0)(1− q)] > 0. (56)

For(J0 +J ′0)/
√

J2 + J ′ 2 > 1/2 the last factor in (56) becomes negative to the left of line (c). Thus the equation determining
line (c) is

β(J ′0 + J0)(1− q) = 1. (57)

The F solution is possible only between lines (b) and (c). It is L stable throughout this region but T stable only above line
(d). The T instability of the F solution occurs due to the violation of the condition (31), which is given in the case of F solution
by

T2 = [1− β2(J ′ 2 − J2)(1− 2q + 3r)][1− β2(J ′ 2 + J2)(1− 2q + 3r)] > 0. (58)
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For (J0 + J ′0)/
√

J2 + J ′ 2 > 1/2 the second factor in (58)
becomes negative below line (d). Thus line (d) is described
by equation

β2(J ′ 2 + J2)(1− 2q + 3r) = 1. (59)

Rejecting solutions that are L unstable, we conclude that
the P phase is located above lines (b) and left portion of line
(a), the SG phase between the left portion of line (a) and
line (c), and finally the F phase between lines (b) and (c).
The SG phase, and the F phase between lines (c) and (d),
are T unstable, indicating the need for a replica-symmetry-
breaking solution in this region. The transition line (c) will
change to a vertical line if such a solution is considered [24].
We mention that, as should be expected, in the caseJ0 = 0
andJ = 0, or J ′0 = 0 andJ ′ = 0, these results reduce to
those of one-sublattice SK model [2, 4].

4.1.2 Antiferromagnetic intersublattice interaction

The Hamiltonian (1) in zero applied field (H = 0) is invari-
ant under simultaneous transformations

J0 −→ −J0, Si −→ −Si (i ∈ B). (60)

In fact, we can check explicitly that all the expressions for
the RS solution, including those of stability conditions, are
invariant under simultaneous transformations

J0 −→ −J0, mB −→ −mB . (61)

Thus the case of antiferromagnetic intersublattice interac-
tion J0 < 0 is completely equivalent to the case of ferro-
magnetic intersublattice interaction−J0 > 0 by replacing
mB by−mB . This means that the F solution is replaced by
the antiferromagnetic (AF) solution

mA = −mB = m, qA = qB = q. (62)

The results displayed in Fig. 1 remains valid, withJ0 re-
placed by−J0 and F solution by AF solution.

4.2 Non-zero applied field

4.2.1 Ferromagnetic intersublattice interaction

In non-zero applied field (H > 0) and ferromagnetic inter-
sublattice interactions (J0 > 0), only the paramagnetic (P)
solution is possible for the set of equations (17), which are
of the form

mA = mB = m > 0, qA = qB = q > 0. (63)

0.0 0.2 0.4 0.6 0.8 1.0
H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T AT

Figure 2. Region of stability in the presence of a field for the
case of ferromagnetic intersublattice interaction (J0 < 0). The
values of parameters areJ ′/J = 1, J ′0/J0 = 1 and (J0 +
J ′0)/

√
J2 + J ′ 2 = 1/2. There is only the P solution which is

always L stable but becomes T unstable below the de Almeida-
Thouless line AT. The temperature and field units in the axis are
such that

√
J2 + J ′ 2 = 1 andkB = 1.

This solution is always L stable, but becomes T unstable for
low temperatures due to the violation of the condition (31),
which in this case is also given by Eq. (58). The instability
line is given by Eq. (59), illustrated in Fig. 2 for the case
J ′/J = 1, J ′0/J0 = 1/2 and(J0 + J ′0)/

√
J2 + J ′ 2 = 2 .

As should be expected, in the caseJ0 = 0 andJ = 0, or
J ′0 = 0 andJ ′ = 0, these results reduce to the de Almeida-
Thouless line of one-sublattice SK model[5].

4.2.2 Antiferromagnetic intersublattice interaction

In non-zero applied field (H > 0) and antiferromagnetic in-
tersublattice interactions (J0 < 0), two types of solutions to
the set of equations (17) are possible:

• Paramagnetic (P) solution:mA = mB = m >
0, qA = qB = q > 0.

• Antiferromagnetic (AF) solution:mA 6= mB , qA 6=
qB .

For (−J0 + J ′0)/
√

J2 + J ′ 2 ≤ 1/2 only P solution is
possible. This solution is always L stable but becomes T un-
stable at low temperatures due to the to the violation of the
condition (31), which in this case it is also given by (58).
The instability line is given by Eq. (59).

For (−J0 + J ′0)/
√

J2 + J ′ 2 > 1/2, AF solution also
becomes possible. Fig. 3 shows the lines delimiting the re-
gions of existence and stability of each type of solution for
−J ′0/J0 = 1/2. The P solution becomes L unstable below
line (a) due to the violation of the condition (49). In the case
of P solution this condition is given by

c

L4 = [(1− q)(1− 4q + 3r) + 2(t−m)2]2
{
[1− β(J ′0 + J0)(1− q)][1− β(J ′ 2 − J2)

×(1− 4q + 3r)] + 2β3(J ′0 + J0)(J ′ 2 − J2)(t−m)2
} {[1− β(J ′0 − J0)(1− q)]

× [1− β(J ′ 2 + J2)(1− 4q + 3r)] + 2β3(J ′0 − J0)(J ′ 2 + J2)(t−m)2
}

> 0. (64)
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The first factor in (64) becomes negative inside line (a). Therefore the equation determining line (a) is

[1− β(J ′0 − J0)(1− q)][1− β(J ′ 2 − J2)(1− 4q + 3r)] + 2β3(J ′0 − J0)(J ′ 2 − J2)(t−m)2 = 0, (65)

d

0.0 0.5 1.0 1.5 2.0
H

0.0

0.5

1.0

1.5

2.0

2.5

T

(a)

(b)

(c)
(b)

Figure 3. Regions of stability and existence of different solu-
tions in the temperature versus field phase diagram for the case
of antiferromagnetic intersublattice interaction (J0 < 0). The val-
ues of parameters areJ ′/J = 1, −J ′0/J0 = 1/2 and (−J0 +
J ′0)/

√
J2 + J ′ 2 = 2. The P solution is L stable outside line (a)

and T stable above line (b). The AF solution is possible only inside
line (a) and it is always L stable, but becomes T unstable below
line (c). The temperature and field units in the axis are such that√

J2 + J ′ 2 = 1 andkB = 1.

which is in agreement with previous study [12]. The P so-
lution is T unstable below line (b). This instability occurs
due to the violation of condition (31), given in this case by
Eq. (58), caused by the second factor. Therefore the line (b)
is determined by equation (59). The AF solution is possible
only inside line (a). It is L stable throughout this region and
T unstable below line (c). This instability is due to the viola-
tion of condition (31). Therefore line (c) obeys the equation

[1− (βJ ′)2(1− 2qA + rA)][1− (βJ ′)2(1− 2qB + rB)]

= (βJ)4(1− 2qA + rA)(1− 2qB + rB). (66)

Rejecting solutions that are L unstable, we conclude that P
phase exists outside and AF phase inside line (a). The P
solution becomes T unstable below line (b) and AF solu-
tion below line (c), which meet smoothly on the line (a). In
the region below lines (b) and (c) it is necessary to consider
replica symmetry breaking solution, which will presumably
change line (a) in this region.

For sufficiently large values of the ratio−J ′0/J0 the
model can exhibit first-order transition from AF phase to
the P phase [12]. As an example, we consider the case
−J ′0/J0 = 5 shown in Fig. 4. The P solution is L stable
inside line (a) given by Eq. (65), and T stable above line (b)
given by Eq. (66). There is one AF solution inside line (a)
and two distinct AF solutions between lines (a) and (d), as

illustrated in Figs. 5(a) and 5(b) forkBT/
√

J2 + J ′ 2 = 1.
One of the AF solutions, corresponding to dotted lines in
Fig. 5, is L unstable due to the violation of the condition
(49), as shown in Fig. 5(c). The transition between AF
phase and P phase is first order, determined by equating
the free energies of L stable AF and P phases, as shown
in Fig. 5(d). The first-order transition line is shown as dot-
ted line in Fig. 4, which ends at the tricritical point TCP.
The L stable AF solution becomes T unstable below line (c)
due to the violation of condition (31), and it is determined
by Eq. (66). We conclude that in Fig. 4 the P phase exists
outside and AF phase inside lines (a) and (e), which meet
smoothly at the tricritical point TCP. The P phase becomes T
unstable below line (b), and AF phase below line (c). Notice
that the lines (b) and (c) are discontinuous across first-order
transition [12]. It is likely that the first-order transition line
will change in this part of phase diagram once the replica-
symmetry-breaking solutions are considered for P and AF
phases.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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2.5

T
(a)

(b)
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(c)

(d)
(e)

(a)

Figure 4. Regions of stability and existence of different solu-
tions in the temperature versus field phase diagram for the case
of antiferromagnetic intersublattice interaction (J0 < 0). The
values of parameters areJ ′/J = 1, −J ′0/J0 = 5 and (−J0 +
J ′0)/

√
J2 + J ′ 2 = 2. The P solution is L stable outside the line

(a) and T stable above line (b). There is one AF solution inside line
(a) which is always L stable, and two distinct AF solutions between
lines (a) and (d), one L stable and the other L unstable. The L sta-
ble AF solution is also T stable above line (c). The line (e) is the
first-order transition line and TCP is the tricritical point. The tem-
perature and field units in the axis are such that

√
J2 + J ′ 2 = 1

andkB = 1.
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Figure 5. Field behavior of various quantities for the fixed value of
temperaturekBT/

√
J2 + J ′ 2 = 1 in the phase diagram of Fig. 4.

In (a) and (b) the order parameters of the P and AF solution are
shown, in (c) the L stability conditionL4 of the AF solution, and
finally in (d) the free-energy per spin of P and AF solutions. The
L unstable AF solution are represented by dotted lines, and corre-
sponds to the upper portion of the van der Waals loop in (d). The
first-order transition is determined by the intersection of L stable
AF and P solutions, as depicted in (d). The temperature and energy
units in the axis are such that

√
J2 + J ′ 2 = 1 andkB = 1.

5 Conclusions

In this paper we have investigated the stability of the RS
symmetric solution of the two-sublattice generalization of
the SK infinite-range spin-glass model. We have derived
stability conditions for transversal fluctuations in agreement
with previous investigations, and we have extended previous
study of the stability against longitudinal or anomalous fluc-
tuations. The eigenvalues associated with such perturbations
are in general complex. We generalized the usual stability
condition by requiring the real part of these eigenvalues to
be positive. The necessary and sufficient stability conditions
were found using the Hurwitz criterion for all the roots of
the secular equation to have positive real parts. These con-
ditions allowed us to select one RS solution among those
that are transversally stable. We believe that the generalized
stability condition should also be useful in other spin glass
models where eigenvalues associated with longitudinal and
anomalous perturbations become complex.
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