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Stability of a Two-Sublattice Spin-Glass Model
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We study the stability of the replica-symmetric solution of a two-sublattice infinite-range spin-glass model,
which can describe the transition from an antiferromagnetic to a spin-glass state. The eigenvalues associated
with replica-symmetric perturbations are in general complex. The natural generalization of the usual stability
condition is to require the real part of these eigenvalues to be positive. The necessary and sufficient conditions
for all the roots of the secular equation to have positive real parts is given by the Hurwitz criterion. The
generalized stability condition allows a consistent analysis of the phase diagram within the replica-symmetric
approximation.

1 Introduction RS solution against transversal fluctuations is important to
establish whether replica symmetry breaking is necessary.

o . . . The stability against longitudinal fluctuations, however, is
The infinite-range Sherrington-Kirkpatrick (SK) model [1] also necessyarygto ensuregthe validity of RS solution. For cer-

for a spin glass has attracted cons!deraple qttenUon OVelain parameter values of the two-sublattice SK model there
the past decades [2, 3, 4]. These investigations have re-

. 2 . . = “may be up to three RS solutions, all of them stable against
vealed highly non-trivial properties such as the instability . N :
i i . . transversal fluctuations. In such a situation the analysis of
of the replica-symmetric (RS) solution [5] and the replica- . . L : .
symmetry-breaking scheme to produce a stable solution [6 the stability against longitudinal fluctuations is important for
9]. Most studies have concentrated on situations where the> consistent study of the phase diagram by eliminating un

P . . . stable solutions.
exchange distributions are either symmetric or with an ad- In this work we remedy the lack of such investigation b
ditional ferromagnetic interaction. More recently a two- S Wo € remedy the lack ol suc estigation by

sublattice version of the SK model was introduced [10-13] :Sd;g?'{lﬁg dnu.rt';]elro'(r:]aI.fgdﬂi?glyglczlt.sot#sys()frthres.er'lglen\t’ﬁ(leusees
to allow for antiferromagnetic interactions between differ- : Wi grtudi uctuations. surprisingly,

ent sublattices. Such extension is quite natural in view eigenvalues are in general complex. It is natural to assume

of the existence of many experimental systems such asthat stability condition should require the real part of these

Fe,Mg;_,Clo[14-16] and FeMn;_,TiOs[17. 18], which eigenvalues to be positive. The necessary and sufficient con-
exhibit a transition from an Ising antiferromagnetic into an fj.mon for all th‘? roots of the secula( equation to have pos-
Ising spin glass state for a certain rangecafalues. In con- itive re'al parts IS given by_ t'he Hurvy!tz criterion. We S.hOW
trast to the standard SK model. in the two-sublattice SK that this generalized stability condition allows a consistent
model with antiferromagnetic intersublattice interactions, study of the phase diagram within the RS approximation.

the ordered (antiferromagnetic) phase extends to finite fields

and the de Almeida-Thouless instability line [5] has dis-

tinct branches in the paramagnetic and antiferromagnetic2 1 e model

phases, which do not meet at a first-order transition [10-13].

Experimental determination of the field-temperature phase\We consider a system @fV Ising spinsS; = +1 located at
diagram in FeMn;_,TiO3, as well as the de Almeida- the sites of two identical sublatticesand B. The interac-
Thouless instability line [19], are in qualitative agreement tions are described by the Hamiltonian

with mean-field results [13].

In the previous studies of this model the stability of the H=— Y JiSiSi— > J;SiS,
RS solution against transversal fluctuations, i.e., outside the i€AJEB (ij)€A
RS space, has already been investigated [10-13], and the
stability against longitudinal fluctuations, i.e., inside the RS — Z J{jSiSj — HZ Si, (1)
space, was also briefly considered [12]. The stability of the (ij)eB i
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where the first sum is over all distinct pairs of spins belong- The mean intrasublattice interactions will always assumed
ing to different sublattices, the second and third ones refer toto be ferromagnetick; > 0), whereas the mean intersublat-
all distinct pairs of spins belonging to the same sublattices, tice interactions may be ferromagnetig (> 0) or antifer-

and the last sum is over all spins in the two sublatticgs. romagnetic {, < 0).

is the exchange interaction between spins in different sub-  The standard approach to compute the quenched averag
lattices,J;; is the exchange interaction between spins in the is to introducer non-interacting replicas = 1,2, ..., n of
same sublattice, and is the applied magnetic field. The the system, calculate the annealed averages and then take tt
exchange interactions are independent, quenched, Gaussidimit » — 0 [2, 4]. In this replica method the free energy

random variables with mean values per spinf is given by
Ry 1 N I
<Jw>J— N’ <Jij>J_ N’ (2 f= 25 naoﬁqh’ ¢:_1\}Enooﬁln (Z >J7 4)
and variances where3 = 1/kgT and Z™ is the partition function ofn
J? g2 replicas of the system. Performing the average’tfover
(5o = (Jiy)5 = R (S — ()5 = - (®  the random couplings we find
]
. ﬁ2J2 /BQJ/2TL
z", = TrexpN{ + B4 5 (177) BHZ (m% +m%)
[e3 (e} /8J o (03 (03
— BJy ZmAmB PJo Z [ B)2} — g2 Z qAﬁqBﬁ
a (o)
ﬂQJ/Q of of
S ) ()] ¢ (5)

(aB)

where (a3) denotes distinct pairs of replicas and we have introduced the sublattice magnetization and sublattice ove
function of the replicas,

« 1 (03
m§ =~ Z P W= s, (X=4D) 6)
ZEX i€X
The trace over the spin variables in (5) can be performed by taking into account the constraints (6) by means of the ident
L 7 NdX% o o 1 o
1:/—00de _meexpl NX% (mX—NZSi>] (X =A4A,B), (7)
e X
and 5
10 NdX§
_ af af agB _
1f/mdqx [Zm oo exp[ NAY ( ;(s St )] (X = A,B). (8)

We then obtain

> 0 Ndxg [ o0 NdA, oo Ndxy’
zn — dm® A dm® B A
< >J H /—oo A [im 2mi [oo e [ioo 2mi l_g) /— \/7100 2mi

[}

o « ieo NdAaB « 6% « @ « 6% « «
x/ dQBﬁ/_ 2mB €xXp [*Nfﬁ(mAvaaQAﬁquﬁ; As Ba)‘Aﬁv)‘Bﬁ)} ) ()]
where
ﬁzJQ ’I’L ﬁ2J/2 o
¢ = + BJ; 5 (1——) ﬁHZ m$ +meg) ﬁJQZmimB
/8‘]/ « (e} « 62‘] 2 (e} « 2
-5 [(m) s -2 Y aay - T S | (0 + ()
2
[e% (af) (aB)
+ Z( ams + Agm%) + Z (z\jﬂqjﬂ + /\%ﬁqgﬁ) —InTr expH4 — InTr expHp, (10)
a (o)
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with 7 4, andH 5 denoting the “effective sublattice Hamiltonians”,

Hx =D A%+ AYses? (X =A4,B). 11)
«a (aB)

In the limit of large N the integrations over th& variables in (9) can be performed by the saddle-point method. The saddle
point is given by o o
Tr S®exp Hx op  Tr5*SPexpHx

— — X =A B). 12
Tr expHx X Tr expHx ( ) (12)

m% =

These equations determinevariables in terms ofr andq variables. The remaining integrations over theandgq variables
in (9) can be performed by the Laplace method in the limit of |a¥gerhe stationary-point equations are given by

NG = BH + BIgmS + BJomS, A =820 % + 8207, (X = A, B), (13)

whereX is the sublattice complementary 16, i.e., if X = A thenX = B, and vice versa. Substituting these results in the
expression ob given by Eq. (10) we find

5271 2 2 o, ﬁJé a2 a2 2 72 af _af
¢ = _T(J +J' )+5J0%:m,4m3+2%:[(m,4) +(mB)]+5J (%QA 4B
ﬁ2<]/2 of 2 af 2 _ _
+ 5= |(a87) + (a) | ~mTr expHa —InTr expHa, (14)

(o)

where we have discarded terms that vanish in the limit of l&¥geAnalogously, the effective sublattice Hamiltonians (11)
become
Hx =B (H+ Jym% + Jom%) %+ 57 (J’ 0+ JQq%ﬂ) Se8%, (X =A,B). (15)
o (o)
To evaluate the general expressions obtained thus far it is necessary to impose some structuredanvariables.
The simplest assumption corresponds to the RS solution[2, 4] obtained by assuming order parameters independent of repl
indices,
my =mx, ¥ =qx, (X=A,B). (16)

Proceeding in the usual way [2, 4], one finds that the saddle-point equations (12) and stationary-point equations (13) give tt
equations of state
mx = (tanh Hy),  qx = (tanh® Hy), (X =A,B), 17)

HX:ﬁ(H‘f’J(;mX+J0mx+\/Jl2(JX+J2qu>7 (X:AvB)7 (18)

and the brackets without subscript - ) denote Gaussian averages,

where

()= - Eeﬂc?/?(. ). (19)
Analogously, the free energy per spin (4) becomes
o= —ﬁjﬂ (1-qa)(1—gB) - Bg : [(1 —qa)’+(1—qp)*| + %mAmB + ng) (m% +m3)
- % (In2 cosh H.) — % (In2cosh Hy) . (20)

[

3 The stability of replica-symmetric  m andq variables for largeV. The integral converges only
solution if the stationary point (13) is a minimum &f, i.e., only if
the eigenvalues of the Hessian matrix formed by the second

The validity of the RS solution (17) rests on the applicabil- derivatives of the function) given by equation (10) with

ity of Laplace method used to perform the integrations over
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respect to then and ¢ variables are all positive. We can the latter approach because it leads to simpler calculations.
equivalently consides as a function of\ variables, related  The Hessian is fu(n +1)/2] x [n(n + 1)/2] matrix whose
to m andgq variables by means of Eq. (12). We will follow elements ar@ x 2 matrices given by

]

ap ap a(Bv) (B (@B)(v8)  ~(aB)(~9)
QB _ ( Gy GUp >’Ga(,3"/) _ ( Gia Gap' >7g(045)(75) = ( Gax " Gap ” >, (21)

a o « « « ) « 5
cih cih GitY i g kb
where ) 5 )

ap _ 00 ey _ 070 Glede) _ 079
oagoNs XY gagaaT Y LNy

XY —
At the stationary point of the RS solution (17) there are seven different typ2scdf elements of the Hessian matrix. We
denote these elements by [5]

(X,Y = A, B). (22)

Gor = A, GoB = B, GeleBd) = C, GeBa = C, Godn) = D,

G — D, GB)@h) _ p, Glamn) = Q, Gm(0) — R, (23)

[

where the indices, 3, v and are all distinct and the tilde  trix are 2 x 2 matrices (23). These eigenvectors are [20]:
denotes the transpose of the matrix. We do not quote then(n — 3) transversal or replicon eigenvectors depending on
lengthy expressions for these elements because only theitwo replicaindices{(n—1) anomalous eigenvalues depend-
linear combinations are needed in the calculation of the ing on asingle replica index, and 4 longitudinal eigenvectors
eigenvalues. independent of replica indices.

The eigenvalues associated with the transversal eigen-

The eigenvalues of the Hessian matrix can now be de-yectors are found to be the eigenvalues ofzhe2 matrix
termined by finding the eigenvectors that divide the space

into orthogonal subspaces closed to the permutation oper- T=P-2Q+R, (24)
ation. The procedure are analogous to the case of the SK
model [5] except that now the elements of the Hessian ma-with elements

J

T, = (1—2q,4+TA)—(ﬁJ/)2(1—2qA+rA)2, (25)
T = 151 = *(ﬂj)z(l —2q4 + 7'A)(1 —2¢p + 7'B)a (26)
Toy = (1—-2qp+7rB)—(BJ)*(1—2¢5 +rp)?, (27)
where
tx = (tanh® Hy),  rx = (tanh*Hx), (X =A4,B). (28)

The necessary and sufficient condition for all the eigenvalues to be positive are
Ty +Ty >0 and Ty Ty — T2 >0, (29)

which are equivalent to the conditions

Ty = 2—(BJ)*(1—2qa+7a)— (BJ)(1=2qp +r5) >0, (30)
Ty = [1—(BJ)*(1—2qa+7ra)][l— (BT —2q5 +1rp))
—(6J)4(1—2qA+rA)(1—2qB+rB) > 0, (31)

in agreement with previous studies [10, 13]. A RS solution satisfying these conditions will be called transversally (T) sta
and T unstable otherwise.
The eigenvalues associated with anomalous and longitudinal eigenvectors are the same inthe limithey are found
to be the eigenvalues of thex 4 matrix
A-B D-C
L= ( ) , (32)

2C-2D P -4Q+3R
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where
Ly = (1—qa)—BJo(1 —qa)> +2(8J")(ta —ma)?, (33)
Ly = (1—gqp)—BJy(1—qp)*+2(8J)*(ts —mp)?, (34)
Liy = Lo =—pJo(1—qa)(1 —qp) +2(87)*(ta —ma)(ts —mp), (35)
Lz = —%Lm = (ta —ma)[l = BJS(1 — qa) — (BJ)*(1 — 4ga + 3ra)], (36)
L24 = —%L42 = (tB —mB)[l—ﬁJé(l—qB)—(ﬁJ’)2(1—4qB+37“B)], (37)
Ly = —%L41 = —BJo(tz —mp)(1 — qa) — (BJ)*(ta —ma)(1 — 4gp + 3rp), (38)
Ly = _%L32 =—BJo(ta —ma)(1 —qp) — (BJ)*(tz — mp)(1 — 4qa + 3ra), (39)
Lzz = (1 —4qa+3ra)[l— (8J)(1 —4qa +3ra)] +28J5(ta —ma)?, (40)
L44 = (1_4qB+3rB)[1_(BJ/)2(1_4QB+3TB)]+2ﬂJ6(tB_mB)27 (41)
L34 = L43 = —(ﬁJ)2(1—4QA+3TA)(1—4QB+37"B)+26J0(t,4—mA)(tB—mB). (42)

|
The characteristic equation has the form is real and symmetric, in the limit — 0 there is no guar-

4 3 9 antee that the eigenvalues will be real. In fact, complex lon-
AT =N+ aA” —azA +ag =0, (43) gitudinal and anomalous eigenvalues also arise in the spin 1
where the coefficients,, aren-th order traces of the matrix ~One-sublattice infinite-range spin-glass model with crystal-
L. A numerical study of equation (43) shows that the eigen- fi€ld anisotropy [21, 22]. In general, therefore, the stability
values are complex for some values of the parameters of theeondition should require the real part of the eigenvalues to
model, in contrast with one-sublattice SK model in which P€ positive. According to the Hurwitz criterion [23], the nec-
the anomalous and longitudinal eigenvalues never become®SSa&Ty and sufficient condition for all the roots of equation

complex [5]. Even though the Hessian matrix (21)dor 1 (43) to have positive real parts are
]
D1 = a1 > 0, D2 = all Zz =aia2 —az > 0, (44)
a1 as 0 a; as 0 0
Dy = 1 as a4 |=asDs — a%a4 > 0, Dy = Loz a0 =aqD3 > 0. (45)
0 a1 as 0 a; as 0

0 1 a2 Q4

These condition are equivalent to the following four condi- 4 ~ Results of the stability analysis
tions:

In this section we present the results of the stability analysis
of the RS solution for different values of the parameters of

Li = a1 >0, (46) the model. Since the Hamiltonian (1) is invariant under the
Ly = Dy=ajay—as>0 (47) simultaneous transformations

L3 = Dj3=ajasaz— a% — a4a§ > 0, (48)

Ly = a4 >0. (49) H— —H, S; — —Si’ (50)

it is sufficient to consider field& > 0. For H = 0 only one
A RS solution satisfying these conditions will be called lon- of the two solutions related by the global inversion symme-
gitudinally (L) stable, and L unstable otherwise. try has to be considered.
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4.1 Zero applied field 3
4.1.1 Ferromagnetic intersublattice interaction
In zero applied field # = 0) and ferromagnetic intersub- 2 (b)
lattice interactions.[y > 0) the solutions of the set of equa-
tions (17) are of the form T
@) (@)
ma =mp=1m, qA = 4B = (4. (51) 1
Three types of solutions are possible: © (d)
c
e Paramagnetic (P) solutiom: = 0,q = 0. 0
0 1 2 3
e Spin Glass (SG) solutiony > 0, m = 0. JotJo
Figure 1. Regions of the zero-field phase diagram where different
e Ferromagnetic (F) solutiory > 0,m > 0. types of solution are possible. For ferromagnetic intersublattice in-

teraction (Ju > 0), the P solution is L stable above line (b) and the
Fig. 1 shows the lines delimiting the regions where different Ieft portion of line (a), the F solution between lines (b) and (c), and
types of solutions can be found in the plane of temperatureSG solution between the left portion of line (a) and line (c). The
versusJy + Jj. P solution is T stable above line (a), the F solution between lines
The P solution is always possible. However it is L stable (b) and (d). The SG solution is T unstable between the left side of
only above the line (b) and the left portion of line (a), and T line (a) and line (c), and F solution between lines (c) and (d). For
stable above line (a). The L instability of P solution occurs antiferromagnetic intersublattice interaction (< 0) the F solu-

due to the violation of the condition (49), which is given in tion is replaced by AF solution and the label of horizontal axis by
the case of P solution by ’ —Jo + Ji. The temperature and energy units in the axis are such

thaty/J2 4+ J’2 =1 andkg = 1.

The T instability of the P solution is due to the violation of
the condition (31), which is given in the case of P solution

by
Ty=[1—0%J"2 = I = F2(J"* + J*)] > 0. (55)

Ly=[1=p(J"2 = I = (I + J?)]

[1 = B(J5 = Jo)I[L = B(J + Jo)] > 0. (52)

For (Jo + J3)/vVJ? + J'2 < 1/2, the second factor of in
(52) becomes negative below line (a). Thus the left portion The second factor in (55) becomes negative below line

of line (a) is determined by (a) for all values of.J, + Jj. Thus line (a) is given by
equation (53) for allJ, + Ji. The T and L instabilities
BT+ T7) =1 (53)  of the P solution occur simultaneously on the line (a) for
(Jo+ JY)/VI2+J2<1)2.
On the other hand, fofJ, + Jy)/vJ? 4+ J'? > 1/2 the The SG solution is possible only below line (a). Itis T
fourth factor in (52) becomes negative below line (b). Thus unstable throughout this region and L stable to the left of
the equation for line (b) is line (c). The L instability of the SG solution occurs due to
the violation of the condition (49), which is given in the case
B(J+ Jo) = 1. (54) of SG solution by
|

Ly = (1—¢q)%(1 —4q + 3r)? [1—B2(J"% = J%)(1 —4q 4 3r)][1 — B2(J'2 + J*)(1 — 4q + 37)]
x [1—=B(Jy — Jo)(1 = @)1 = B(Jg + Jo)(1 — q)] > 0. (56)

For (Jo+ J})/VJ? + J'2 > 1/2 the last factor in (56) becomes negative to the left of line (c). Thus the equation determinir
line (c) is
BJo+ Jo)(1—q) = 1. (57)
The F solution is possible only between lines (b) and (c). It is L stable throughout this region but T stable only above |
(d). The T instability of the F solution occurs due to the violation of the condition (31), which is given in the case of F soluti

by
Ty =[1—p3%J2%=J%(1 —2q+3r)][1 — B2(J'? + J*)(1 —2¢ + 3r)] > 0. (58)
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For (Jo + J§) /v J? + J'2 > 1/2 the second factor in (58) 12
becomes negative below line (d). Thus line (d) is described
by equation

B2(I'2+T*)(1—2¢+3r) = 1. (59)

Rejecting solutions that are L unstable, we conclude that
the P phase is located above lines (b) and left portion of line
(a), the SG phase between the left portion of line (a) and
line (c), and finally the F phase between lines (b) and (c).
The SG phase, and the F phase between lines (c) and (d),

are T unstable, indicating the need for a replica-symmetry- 0.0 : : : ‘

breaking solution in this region. The transition line (c) will 00 02 04 H 06 08 10

change to a vertical line if such a solution is considered [24].

We mention that, as should be expected, in the dgse 0 Figure 2. Region of stability in the presence of a field for the
andJ = 0, or J;, = 0 and.J’ = 0, these results reduce to case of ferromagnetic intersublattice interactioh (< 0). The
those of one-sublattice SK model [2, 4]. values of parameters aw€'/J = 1, Jo/Jo = 1 and (Jo +

Jo)/VJ2 + J'2 = 1/2. There is only the P solution which is
always L stable but becomes T unstable below the de Almeida-
4.1.2 Antiferromagnetic intersublattice interaction Thouless line AT. The temperature and field units in the axis are
o ] o o ] such that/J2? + J’'2 =1 andkp = 1.
The Hamiltonian (1) in zero applied field(= 0) is invari-
ant under simultaneous transformations This solution is always L stable, but becomes T unstable for
) low temperatures due to the violation of the condition (31),
Jo— —Jo, Si— =S (i€ B). (60)  which in this case is also given by Eq. (58). The instability
o _ line is given by Eq. (59), illustrated in Fig. 2 for the case
In fact, we can c_heck e_pr|C|tIy that all t_h_e expressions for J)J =1,0})Jo =1/2and(Jo + J§) /N I2+ T2 =2.
the RS solution, including those of stability conditions, are ag should be expected, in the cage = 0 and.J = 0, or
invariant under simultaneous transformations J, = 0andJ’ = 0, these results reduce to the de Almeida-

Thouless line of one-sublattice SK model[5].
J() — —J(), mp — —mpg. (61)

Thus the case of antiferromagnetic intersublattice interac-4-2-2 Antiferromagnetic intersublattice interaction

tion Jo < 0 is completely equivalent to the case of ferro- |n non-zero applied field > 0) and antiferromagnetic in-
magnetic intersublattice interaction/, > 0 by replacing  tersublattice interactions/§ < 0), two types of solutions to
mp by —mp. This means that the F solution is replaced by the set of equations (]_7) are possib|e:

the antiferromagnetic (AF) solution

e Paramagnetic (P) solutioningy = mp = m >
maq = —mp =1m, ga =qB = 4. (62) O,QA:(]B:q>0.

The results displayed in Fig. 1 remains valid, with re- * Antiferromagnetic (AF) solutionm, # mg,qa #
placed by—.J, and F solution by AF solution. qB-

For (—Jo + J§)/VJ? + J'2 < 1/2 only P solution is
possible. This solution is always L stable but becomes T un-
stable at low temperatures due to the to the violation of the

4.2 Non-zero applied field

4.2.1 Ferromagnetic intersublattice interaction condition (31), which in this case it is also given by (58).
The instability line is given by Eq. (59).
In non-zero applied field} > 0) and ferromagnetic inter- For (—Jo + J})/VJ? 4+ J'2 > 1/2, AF solution also

sublattice interactionsf{j > 0), only the paramagnetic (P) becomes possible. Fig. 3 shows the lines delimiting the re-
solution is possible for the set of equations (17), which are gions of existence and stability of each type of solution for

of the form —J}/Jo = 1/2. The P solution becomes L unstable below
line (a) due to the violation of the condition (49). In the case
ma=mp=m >0, qa=qp =q > 0. (63) of P solution this condition is given by
]
Li = [(1=q)(1—4q+3r)+2(t =m)*P {[1 = B(Js + Jo)(1 = @[l = B(J"* = J?)

X(1—4g+3r)] 4+ 268°(Jg + Jo)(J'? = J2)(t = m)* } {[1 = B(J§ — Jo)(1 — q)]
x [L—=B(J"2+ J*)(1—4q+ 3r)] +28°(J) — Jo)(J'? + J*)(t —m)*} > 0. (64)
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The first factor in (64) becomes negative inside line (a). Therefore the equation determining line (a) is

[1—6(J5 = Jo)(1 = @)1 — B(J'? = J*)(1 — 4g + 3r)] + 26°(Jy — Jo)(J'* = J?)(t —m)* = 0, (65)
|
2.5 ‘ ‘ ‘ illustrated in Figs. 5(a) and 5(b) férs T /v J? + J'2 = 1.

One of the AF solutions, corresponding to dotted lines in
Fig. 5, is L unstable due to the violation of the condition
(49), as shown in Fig. 5(c). The transition between AF
phase and P phase is first order, determined by equating
the free energies of L stable AF and P phases, as showr
in Fig. 5(d). The first-order transition line is shown as dot-
ted line in Fig. 4, which ends at the tricritical point TCP.
The L stable AF solution becomes T unstable below line (c)
due to the violation of condition (31), and it is determined
by Eq. (66). We conclude that in Fig. 4 the P phase exists
outside and AF phase inside lines (a) and (e), which meet
smoothly at the tricritical point TCP. The P phase becomes T
0.0 05 10 15 2.0 unstable below line (b), and AF phase below line (c). Notice

H that the lines (b) and (c) are discontinuous across first-order
transition [12]. It is likely that the first-order transition line
will change in this part of phase diagram once the replica-
esymmetry-breaking solutions are considered for P and AF
phases.

20 (2)

15

1.0

0.5

0.0

Figure 3. Regions of stability and existence of different solu-
tions in the temperature versus field phase diagram for the cas
of antiferromagnetic intersublattice interactiofy (< 0). The val-
ues of parameters at¥ /J = 1, —Jy/Jo = 1/2 and (—Jo +
Jo)//J2+ J'2 = 2. The P solution is L stable outside line (a)
and T stable above line (b). The AF solution is possible only inside
line (a) and it is always L stable, but becomes T unstable below
line (c). The temperature and field units in the axis are such that

\/J2+J/2:1andk'B:1. 25 T T T T T

which is in agreement with previous study [12]. The P so-
lution is T unstable below line (b). This instability occurs
due to the violation of condition (31), given in this case by
Eqg. (58), caused by the second factor. Therefore the line (b)
is determined by equation (59). The AF solution is possible
only inside line (a). Itis L stable throughout this region and
T unstable below line (c). This instability is due to the viola-
tion of condition (31). Therefore line (c) obeys the equation

[1—(BJ)2(1 —2q4 +74)][1 — (BJ)*(1 —2qp +7B)]

= (BI)*(1 —2qa +7r4)(1 —2¢p +75).  (66)

Rejecting solutions that are L unstable, we conclude that P
phase exists outside and AF phase inside line (a). The P
solution becomes T unstable below line (b) and AF solu-
tion below line (c), which meet smoothly on the line (a). In Eigurg 4. Regions of stability ar_1d existence_ of different solu-
the region below lines (b) and (c) it is necessary to considertions in the temperature versus field phase diagram for the case

replica symmetry breaking solution, which will presumably 3;322%?022%‘;2‘;5'r:gs;b'i‘“'lce 'Sfei‘}‘CtE"fg( a<n dO)' JThe
change line (a) in this region. P [T =1 =Jo/Jo = (=Jo +

For sufficiently large values of the ratie.J;/Jo the Jo)/V/J? + J'2 = 2. The P solution is L stable outside the line

del hibit fi d ition f h (a) and T stable above line (b). There is one AF solution inside line
model can exhibit first-order transition from AF phase to (a) which is always L stable, and two distinct AF solutions between

the P phase [12]. As an example, we cpny_der the casqjnes (@) and (d), one L stable and the other L unstable. The L sta-
—Jy/Jo = 5 shown in Fig. 4. The P solution is L stable pje AF solution is also T stable above line (c). The line (e) is the
inside line (a) given by Eq. (65), and T stable above line (b) first-order transition line and TCP is the tricritical point. The tem-
given by Eqg. (66). There is one AF solution inside line (a) perature and field units in the axis are such ta® + J'2 = 1

and two distinct AF solutions between lines (a) and (d), as andkg = 1.
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