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In the first part of this paper I review the understanding of anomalous properties of water in terms of particles
interacting by core-softened potentials. I discuss the origin of the bulk anomalies in terms of the two different
configurations of neighbor particles: low energy–high volume and high energy–low volume. In the second part
I study some anomalies of water under strong spatial confinement, namely when it lubricates a contact between
two solid surfaces. Solvation and friction forces are studied as a function of lubricant thickness. Whereas for
hard core particles maxima in the solvation force are correlated with maxima in the friction force, for soft core
particles and appropriately chosen parameters the opposite is true. This leads to a reduction of the friction
coefficient of about one order of magnitude in the second case. I argue that materials that expand when freeze
may be modeled in terms of soft core particles, and that these materials are naturally good boundary lubricants.

1 Introduction

There is no doubt that water is (from many points of view)
the most important liquid on earth. It cannot be denied also
that it is a liquid with many anomalous properties. In search-
ing for the origin of these anomalies, a natural question is
whether they are independent of each other, or they can be
ascribed to some common and fundamental origin, and if the
second is the correct view (as I will argue to be the case),
what this fundamental origin is. Trying to systematize the
anomalous properties of water under a unifying principle,
it is illuminating the observation that most of the anoma-
lies can be re-obtained with a model of classical particles
interacting with a particularly chosen spherically symmet-
ric potential of the core-softened type. This model is simple
enough as to permit a qualitative discussion of the origin of
the anomalies, and the identification of its ultimate physical
origin.

Core-softened potentials were first considered by Stell
and Hemmer[1] some thirty years ago. However, it has been
recognized only recently that these models reproduce most
of the anomalous properties found in water. My presenta-
tion has the following scheme. In the first part I will briefly
review results obtained in the last few years on the anoma-
lous properties of core-softened models, in particular refer-
ring to the description of water anomalies. Hoping than
this will persuade the reader that these models capture the
main physics behind water anomalies, in the second part I
will present results on the fluidity and lubrication properties
of these models under confinement. They permit to under-
stand why the lubricating properties of water are anomalous
and also provide some ideas for the search of materials with
good lubricating properties.

2 The explanation of bulk water
anomalies in terms of core-softened
potentials

2.1 Motivation of core-softened models.
Anomalous melting and density anomaly

Although it is the nature of the hydrogen bond that gives
water most of its especial character, it is more important
from our point of view the statement that water is atetra-
hedral liquid. In fact, the oxygen in the water molecule
tends to form a tetrahedron with its two own hydrogens and
with two other hydrogens of neighbor molecules via hy-
drogen bonds. The tetrahedral structure is then supported
by hydrogen bonds, but from our perspective we take the
tetrahedral structure as more fundamental. In fact, most of
the description of anomalous properties that will be made
here apply also to the whole family oftetrahedrally coor-
dinated materials[2, 3]. In addition to water they include a
lot of substances based on the prototypical tetrahedral (sp3-
coordinated) elements: carbon, silicon and germanium.

In order to motivate the introduction of core-softened
models, let us take a simple minded view to the anomalous
melting of water. Normal ice (ice-Ih) is an open tetrahe-
dral structure of the wurtzite type[4]. It is stable because it
optimizes the potential energy of the system. Water has a
higher density because water molecules can tangle in a way
that is not permitted in the solid. Of course some energy
has to be paid in this more compact structure, but tempera-
ture is able to provide it. We can then qualitatively say that
there are two typical arrangements of water molecules[3]:
low energy-high volume configurations (as realized in ice-
Ih) and high energy-low volume configurations. They are
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pictorially displayed in Fig. 1(a). We may wonder whether
the existence of these two kinds of configurations is enough
to produce the melting anomaly and also what is the sim-
plest model we can imagine with these two configurations.
The answer to the first question is positive. To address the
second we introduce the core-softened Stell-Hemmer poten-
tials.
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Figure 1. (a) Two types of local arrangement between water
molecules: low energy–high volume (left) and high energy–low
volume (right) (continuous line indicate intramolecular bonds,
dashed lines are hydrogen bonds). (b) A spherically symmetric
core-softened potential, with the two distances mimicking the con-
figurations in (a).

In this model, the energy between two spherical particles
in the system is composed of a hard core at some distance
r0 plus a shoulder than extends up to some other distance r1

(see Fig. 1(b)). By now we take the potential to be purely re-
pulsive. Some details of the potential are not relevant for the
discussion. For instance, some people have studied it using
a square shoulder instead of a linear one, and we will also
present results for a smoothed version of the linear shoulder
case. However, the crucial point is that there should be an
abrupt transition between low energy–high volume configu-
rations (represented by particles at relative distance r1) and
high energy–low volume configurations (represented by par-
ticles at relative distance r0). Simulating a classical model
of particles interacting with this potential we do observe
anomalous melting[5]. In Fig. 2(a) we see the evolution of
specific volume as a function of temperature for a system at
pressure P = 1.0ε0/r2

0
(for clarity I show here results for a

two-dimensional systems). The melting transition with den-
sity increase is clearly visible. Snapshots of the system [Fig.

2(b)] show in fact that the crystalline phase is a triangular
structure with lattice parameter a ∼ r1. In the liquid phase,
however, there is energy available for neighbor particles to
surmount the energy shoulder of its neighbors, and this pro-
duces a density increase upon melting. Density continues to
increase after melting for a while, and then decreases start-
ing T ' 0.15ε0. Then this temperature marks a point of
maximum density in the fluid, very much as real water at 4C.
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Figure 2. (a) Evolution of specific volume as a function of temper-
ature for a two dimensional system with r1/r0 = 1.65, at pressure
P = 1.0ε0/r2

0 . Results were obtained decreasing and increasing
temperature, as indicated by the arrows. The anomalous melting
and the temperature of maximum density (minimum v) are clearly
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Figure 2. (a) Evolution of specific volume as a function of temper-
ature for a two dimensional system withr1/r0 = 1.65, at pressure
P = 1.0ε0/r2

0 . Results were obtained decreasing and increasing
temperature, as indicated by the arrows. The anomalous melting
and the temperature of maximum density (minimumv) are clearly
observable. (b) Snapshots of the system at different temperatures
(dots indicate the hard core radiusr0 of the particles). Note that
there are essentially no particles (except a few defects) at distance
r0 in the lowest temperature picture, whereas in the fluid phase,
at larger temperature, there are many. This effect produces the
anomalous melting and the density anomaly (adapted from Ref.
[5]).

2.2 Compressibility anomaly and the second
critical point

In an attempt to systematize the anomalous properties of wa-
ter, H. E. Stanley and co-workers introduced[6] the hypoth-
esis of a second critical point (SCP) in its phase diagram.
The SCP would be the end point of a line of first order tran-
sition between two different liquid (or glassy, as tempera-
ture is very low) phases, very much like the normal criti-
cal point is the end point of the liquid-gas coexistence line.
Estimations[6, 3] indicated that the SCP would be located in
a region of the phase diagram not directly accessible, as liq-
uid water cannot be avoided to crystallize there. However, it
was Stanley’s suggestion that the existence of the SCP can
generate anomalies in the properties of water, even relatively
far away from the critical point itself. Then the effects of the
SCP are observable even if the SCP itself remains hidden.

Our studies of core-softened models[5, 7, 8, 9] (in addi-
tion to others [10, 11, 12]) allowed us to suggest a slightly
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different interpretation of the relation between the SCP and
thermodynamic anomalies. In my view it is not the existence
of the SCP that generates the thermodynamic anomalies, but
it is in some sense the opposite. To understand this let us
first discuss the compressibility anomaly in core-softened
models[7]. We will need to consider the supercooled liq-
uid regime[13]. In order to study supercooled fluid phases
theoretically, some mechanism has to be postulated to avoid
crystallization of the system. A simple possibility is to con-
sider a polydisperse system, formed by particles of differ-
ent sizes. This may avoid crystallization, and then the fluid
phase can be claimed to exist down to zero temperature (note
that experimentally the system can be supercooled only in
particular conditions, since the most stable configuration at
low enough temperatures is ultimately a crystalline one).
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Let us imagine our core-softened model in the limit
T → 0 and without the possibility to crystallize. I will con-
centrate on its density vs. pressure characteristic. At very
low pressures the particles behave as hard spheres of radius
r0, since then cannot surmount the energy shoulder of its
neighbors. On the other hand, at very high pressure the sys-
tem behaves as a hard sphere system but now with radius r1,
since the energy shoulder is negligible in this limit. Then we
expect an evolution of specific volume (inverse of density)
vs. pressure as depicted in Fig. 3 (continuous line). The
transition between the low-P and high-P configurations is
not expected to be sharp, since as the system is amorphous
not all the particles collapse onto their neighbors at the same
value of pressure. This kind of curve is in fact reproduced in
simulations of the model[7, 9], as we see in Fig. 4. The com-
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0 respectively (from Ref. [9]).

The compressibility anomaly is the germ of the SCP, that
appears in the model only when an attractive term of suf-
ficient strength is included in the potential energy between
particles. We can see this in the simplest case, namely, when
the attractive energy is supposed to be of long range, and
then treatable in the van der Waals approximation[7]. In
this limit, the inclusion of an attraction between particles is
equivalent to the application of a fictitious negative pressure
P vdW , given byP vdW = −γ/v2, wherev is the specific
volume of the system. The results for a system with a fi-
nite γ can then be obtained from those withγ = 0 by the
substitutionP → P + P vdW . As P vdW depends itself on
density, this substitution is self-consistent, and can produce
non-trivial results. We can see in Fig. 3 the qualitative ef-
fect of this substitution on the original (continuous) curve. If
γ is larger than some critical valueγcr, the density-pressure
curve becomes reentrant, and this implies a first order transi-
tion between two fluid phases (Fig. 5). Then, it is the com-
pressibility anomaly together with an attractive part in the
interaction that generate the SCP in core-softened models.
The ability of these models to reproduce the anomalies in
water suggests that this qualitative explanation applies also
to real water, and then that the SCP is a consequence of the
compressibility anomaly, and not the opposite. As an ad-
ditional evidence supporting this view, I note that the SCP
seems to exist in water [14], but it does not seem to occur
in some other tetrahedral materials that share many of the
anomalies of water. This may be the situation in silica, for
instance[9, 15, 16].

2.3 Other bulk anomalies

Other anomalies found in water are also observed in core-
softened models. Water is characterized by many different
crystalline phases[4]. It is remarkable that the very simple,
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density, this substitution is self-consistent, and can produce
non-trivial results. We can see in Fig. 3 the qualitative ef-
fect of this substitution on the original (continuous) curve. If
γ is larger than some critical value γcr, the density-pressure
curve becomes reentrant, and this implies a first order transi-
tion between two fluid phases (Fig. 5). Then, it is the com-
pressibility anomaly together with an attractive part in the
interaction that generate the SCP in core-softened models.
The ability of these models to reproduce the anomalies in
water suggests that this qualitative explanation applies also
to real water, and then that the SCP is a consequence of the
compressibility anomaly, and not the opposite. As an ad-
ditional evidence supporting this view, I note that the SCP
seems to exist in water [14], but it does not seem to occur
in some other tetrahedral materials that share many of the
anomalies of water. This may be the situation in silica, for
instance[9, 15, 16].
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Figure 5. The supercooled pressure-temperature phase diagram of
core-softened potentials as a function of the intensity γ of the van
der Waals attraction. The dashed region indicates the zone of the
compressibility anomaly. If the attraction is larger than some value
γcr the compressibility anomaly generates a first order transition
line and the SCP appears (the normal liquid-gas critical point is
not indicated).

2.3 Other bulk anomalies

Other anomalies found in water are also observed in core-
softened models. Water is characterized by many different
crystalline phases[4]. It is remarkable that the very simple,
spherically symmetric core-softened model we are studying
has also different crystalline structures. In two dimensions,
in addition to the triangular one, the structures shown in
Fig. 6 are stable in different regions of the P -T plane[5].
Even a quasi-crystalline phase becomes stable in a region of
parameters[5]. In three dimensions the possible crystalline
structures have not been surveyed in detail, but it seems in
fact that there are many[17].
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Figure 6. Other crystalline configurations for the two dimen-
sional system, stable under particular pressure-temperature condi-
tions (see Ref. [5] for details).

The last anomaly I will mention is of dynamic nature. It
concerns the diffusivity of single particles in thermal equi-
librium. In most liquids, this quantity is a monotonically
decreasing function of pressure, as pressure constraints the
movement of particles by caging them more tightly by its
neighbors. In water, diffusivity first increases as a function
of pressure, reaches a maximum and then decreases[18].
The increasing diffusivity with pressure is observed in core
softened models[19, 12]: at low pressures particles do not
have the possibility of going onto the energy shoulders of
their neighbors. As pressure increases these states become
accessible as intermediate steps in the process of diffusion
of single particles, and an increase of diffusivity is observed.

3 Lubricity and fluidity under con-
finement

Among the many anomalous properties of water there
is its tendency to remain fluid even when strongly con-
fined spatially[20, 21]. This property is puzzling since
water molecule is rather spherical, and it is known that
for most liquids with more or less spherical molecules,
confinement produces a tendency to solidify[22, 23, 24],
and in the end, a strong reduction in diffusivity. Ac-
tually it is this confinement-induced solidification one of

the most serious problems when using fluid lubricants in
the so-called boundary regime[24], in which only few
molecular layers of lubricant remain between the lubri-
cate solids. In these nanocontacts, the hydrodynamic lu-
brication regime[24] breaks down, and most of the fric-
tion and wear between the two surfaces originates there.
This problem would be severe in the operations of micro-
electromechanical machines (MEMS), which up to now are
usually used unlubricated.

Careful measurements using water films down to one or
two molecular layers indicate that water performs extremely
well as lubricant in this regime[20], which is again an indi-
cation of its high lubricity under strong confinement. Un-
derstanding these anomalous properties of water in the sim-
plest way may contribute with some new ideas in the design
of new lubricants for miniaturized equipment. I will present
here some qualitative considerations of how the lubricity of
water is preserved under strong confinement. The analysis
will be based –again– in the use of core-softened models to
qualitatively mimic the behavior of water[25].

If we squeeze a liquid film between two solid contacts,
the liquid opposes a force, which is known as the solva-
tion force[23, 24]. When studying the solvation force at
nanocontacts, oscillations as a function of the distance be-
tween solids are usually observed. Maxima of the solvation
force correspond to well structured, quasi-solid lubrication
films, and then to maxima in the friction force when the sur-
faces are sheared. Minima of the solvation force correspond
in turn to a lubricant film that is more fluid-like, and then to
minima in the friction force. This is qualitatively depicted in
Fig. 7. The transition between a maximum and a minimum
of the solvation force upon reduction of the distance corre-
sponds to the squeezing of a full layer of lubricant out of
the contact. In experiments, a condition of constant load on
the contact is usually realized (this load being typically the
yield stress of the softer material), instead of a constant dis-
tance situation. Then the ranges of distances corresponding
to low friction forces (which correspond to a negative solva-
tion force with respect to the bulk pressure in the lubricant)
are not accessible in standard experiments.
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Figure 7. Qualitative evolution of the solvation and friction forces,
and the number of particles in the gap as a function of the distance
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Figure 7. Qualitative evolution of the solvation and friction forces,
and the number of particles in the gap as a function of the distance
separating the confining walls, in a system with hard core interac-
tion. The solvation force oscillates around the value corresponding
to the bulk pressure in the lubricant. The correlation between sol-
vation and friction forces is positive.
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Figure 8. Same as previous figure for a system of core softened
particles (the two radii of the particles are indicated in the draw-
ings below). Now decreasing the distance between confining walls
may cause the lubricant to become more fluid without squeezing
out particles. This leads to a negative correlation between solva-
tion and friction forces.

The situation can be thought to be different for core
softened-particles, as depicted in Fig. 8. Now a reduction
of the distance between the solids can be thought to produce
a disordering of the lubricant particleswithout implying the
squeezing out of them. This means for instance that under

the transition between the two right-most configurations in
Fig. 8, the solvation force increases (since we are compress-
ing a system with a fixed number of particles) but friction
force decreases (since the system becomes more fluid). This
leads to an overall negative correlation between solvation
force and friction force. Since (as already said) typically
only the upper parts of the oscillation of the solvation force
are accessible experimentally, this implies that the minimum
friction force is accessible, and this is experimentally desir-
able.

Results of molecular dynamics simulations with core-
softened models support this qualitative description. I refer
to Ref. [25] for details of the simulations. In Figs. 9 and 10
we see the results of simulations in two different cases. In
Fig. 9 the externally applied pressure is such that the lubri-
cating fluid behaves essentially as a hard core system (point
A in [25]). We see the positive correlation between solva-
tion (Fs) and friction (Ff ) forces, as in the qualitative de-
scription of Fig. 7. In 10, instead, the pressure is such that
the fluid behaves anomalously (pointB in [25]). Now the
correlation betweenFs andFf is negative. Due to this, the
friction coefficient attained (calculated in a standard way as
Ff/(Fs − F0), F0 being the reference force due to the bulk
pressure in the lubricant) is about one order of magnitude
lower.

6 E. A. Jagla

separating the confining walls, in a system with hard core interac-
tion. The solvation force oscillates around the value corresponding
to the bulk pressure in the lubricant. The correlation between sol-
vation and friction forces is positive.

The situation can be thought to be different for core
softened-particles, as depicted in Fig. 8. Now a reduction
of the distance between the solids can be thought to produce
a disordering of the lubricant particles without implying the
squeezing out of them. This means for instance that under
the transition between the two right-most configurations in
Fig. 8, the solvation force increases (since we are compress-
ing a system with a fixed number of particles) but friction
force decreases (since the system becomes more fluid). This
leads to an overall negative correlation between solvation
force and friction force. Since (as already said) typically
only the upper parts of the oscillation of the solvation force
are accessible experimentally, this implies that the minimum
friction force is accessible, and this is experimentally desir-
able.

number of
particles

friction
force

solvation
force

d

d

Figure 8. Same as previous figure for a system of core softened
particles (the two radii of the particles are indicated in the draw-
ings below). Now decreasing the distance between confining walls
may cause the lubricant to become more fluid without squeezing
out particles. This leads to a negative correlation between solva-
tion and friction forces.

Results of molecular dynamics simulations with core-
softened models support this qualitative description. I refer
to Ref. [25] for details of the simulations. In Figs. 9 and 10
we see the results of simulations in two different cases. In
Fig. 9 the externally applied pressure is such that the lubri-
cating fluid behaves essentially as a hard core system (point
A in [25]). We see the positive correlation between solva-
tion (Fs) and friction (Ff ) forces, as in the qualitative de-
scription of Fig. 7. In 10, instead, the pressure is such that
the fluid behaves anomalously (point B in [25]). Now the
correlation between Fs and Ff is negative. Due to this, the
friction coefficient attained (calculated in a standard way as
Ff/(Fs − F0), F0 being the reference force due to the bulk
pressure in the lubricant) is about one order of magnitude
lower.
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Figure 9. Results of numerical simulations in a ‘normal’ point of
the phase diagram, in which particles behave essentially as hard
core particles (point ‘A’ in Ref. [25]. See it for details). Friction
Ff and solvation Fs forces (per unit area) are in units of ε0/r2

0 . Ff

is calculated by keeping the distance d as fixed, at a shear veloc-
ity given by v = 10

−2v0, with v0 =
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ε0/m, m being the mass
of the particles. Note that Fs oscillates around F0 = 0.1ε0/r2

0 ,
which is the value corresponding to the bulk pressure of the lu-
bricant. There is a positive correlation between Ff and Fs, as in
the qualitative description of Fig. 7. d measures the distance be-
tween the planes containing the center of the particles in the walls.
Within those plains particles are accommodated in a rigid triangu-
lar lattice, as explained in Ref. [25].
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bricant. There is a positive correlation betweenFf andFs, as in
the qualitative description of Fig. 7.d measures the distance be-
tween the planes containing the center of the particles in the walls.
Within those plains particles are accommodated in a rigid triangu-
lar lattice, as explained in Ref. [25].

We may also approach with this model the issue of high
lubricity of water in nanocontacts[21] (something of course
closely related to its lubricating properties). I will present re-
sults from molecular dynamics for the diffusivity of particles
forming a mono-layer between two solid surfaces, again in
pointsA (normal) andB (anomalous) of the phase diagram.
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Figure 10. Same as previous figure, now in an ‘anomalous’ point
of the phase diagram (point ‘B’ in Ref. [25]). Ff is calculated at
a shear velocity of v = 5 × 10

−3v0). The correlation between Ff

and Fs is now negative, as in the qualitative description of Fig. ??.
Note that the range of friction coefficients that are be obtained in
this case is about one order of magnitude lower than in the previous
figure.

We may also approach with this model the issue of high
lubricity of water in nanocontacts[21] (something of course
closely related to its lubricating properties). I will present re-
sults from molecular dynamics for the diffusivity of particles
forming a mono-layer between two solid surfaces, again in
points A (normal) and B (anomalous) of the phase diagram.
Diffusivity D is numerically calculated from the time evolu-
tion of the position of a single particle during the molecular
dynamics simulation as

|r(t) − r(0)|
2

= 2Dδt, (1)

where δ is the dimensionality of the system. Results are
shown in Fig. 11 for three different configurations of the
confining walls: (i) crystalline commensurate (in which
walls consist of fixed particles on a triangular lattice, with
lattice parameter equal to the equilibrium bulk lattice param-
eter at the corresponding pressure, and the top and bottom
walls are in register); (ii) crystalline rotated (same as be-
fore, but top and bottom walls rotated relatively 26 degrees
around the normal); (iii) disordered (walls formed by parti-
cles located at random, with the maximum density possible
under the restriction that no particles in the walls are closer
than 0.8 r1 from each other). We also see in Fig. 11 the bulk

diffusivity of particles in three dimensions at the same con-
ditions. The general trend is that diffusivity decreases when
temperature is reduced. In the normal case however, this de-
crease is much more rapid than in the anomalous case, and
at the melting point, the diffusivity of confined particles in
the normal regime is about a factor of 20 lower than in the
anomalous case, comparing equivalent configurations of the
confining walls. Then it can be concluded that confinement
has an effect more drastic on the diffusivity of particles inter-
acting through hard core interactions. For particles interact-
ing through interactions of the core-softened type, the effect
of confinement is much lower. A qualitative explanation can
be given. In the strongly confined regime, the corrugation
of the potential generated by the walls is an important factor
affecting the mobility of particles. Strong corrugation is typ-
ically related with low mobility. Hard core interactions pro-
duce a strongly corrugated potential. For the core-softened
interaction instead, there is a range of distances on which the
corrugation potential become anomalously small (see Fig.
12). If the external pressure is such that particles of the film
locates close to this distance from the wall, the confinement
effect of the walls is reduced, favoring a greater diffusivity
of the particles. This idea may serve as a starting point for
the design of lubricants based on tetrahedrally coordinated
materials.
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two confining hard walls, in the normal (pointA, P = 0.1ε0/r3

0 ,
left curves) and anomalous (pointB, P = 0.9ε0/r3

0 , right curves)
case (see Ref. [25]), as a function of temperature. The bulk melting
temperature in both cases is indicated. Calculations were done with
a solvation force per unit area of ten percent of the bulk pressure.
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m/ε0. Three different cases are considered

for the arrangement of particles in the confining walls (see text):
(i) crystalline commensurate, (ii) crystalline rotated, and (iii) dis-
ordered.
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a solvation force per unit area of ten percent of the bulk pressure.
D is in units of r0
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m/ε0. Three different cases are considered
for the arrangement of particles in the confining walls (see text):
(i) crystalline commensurate, (ii) crystalline rotated, and (iii) dis-
ordered.
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Figure 12. One dimensional example of the corrugation potential.
Lines of equal vertical force for a probe particle interacting with
particles aligned on a straight line with the potential indicated at
the right. The maximum slope of these lines is the static friction
coefficient for the probe particle. Note that there is an intermediate
distance (roughly indicated by the arrow) in which the corrugation
potential is particularly low.

4 Conclusions

I have tried to present in this work my understanding of the
anomalous properties of water and tetrahedrally coordinated
materials obtained from studies of core-softened model po-
tentials. It seems to me that these models capture the main
physics behind the anomalies, and this is the existence of
two different kinds of local arrangement of particles, with
an abrupt transition between the two. Although quantitative
predictions for water or other specific materials are not ex-
pected to be obtainable from the core-softened calculations
(at least in the present form), they provide a simple, yet
qualitatively comprehensive framework that is useful both
to understand well known properties, and also to suggest
unexpected behaviors.

† On leave from CONICET and Centro Atómico Bar-
iloche, Argentina.
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Figure 12. One dimensional example of the corrugation potential.
Lines of equal vertical force for a probe particle interacting with
particles aligned on a straight line with the potential indicated at
the right. The maximum slope of these lines is the static friction
coefficient for the probe particle. Note that there is an intermediate
distance (roughly indicated by the arrow) in which the corrugation
potential is particularly low.

4 Conclusions

I have tried to present in this work my understanding of the
anomalous properties of water and tetrahedrally coordinated
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materials obtained from studies of core-softened model po-
tentials. It seems to me that these models capture the main
physics behind the anomalies, and this is the existence of
two different kinds of local arrangement of particles, with
an abrupt transition between the two. Although quantitative
predictions for water or other specific materials are not ex-
pected to be obtainable from the core-softened calculations
(at least in the present form), they provide a simple, yet
qualitatively comprehensive framework that is useful both
to understand well known properties, and also to suggest
unexpected behaviors.

† On leave from CONICET and Centro Atómico Bar-
iloche, Argentina.

References

[1] P. C. Hemmer and G. Stell, Phys. Rev. Lett.24, 1284 (1970);
G. Stell and P. C. Hemmer, J. Chem. Phys.56, 4274 (1972);
J.M. Kincaid, G. Stell, and E. Goldmark, J. Chem. Phys.65,
2172 (1976).

[2] C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J.
C. Tucker, Phys. Chem. Chem. Phys.2, 1559 (2000).

[3] O. Mishima and H. E. Stanley, Nature (London)396, 329
(1998).

[4] P. V. Hobbs,Ice Physics, Clarendon Press, Oxford, 1974; V.
F. Petrenko and R. W. Withworth,Physics of ice, Oxford Uni-
versity Press, Oxford, 1999.

[5] E. A. Jagla, Phys. Rev. E58, 1478 (1998).

[6] P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Na-
ture (London)360, 324 (1992).

[7] E. A. Jagla, J. Chem. Phys.111, 8980 (1999).

[8] E. A. Jagla, Phys. Rev. E63, 061501 (2001).

[9] E. A. Jagla, Phys. Rev. E63, 061509 (2001).

[10] G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and
H. E. Stanley, Nature (London)409, 692 (2001).

[11] M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E.
Stanley, Phys. Rev. Lett.81, 4895 (1998).

[12] A. Scala, M. R. Sadr-Lahijany, N. Giovambattista, S. V.
Buldyrev, and H. E. Stanley, Phys. Rev. E63, 041202 (2001)

[13] P. G. Debenedetti,Metastable Liquids, Princeton Univerity
Press, Princeton, 1997.

[14] O. Mishima, L. D. Calvert, and E. Whalley, Nature (London)
310, 393 (1984);314, 76 (1995); O. Mishima, K. Takemura,
and K. Aoki, Science254, 406 (1991); O. Mishima, J. Chem.
Phys.100, 5910 (1994).

[15] D. J. Lacks, Phys. Rev. Lett.84, 4629 (2000); E. A. Jagla,
Phys. Rev. Lett.86, 3206 (2001); D. J. Lacks, Phys. Rev.
Lett. 86, 3207 (2001);

[16] K. Trachenko and M. Dove, Phys. Rev. B67, 064107 (2003).

[17] E. A. Jagla, J. Chem. Phys.110, 451 (1999).

[18] F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. -D. Lude-
mann, Phys. Rev. Lett.59, 1128 (1987).

[19] E. A. Jagla, Mol. Phys.99, 753 (2001).

[20] A. M. Homola, J. N. Israelachvili, M. L. Gee, and P. M.
McGuiggan, J. Tribology111, 675 (1989); J. N. Israelachvili,
Surf. Sci. Rep.14, 109 (1992).

[21] U. Raviv, P. Laurat, and J. Klein, Nature (London)413, 51
(2001).

[22] C. Rhykerd, M. Schoen, D. Diester, and J. Cushman, Nature
(London)330, 461, (1989); P. A. Thompson and M. O. Rob-
bins, Science250, 792 (1990).

[23] B. Brushan, J. N. Israelachvili, and U. Landman, Nature
(London)374, 607 (1995).

[24] B. N. J. Persson,Sliding Friction: Physical Principles and
Applications, Springer, Heidelberg, 1998.

[25] E. A. Jagla, Phys. Rev. Lett.88, 245504 (2002).


