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In this work, we study the behavior of event-by-event distribution of particle ratios in Gran Canonical and
Isobaric ensemble.We show that the experimental value of the width in theK/π ratio distribution is much wider
than that given by a unique grand canonical ensemble or Isobaric ensembe and maybe a mixture is required.

1 Introduction

The main purpose of the relativistic heavy ion program at
CERN and RHIC is to study the properties of matter in
hadronic interactions at very high energy density. Among
many novel phenomena expected, the observation of the
quark gluon plasma (QGP) predicted by the QCD is one of
the main goals. For these studies, a crucial factor is to know
whether or not the system reaches thermal equilibrium at
some stage of the collision. In this respect, thermal mod-
els are extensively used to analyze the final hadronic abun-
dances [1]. In these models, it is assumed that there exists
a stage where the chemical abundances of hadrons (includ-
ing resonances) are suddenly frozen out, keeping the exact
memory of the last instant of the chemical equilibrium. Such
stage is referred to as “chemical freeze-out” and the ob-
served hadronic abundances are completely determined by
the temperatureT and baryonic chemical potentialµB of
the system at this point.

The above picture is equivalent to say that the hadronic
gas at the chemical freeze-out is described by a grand canon-
ical ensemble (GC). The fact is that the observed particle
ratios are remarkably well reproduced adjusting just two pa-
rameters,T andµB . Such fits have been done for4π NA49
data and for RHIC Au+Au data in a rapidity window of ra-
pidity. Although the resulting fits are impressive[1], it is
very difficult to imagine that final hadrons are in a global
chemical equilibrium (rapidity distributions of particles, es-
pecially those of hyperons, are far from constant). It may
well be possible that to have a nice fit only for the chem-
ical abundances does not imply thatT and µB obtained
correspond to those for areal chemical equilibrium. They
could be just some effective parameters to characterize cer-
tain average of statistical ensembles corresponding to differ-
ent physical conditions for chemical freeze-out.

In order to clarify the above mentioned aspect, we
should go one step further than the mean values of chemical
abundances, and study the behavior of less inclusive quan-
tities such as event-by-event fluctuations and correlations of
chemical abundances among different hadrons. In this pa-

per, we analyze the event-by-event fluctuations ofK/π ra-
tio in the thermal model. The distribution ofK/π ratio is
measured forNA49 experiment. We show that the pure sta-
tistical fluctuation given by a unique GC ensemble of reso-
nance gas is much smaller than the experimental data. This
imply that the observed particle abundances can not be re-
produced in terms of one single GC ensemble, but we need
surely a mixture of many statistical ensembles. To explain
the observed width of the distribution ofK/π ratio[2], we
have to fluctuate, for example, the chemical potentialµB .
For nucleus-nucleus collisions, the mixture of differentµB

is rather natural because of the baryons in the incident nuclei
and fluctuating initial conditions[3].

When we consider the fluctuation of the ratioK/π, it
is important to see if there exists any correlation amongK
andπ. For a GC ensemble of ideal hadronic gas, there ex-
ists no correlation for the production ofK andπ. For an
infinite system these assumptions really do not matter, but
when one consider a domain of particle production with fi-
nite volume (fireball) it is not clear at all whether a GC en-
semble represents the best scenario. In particular for kaons,
the strangeness conservation imposes some effects. Analy-
sis based on the canonical ensemble has been done by Koch
[4]. Another possible approach is the use of isobaric en-
semble (ISO). This ensemble describe a system with fixed
pressure allowing volume fluctuations.

When we deal only with the average values of chemical
abundances, there will be no difference between the GC and
ISO ensembles, especially if the total number of the particles
in the system is large enough. However, as we discuss later,
the multiplicity distribution and correlations among particles
are completely different between them. To understand more
clearly, let us consider theK/π ratio. For ISO ensemble,
the pressure is fixed so that for a fixed event large multi-
plicity of pions corresponds to a large volume event. There-
fore kaons are also abundant in such events and vice-versa.
That is,K andπ multiplicities have positive correlations in
ISO ensembles. For GC ensembles, if there exists no ex-
cluded volume correlation, theK andπ multiplicities have
no correlation among them. Furthermore, since the chemi-
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cal freeze-out should be a local process, it seems natural that
its mechanism is governed by the intensive parameters. Sta-
tistically speaking, the observed chemical freeze-out state
may correspond to the state of maximum entropy under a
fixed pressure, and not under a fixedvolume. It is worth-
while to investigate if there exist differences between these
two scenarios in the particle abundances, especially in the
distribution ofK/π ratio.

2 Grand Canonical Ensemble

Let us consider first the case of GC ensemble of hadronic
resonances. For simplicity, we consider ideal Boltzmann
gas of hadronic resonances, neglecting the quantum statis-
tics and the effect of excluded volume. Except for pions,
for temperatures we are interested, the Boltzmann gas ap-
proximation is quite well. Furthermore, since we consider
just the ratio of particle multiplicities, the effect of excluded
volume is not very important. Under these approximations,
the probabilityP (N1, ...Nh) of havingN1 particles of the
hadron 1,N2 particles of the hadron2, and so on, tillh-th
hadron species is given as just the product of Poisson distri-
butions for each hadronic species,

P (N1, ...Nh) = PGC(N1, ...Nh; T, µB) = (1)

=
h∏

i=1

1
Ni!

[φiV ]Nj e−V φi ,

wherei refers to the hadron species,V is the volume and

φi =
g

2π2
m3

i

K2(βmi)
βmi

eµiβ (2)

with β = 1/T and µi is the chemical potential of the
i− th hadron. It is given by

µi = BiµB + SiµS + T
(3)
i µ3 (3)

with Bi, Si andT
(3)
i are baryon number, strangeness and

3-rd component of isospin of thei − th hadron. The
strangeness and isospin chemical potentialsµS andµ3 are
determined using the charge and strangeness neutrality.mi

andgi are the mass and statistical factor of the hadron, and
K2 is the modified Bessel function.

The observed particle abundances are not directly given
by the thermal multiplicities. We should take into account
the feeding stream from the resonance decays. The multi-
plicity of a stable (observable) hadron species, sayα, in a
single collision event is then given by

Nobs
α =

∑

i

Ni→αNi, (4)

whereNi→α is the number ofα hadron produced by the
decay chain of the parent hadroni. If we consider the de-
cay chain has no correlation with the thermal production
mechanism, we may safely substituteNi→α (integers) in
terms of their average valuesFi→α (not necessarily inte-
gers). We constructed the table for allFi→άs following the

decay chain of thei − th hadron using the values given in
the particle data table [5]. The distribution of the particle
ratio,rαβ is then calculated to be

P
(
rα/β

)
=

〈∑

{Ni}
P (N1, ...Nh) δ

(
rαβ − N̄α

N̄β

)〉
, (5)

where 〈O〉 denotes the average over collisional events of
an observableO. In practice, we introduce a finite bin
size ∆ for the variablerα/β and calculate the probabil-
ity of finding an event within a given bin specified by
[rαβ −∆/2, rαβ + ∆/2] . The average number ofa − th
hadron is

〈N̄α〉 =
∑

i

〈N〉i Fi→α (6)

where in the case of GC, we have

〈N〉i = φiV.

In Fig. 1, we show the result of Monte Carlo evaluation
of P

(
rK/π

)
for the Pb+Pb central collision.
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Figure 1. Grand canonical distributions ofK/π ratio. Different
curves correspond to different chemical potential indicated. Black
circles are experimental data.

Thermal parameters{T, µB} are determined to give the best
χ2-fit to the particle ratios of stable hadrons as done in Ref.
[1]. The value ofχ2 is around 20, which is comparable to
that of [1]. This means that the average particle ratios are
very well reproduced. However, as we see, the calculated
distribution is very much narrower than the experimental
value. The data [2] refers to a narrow rapidity window, and
the corrections from detector acceptance are not included
we may not consider the value shown here as definitive but
the difference between the value from a single GC ensemble
seems to be too large. It may be possible that the contamina-
tion of kaons from the neighboring rapidity windows causes
such a broadening of the distribution [4]. Therefore the ob-
served large width may be, is due to the mixture of many GC
with different thermodynamical parameters,{T, µB}. For
Pb+Pb collisions at SPS, the baryonic chemical potentialµB

varies more than200MeV from the central to fragmentation
region. In Fig. 1, we also show how the distribution ofK/π
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ratio changes with the chemical potential for fixed temper-
ature. This results indicates that, the observed width of the
K/π ratio distribution requires a mixture of GC ensemble
of appreciably different parameters.

3 Isobaric Ensemble

As mentioned in Introduction, it maybe possible that the
chemical freeze-out mechanism is governed by a pressure
value than a fixed volume as constraint. The isobaric parti-
tion function is given as

ZP (β, µ, P ) =
∫ ∞

0

dV e−βPV ZGC(β, µ, V ) (7)

whereZGC(β, µ, V ) is the partition function of the GC en-
semble. For a Boltzmann ideal gas, we can perform the in-
tegral easily to get

ZP (β, µ, P ) =
1

βP −∑
i φie−Pv0β

, (8)

where we have introduced the excluded volumev0 here as
in [6].

It can be shown that the probability function correspond-
ing to Eq.(1) becomes

PISO(N1...Nh; T, P ) = (1−
∑

i

ηi) N !
∏

j

ηj
Nj

Nj !
, (9)

where

ηi =
φie

−βPv0

βP
. (10)

The single particle multiplicity distribution is then given by

PISO(Nj) =
∑

N1 6=Nj

...
∑

Nh 6=Nj

PISO(N1...Nh) =

= (1− ζj)ζ
Nj

j (11)

where:

ζj =
ηj

1− ∑
i6=j

ηi
.

which is a geometric distribution.
Different from the GC case, the convolution of geomet-

ric distributions is not a geometric distribution, but so-called
negative binomial distribution. Suppose that the final state
of nuclear collision is formed ofk independent ’fireballs’,
described by the same isobaric ensemble specifiedT andP .
Let N

(q)
i be the number ofi − th hadron contained in the

q − th ”fireball”. Then the total number ofi− th hadron is

∑
q

N
(q)
i = Ni. (12)

In this case, the final probability distribution of having a
set of hadrons,{N1, ..., Nh} , is given as the convolution
of Eq.(9),

P
(k)
ISO(N1, ..., Nα) =

∑
· · ·

∑
{∑

q N
(q)
i =Ni

}

[
k∏

q=1

P (Nq
1 , ..., N q

h).

]
,

(13)
where the summations are taken over all(Nq

1 , ..., N q
h) sat-

isfying the constraints Eq.(12). Correspondingly, the single
particle distribution Eq.(11) is modified as[7]

P
(k)
ISO(Nα) = (1− ζα)k ζNα

α

(Nα + k − 1)!
Nα!(k − 1)!

. (14)

The average multiplicity ofi− th hadron is then

〈Ni〉 = k
ζi

1−∑
i ζi

. (15)

The particle ratio and its distribution are calculated by
evaluating Eq.5) by the Monte Carlo method, generating
{Ni} which obey the probability distribution Eq.(13). For
this purpose, use of the conditional probabilities for the
ISO ensemble is found to be efficient. The probability of
havingNi particles fori − th hadron after having already
N1 particles for the hadron 1,N2 particles for the hadron 2,
and so on tillNi−1 is

P (Ni||N1, N2, .., Ni−1) = (1− η̄i)
Zi+1 (Zi + Ni)!

Zi!Ni!
η̄Ni

i ,

(16)

whereZi =
∑i−1

j=1 Nj andη̄i = ηi/
(
1−∑

j>i ηj

)
. From

this, we can evaluate Eq.(5) very efficiently. In Fig.2, we
show the calculated distribution ofK/π ratio for the ISO en-
semble for several clusters. The ISO ensemble gives a larger
width compared to the GC ensemble, especially for smaller
numbers of clusters. This can be understood in terms of the
positive correlation amongK andπ multiplicities in the ISO
ensemble, as mentioned before. On the other hand, for large
number of clusters, the convoluted distribution Eq. (13)
tends to the GC ensemble. This is a natural consequence of
the statistical central limit theorem. However, different from
the GC ensemble, for a given set ofT an P , the value of
chemical potential changes to keep the baryon number con-
servation so that the average values ofK/π value changes
for different number of clusters in the system.

4 Discussion and Perspectives

In this work, we studied the behavior of event-by-event dis-
tribution of particle ratios in different statistical ensembles.
We have shown that the experimental value of the width in
theK/π ratio distribution is much wider than that given by
a unique grand canonical ensemble. If the observed width
is due to the mixture of GC ensembles corresponding to dif-
ferent values of chemical potentials, a very large variation
of chemical potential is required to reproduce the data.
On
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Figure 2. Isobaric distributions ofK/π ratio. Different curves cor-
respond to different number of clusters as indicated.

the other hand, the isobaric ensemble seems to be more ade-
quate for the description of the chemical freeze-out scenario.
It already furnishes a wider distribution ofK/π ratio due to
the correlations in particle multiplicities. On the other hand,
if the final state of the system is composed of many clus-
ters, convolution of the ISO distributions from these clusters

tends to that of the GC distribution. However, in this case,
the fluctuation of number of clusters with fixed(T, P ) can
also contribute to the width of theK/π distribution. A fur-
ther investigation in this line is in progress.
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