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Galaxy Luminosity Function: A New Analytic Expression
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We propose a new analytic approximation for the luminosity function of galaxies. The suggested expression
behaves like the Schechter function at the faint end (φ ∼ Lα) but departs considerably at the bright end
(L >> L∗). We argue here that such a behavior may provide a better fit for the current observational data than
does the Schechter function. Its practical interest is stressed by considering roughly the data set provided by the
Stromlo-APM redshift survey. Implications on the estimates of the matter density parameter from mass-to-light
ratio are also briefly discussed.

The galaxy luminosity function (GLF) is a key quan-
tity for any study of galaxy evolution and one of the most
important astrophysical tools in practical cosmology. It de-
scribes the distribution of galaxies with different intrinsic lu-
minosities L (or magnitudes M ), and since the main source
of data coming from the distant past is provided by the light
emitted (or scattered) by ordinary matter, the GLF also sup-
plies the primary information about the baryonic content of
the Universe.

Over the years, many attempts have been done for deter-
mining the shape of the GLF (Zwicky 1957; Kiang 1961;
Abell 1965; Arakelyan & Kalloglyan 1975). Such stud-
ies culminated with an elegant analytic form proposed by
Schechter (1976) which nowadays is usually referred to as
the general Schechter luminosity function. In the introduc-
tion of his popular paper, Schechter also emphasized some
of the main applications of the GLF (see also Felten 1977;
1985; Sandage et al. 1979; Binggeli et al. 1988). In the field
of cosmology, this quantity is essential to determine evolu-
tionary effects on the galaxy number counts (Loh & Spillar
1986; Yoshi & Takahara 1988); to analyze the spatial dis-
tribution of galaxies from redshift surveys (da Costa et al.
1988; Efstathiou et al. 1988; Loveday et al. 1992; Blan-
ton et al. 2001); to constrain models of galaxy formation
(Frenk et al. 1988); to study statistics of gravitational lenses
(Fukugita & Turner 1991; Kochanek 1996); and since al-
most all galaxy surveys are limited by apparent magnitude,
an estimate of the GLF is also of fundamental importance
for the analysis of the large-scale structure in the Universe
(Efstathiou 1997). In the last few years, a considerable ef-
fort has also been invested in determining the shape of the
GLF for different morphologies or spectral types as well as
any dependence it may have on environment (Binggeli et al.
1988; Willmer 1997; Marzke et al. 1998; Christlein 2000;
Madgwick et al. 2001).

The galaxy luminosity function, φ(L), is defined by the
differential expression dn(L) = φ(L)dL, where dn(L) is
the number of galaxies per unit volume with luminosity in
the range L to L + dL. The luminosity function of galaxies
can be fitted by a Schechter-type distribution
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where L∗ is the characteristic luminosity, α is an arbitrary
pure number and φ∗ is a normalization parameter whose di-
mension is the number density of galaxies. This expression
has not been deduced from first principles, and as such, the
free parameters must be determined from astronomical ob-
servations. As widely known, all these parameters are sen-
sitive on the kind of galaxy being sampled.

Let us now consider the following luminosity distribu-
tion
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where η is a new adjustable dimensionless parameter. This
expression has been chosen so that in the limit η → 1 the
standard Schechter expression is recovered. Formally, this
result follows directly from the known identity limd→0(1 +
dy)

1
d = exp(y) (Abramowitz et al. 1972). Therefore, for

generic values of η �= 1, the new GLF is a product of two
power laws instead of an exponential multiplied by a power
law.

For values of η > 1, the positiviness of the argument
appearing in the second power factor of (2) defines natu-
rally a maximum value for the absolute luminosity, namely
Lmax = L∗/(η − 1). The existence of this cut-off implies
that at the bright end the corresponding distribution (for each
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Figure 1. Luminosity function from the Stromlo-APM redshift survey. Fits in the three panels are to (a) the full galaxy sample, (b) the
early-type subsample, and (c) the late-type galaxy subsample. The solid curves show Schechter function (η = 1). The dotted lines in each
panel show how the fits change for the selected values of η with the other parameter assuming the same values estimated in the quoted
reference. In all these cases, the exponential Schechter function is a critical curve within a large class of possible power law distributions.
Curves with η > 1 fall off before the exponential while those with η < 1 fall more slowly.

value of η > 1 decreases faster than the standard Schechter
function. However, in the complementary range (η ≤ 1)
which which includes in particular the Schechter form for
η = 1, one may see that the cut-off is absent. The extended
GLF approaches zero at the bright end more slowly than
the Schechter distribution which is defined in terms of the
exponential function. Note also that for low luminosities
(L << L∗), the Schechter function and the new distribu-
tion present exactly the same behavior determined by the
slope parameter α (φ ∼ Lα). This means that the family of
η-distributions proposed here essentially alters the behav-
ior of the Schechter function at high luminosities. In other
words, a given value of the slope parameter α can now be
matched to a large class of asymptotic approaches to the
bright end, which is described by a continuous parameter
η. Conversely, for a given η fitting the bright end of a given
sample, the freedom on α still remains available at the faint
end. In this way, the low and high-L domains are now play-
ing a more symmetrical role in the sense that both are free to
be conveniently adjusted. It should be noticed that a “quasi-
Schechter” exponential behavior can be readily obtained for
η slightly different from unity.

In point of fact, astronomers prefer a magnitude repre-
sentation for the GLF because φ(M) is more directly related
to observations than φ(L). In terms of magnitude the new
distribution reads:

φ(M)dM = 0.921φ∗100.4(M∗−M)(α+1) (3)

×
[
1 − (η − 1)100.4(M∗−M)

] 1
η−1

dM,

where M∗ is a fiducial magnitude (defined by L∗) which
yields the position of the knee appearing in the logφ(M)

curves whose inclinations (at the faint end) are determined
by the possible values of α. As an initial step, our aim here is
to show that the proposed expression may be a more conve-
nient approximation for the galaxy luminosity function than
the usual Schechter function. In what follows, the features
of this new function will be discussed more quantitatively in
connection with the data set provided by the Stromlo-APM
redshift survey (Loveday et al 1992).

In Fig. 1 we display the log10φ(M) - M plane based on
the extended GLF for some selected values of the η parame-
ter corresponding to: (a) the full sample of galaxies, (b) the
early-type subsample (E/SO), and (c) the late-type galaxy
subsample (Sp/Irr). In each picture, solid lines account
for the best-fitting provided by a pure Schechter function
(η = 1) whose parameters were determined using two dif-
ferent estimators by Loveday et al. (1992). The dotted lines
show how the Schechter fit changes for the selected values
of η with the remaining parameters assuming the same val-
ues estimated in the quoted reference. In all these cases, the
exponential Schechter function is a critical curve within a
large class of possible power law distributions. Curves with
η > 1 fall off before the exponential while those with η < 1
fall off more slowly. As remarked before, all curves coin-
cide at low luminosities (φ ∼ Lα) regardless of the values
assumed by the η parameter1.

At this point we analyze to what extent the η param-
eter changes the estimates of the matter density in the Uni-
verse. This question is a natural one because the η parameter
appearing in the extended luminosity function modifies the
mean luminosity density. It should be recalled that the rel-
ative contribution of the dark matter component in a given
scale is usually specified by the M/L ratio in the blue
band.

1An analysis using the STY (Sandage et al. 1979) and SWML (Efstathiou et al. 1988) methods is currently being performed (Lima et al., in preparation).
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Figure 2. Mass-to-light ratio and the density parameter. The four panels show the dependence of Ωm as a function the index η for some
selected values of M∗. Note that in the four panels, the α parameter assumes a fixed value while M∗ is slightly varied. They show that for a
fixed value of η the value of Ωm increases with M∗. In all panels we see that smaller values of η lead to greater values of Ωm. This overall
behavior holds regardless of the values assumed by the parameters α and M∗.

Typically, for the largest virialized systems (rich clusters
of galaxies) this ratio (in solar units, M�/L�), falls on
the interval M/L ∼ 300 ± 100h (Carlberg et al. 1996;
Bachall 2000; Wilson et al. 2001). Parenthetically, this re-
sult still remains in agreement with the first measurements
from the Coma cluster for which M/L ∼ 300h (Zwick
1933), and seems to be rather independent of the veloc-
ity dispersion and other intrinsic parameters. Fixing this
value for the mass-to-light ratio, Ωm can be estimated as-
suming that all the galaxies share the same M/L ratio and
that mass traces light on large scales. In this case, a sub-
sequent integration over the observed luminosity density
yields Ωm � 0.2 (Bachall 2000). When combined with the
inflationary paradigm (ΩTotal = 1), such a result means that
nearly 80% of the mass in the Universe cannot be associated
to the presence of galaxies. How is this result affected by
the η parameter?

In order to answer this question we first observe that for
values of η ≥ 1 and η ≤ 1, the mean luminosities per unit
volume are given, respectively, by

Lη≥∞ =
∫ Lmax

o

Lφ(
L

L∗ )d(
L

L∗ ) =

= φ∗L∗Γ(α + 2)
Γ( 1

η−1 )

(η − 1)α+3Γ(α + 3 + 1
η−1 )

,

(4)
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o
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L
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L
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= φ∗L∗Γ(α + 2)
Γ( 1

1−η − α − 2)

(1 − η)α+2Γ( 1
1−η )

, (5)

where Γ is the usual gamma function. As one may check,
by considering the identity lim|z|→∞z−aΓ(a + z)/Γ(z) = 1
(Abramowitz et al. 1972), the standard result L = Γ(α +
2)φ∗L∗ (see, for instance, Peebles 1993) is readily recov-
ered as a limiting case of the above expressions (η → 1).
Thus, since the critical mass density of the Einstein-de Sit-
ter model is ρcrit = 2.78×1011h2M�Mpc−3, the mass-to-
light ratio required to close the Universe can easily be found
by combining ρcrit and L.

In Fig. 2 we fix M/L = 300hM�/L� (Bahcall 2000)
and φ∗ = 1.12 × 10−2hMpc−3 (Loveday et al. 1992) and
display Ωm as a function of the index η. In the four pan-
els, the parameter α has been fixed by the value obtained
for the pure Schechter function while M∗ is slightly varied.
We see that for a fixed value of η the value of Ωm increases
with M∗. For instance, for η = 0.91 and M∗ = −19.50
we find Ωm � 0.13 whereas for the same value of η and
M∗ = −19.80 we have Ωm � 0.19. As a general behavior
we see that the smaller the values of η the greater the values
of Ωm.

Finally, we stress that the consistency of the phenomeno-
logical parameters appearing in the luminosity function
should be tested using many different methods. In partic-
ular, for the exponential Schechter function, this aspect has
been analyzed by using several independent treatments (see,
for instance, Willmer 1997). In this concern, it should be
interesting to investigate the goodness of the fit for these
data provided by the extended luminosity function proposed
here. Such an analysis including the computation of the
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shape parameters will appear in a forthcoming communi-
cation.
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